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Abstract
We show that the satisfiability of circuits over finite Malcev algebra A is NP-complete or A is
nilpotent. This strengthens the result from our earlier paper [18] where nilpotency has been enforced,
however with the use of a stronger assumption that no homomorphic image of A has NP-complete
circuits satisfiability. Our methods are moreover strong enough to extend our result of [14] from
groups to Malcev algebras. Namely we show that tractability of checking if an equation over such
an algebra A has a solution enforces its nice structure: A must have a nilpotent congruence ν such
that also the quotient algebra A{ν is nilpotent. Otherwise, if A has no such congruence ν then
the Exponential Time Hypothesis yields a quasipolynomial lower bound. Both our results contain
important steps towards a full characterization of finite algebras with tractable circuit satisfiability
as well as equation satisfiability.
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1 Introduction

The problem of deciding whether an equation over an algebraic structure has a solution has
got quite deep attention both in mathematics and computer science. Let us only mention
two crucial examples:

10th Hilbert’s problem for Diophantine equations, i.e. equations over the ring of integers –
shown to be undecidable by Matiyasevich [24],
the problem Sat of satisfiability of Boolean formulas – shown to be NP-complete by
Cook [4].

In this paper we consider equations of the form tpx1, . . . , xnq “ spx1, . . . , xnq, where t and s
are polynomials over a fixed finite algebra A (i.e. a finite set A with finitely many operations),
i.e. terms with some of their variables already evaluated by elements of A. We are interested
in the complexity of the problem PolSatpAq, i.e. the problem of deciding whether an
equation (of two polynomials) over A has a solution in A.
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37:2 Satisfiability of Circuits and Equations over Finite Malcev Algebras

Recently, this problem for equations over finite groups and other finite algebraic structures
(like e.g. rings [10], semigroups [2, 21] or lattices [25]) attracted many researchers. For groups
the story began with the paper [7] of Goldmann and Russell where NP-completeness of
PolSat has been shown for nonsolvable groups and a polynomial time algorithm has been
created for nilpotent groups. However the gap between solvable and nilpotent groups remained
unfilled. More recently several examples of solvable but non-nilpotent groups with PolSat
tractable in polynomial time have been provided [12, 13, 11, 5]. Among such groups there
is the symmetric group S3 and the alternating group A4. Those two examples are of a
special interest, as after endowing them by additional operations definable in terms of group
multiplication the PolSat problem becomes NP-complete for such extensions. For the group
S3 this phenomenon has been first described in [8], while for A4 in [13]. The NP-hardness
for A4 has been obtained by extending this group by the binary commutator operation
rx, ys “ x´1y´1xy, which is heavily used in group theory.

The existence of such examples made the expectation of characterizing finite algebras with
PolSat solvable in polynomial time rather hopeless. For this reason our paper [18] modified
PolSat to make it independent of the choice of the basic operations in the algebra. This has
been done by interpreting the size of a term (or a polynomial) not as the size of the tree that
represent this term but as the size of a circuit computing it. One can easily see that the tree
(built up with group multiplication only) computing the n-ary term r. . . rrx1, x2s, x3s . . . xns

has exponential size, while there is a circuit of linear size computing this term. This small
change allows us to expand a finite algebra A by (finitely many) operations definable by
polynomials of A without actually changing the complexity. Thus by a circuit satisfiability
over an algebra A we mean the following problem

CSatpAq: given a circuit over A with two output gates g1,g2, is there an assignment
of values to the input gates x “ px1, . . . , xnq that gives the same output on g1,g2, i.e.
g1pxq “ g2pxq.

Note here that the characterizations given in [10, 25] show that the problems PolSat and
CSat are tractable for the same rings and lattices: namely the only tractable rings are the
nilpotent rings and the only tractable lattices are the distributive lattices.

The paper [18] shows that replacing polynomials by circuits representing those polynomials
allows us to attack the complexity of CSat in a more general setting than just for particular
algebraic structures like groups, rings or lattices. The setting considered there includes all of
the above structures and many more, i.e. algebras from the so-called congruence modular
varieties. Roughly speaking, most of the structures in classical abstract algebra (except
semigroups) are included.

In this paper we improve the result of [18] and generalize the result of [14] from groups
to more general algebraic structures. First, in both of those two improvements we restrict
ourselves to the so-called Malcev algebras, i.e. algebras having a ternary term dpx, y, zq
that satisfies dpx, x, yq “ y “ dpy, x, xq. Note that groups and in fact all algebras that are
extensions of groups (like rings or Boolean algebras) are Malcev, as the term dpx, y, zq “
xy´1z does the job. Also many generalizations of groups, like quasigroups or loops, are
Malcev. Next we refer to the monograph [6] where a commutator theory is developed in a
way that generalizes the commutator rH,Ks of normal subgroups H,K in the group theory
and the ideal multiplication I ¨ J in the ring theory. In general setting we use congruences
instead of normal subgroups or ideals. The book [6] shows how for two congruences α, β of
an algebra A define their commutator rα, βs and can serve as a reference source. With the
help of the commutator one can define notions of abelianess, solvability and nilpotency for
arbitrary algebras. First, for a congruence θ and i “ 1, 2, . . . we put
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θp0q “ θ θr0s “ θ

θpi`1q “ rθ, θpiqs θri`1s “ rθris, θriss.

Now, a congruence θ of A is called k-nilpotent [or k-solvable] if θpkq “ 0A [θrks “ 0A] and
the algebra A is nilpotent [solvable] if 1A is k-nilpotent [k-solvable] for some finite k. In
particular θ [or A] is Abelian if rθ, θs “ 0A [or r1A, 1As “ 0A]. In a similar way we can
define what it means for a congruence θ to be Abelian, nilpotent or solvable over a smaller
congruence α, by simply saying that an appropriate commutator power of θ is contained in
α. Finally we define θpωq “

Ş8

i“0 θ
piq, and note that since in a finite algebra the descending

chain θp0q ě θp1q ě θp2q ě . . . stabilizes the congruence θpωq is in fact one of the θpiq’s.
In our study of solvable Malcev algebra a series of congruences 0 “ ν0 ď ν1 ď . . . ď

νh´1 ď νh “ 1A in which νi is the largest nilpotent congruence over νi´1 will play a crucial
role. This series is called the nilpotent series (or sometimes the Fitting series in the group
theory), and we will use this teminology as well. We define the nilpotent (or Fitting)
rank nr pαq of a congruence α to be the smallest integer k for which there is a sequence of
congruences 0 “ α0 ď α1 ď . . . ď αk´1 ď αk “ α where each αi is nilpotent over αi´1. Note
here that νk is the largest congruence with nilpotent rank k, so that we have nr pαq ď k iff
α ď νk. By the same token any solvable congruence in a Malcev algebra has finite nilpotent
rank.

For a finite Malcev algebra A and a covering pair α ă β of congruences (i.e. without any
congruence between them) there are tools to describe the behaviour of A locally, depending
on whether β is Abelian over α. In the case it is not, tame congruence theory (as described
in [9]) tells us that A has a unary idempotent polynomial e (i.e. epepxqq “ epxq for all x P A)
with a two element range t0, 1u “ epAq so that the induced algebra A|t0,1u (i.e. the set
t0, 1u with all the polynomials of A that preserve that set) has Boolean operations ^,_,␣
definable by polynomials. As one can expect the presence of a Boolean behaviour results
in NP-hardness of CSatpAq (see the proof of Corollary 1.3 for details). If there is no local
Boolean behaviour in A, i.e. A behaves locally in the Abelian fashion, then A is solvable.
Thus our goal is to understand solvable algebras with tractable PolSat or even CSat.

In [18] it was shown that if a finite Malcev algebra A is not nilpotent then A has a
nonnilpotent quotient A1 with NP-complete CSatpA1q. Here we significantly improve that
result to be read as follows.

▶ Theorem 1.1. If a finite Malcev algebra A is not nilpotent then CSatpAq is NP-complete.

Unfortunately [18] does not provide a proof that nilpotency is already strong enough to
force tractability. In fact [16] describes examples of nilpotent Malcev algebras with CSat
outside P under the assumption of Exponential Time Hypothesis. On the other hand [18]
(and independently [22]) provides an argument that supernilpotent Malcev algebras have
tractable CSat. Due to [20], for algebras with finitely many basic operations this stronger
condition of supernilpotency simply means that an algebra is nilpotent and decomposes into a
direct product of algebras of prime power order. (Note here that due to Sylow’s results every
nilpotent group is already supernilpotent; the same is true for rings). Obviously the examples
from [16] are not supernilpotent. In fact they are rather far from being supernilpotent. The
very same paper [16] isolates a concept of supernilpotent rank, similar to the nilpotent rank,
with the help of supernilpotent congruences instead of nilpotent ones. Thus we say that the
supernilpotent rank of a congruence α is at most k (and write sr pαq ď k) if there is a sequence
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37:4 Satisfiability of Circuits and Equations over Finite Malcev Algebras

of congruences 0 “ α0 ď α1 ď . . . ď αk´1 ď αk “ α in which each αi is supernilpotent
over αi´1. (Note here that in [16] a congruence α with sr pαq ď k has been called k-step
supernilpotent.) Analogously as in the case of the nilpotent series pνkqk we can define the
supernilpotent series pσkqk in which σk is the largest congruence of supernilpotent rank k
(all that is needed to do that is to observe that the join of two supernilpotent congruences is
supernilpotent). We also have sr pαq ď k iff α ď σk. Moreover, since every supernilpotent
congruence is nilpotent, σk ď νk and nr pαq ď sr pαq. Note that the concepts of nilpotency
and supernilpotency coincide in groups so that nr pαq “ sr pαq for every congruence α of a
finite group. This however is not the case in general, as for nilpotent but not supernilpotent
algebra A we have nr pAq “ 1 ă sr pAq.

We have already noticed that the examples from [16] are not supernilpotent. Actually
their supernilpotent rank is at least 3. Very recently Kompatscher [23] applied the technique
from [16] to show that (under ETH) no finite nilpotent algebra with supernilpotent rank at
least 3 has tractable CSat (but note here that Kompatscher use the term Fitting rank, for
what we call here supernilpotent rank). However even sr pAq ď 2 does not suffice to have
tractable CSat (or ETH fails). Appropriate examples are created in [17].

The sequence of papers [16, 26, 14] explores the same idea to show that for a solvable group
G with nr pGq ě 3 the problem PolSatpGq is not tractable (if ETH holds). Actually [14]
combines some premature results from [16] and [26]. Here we leave the group realm and
use tame congruence theory (instead of well understood group techniques) to bound the
nilpotent rank of solvable algebras with tractable PolSat.

▶ Theorem 1.2. Let A be a finite solvable Malcev algebra with nilpotent rank h ě 3. Then
checking if an equation of length ℓ over A has a solution needs at least 2Ωplogh´1 ℓq steps, or
the Exponential Time Hypothesis fails.

Combining Theorem 1.2 with the possibility of eliminating nonabelian (and therefore
Boolean) local behaviour we will also get the following Corollary.

▶ Corollary 1.3. Let A be a finite Malcev algebra. If PolSatpAq P P then A is solvable and
nr pAq ď 2, or ETH fails.

We conclude the description of our results by noting that (under the Exponential Time
Hypothesis) nilpotent rank 2 does not put PolSat into P, as some dihedral groups described
in [17] show.

2 Proof of the Theorems

To prove the results formulated in the Introduction we need some preparation stated in two
Lemmas below. Their proofs are postponed to Section 3 as they make some (or sometimes
even quite heavy) use of the theory of commutator in congruence modular varieties (or the
modular commutator theory, for short) and the tame congruence theory described in [6] and
[9], respectively. This section however does not require the knowledge of these theories. All
we need to state our Lemmas is the concept of a join irreducible congruence i.e. a congruence
θ that cannot be represented as a join θ1 _ θ2 for θ1, θ2 ă θ. Such a congruence has a unique
subcover, which will be denoted by θ´. Moreover θ has to be principal, i.e. it is generated
by a single pair, say pa, bq. This last fact is to be denoted by θ “ Θpa, bq. For these and all
other basic algebraic concepts and notation we refer the reader to [3].
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▶ Lemma 2.1. Let A be a finite solvable Malcev algebra. Then for every join irreducible
congruence δ “ Θpe, aq with nr pδq ą nr pδ´q ą 0 there is another join irreducible congruence
δ‹ “ Θpe‹, a‹q with nr pδ‹q “ nr pδq ´ 1 and nr pδ‹q ą nr

`

δ‹
´

˘

, and for each integer n there is
an n-ary polynomial andnpx1, . . . , xnq such that for x1, . . . , xn P te, au we have

andnpx1, . . . , xnq “

"

a‹, if x1 “ . . . “ xn “ a,

e‹, otherwise.

The polynomial andn can be constructed in a time bounded by 2Opnq while the circuit that
computes andn can be constructed in a linear time Opnq.

▶ Lemma 2.2. In a finite solvable Malcev algebra A with nilpotent rank h ě 2 there are:
a join irreducible congruence δh´1 “ Θpeh´1, ah´1q with h´ 1 “ nr

`

δh´1˘

ą nr
`

δh´1
´

˘

“

h´ 2,
a partition of A into two nonempty disjoint subsets A “ AK YAJ,

such that for any 3-CNF-formula Φ with m clauses there exists a 3m-ary polynomial satΦ of
A with range contained in teh´1, ah´1u and such that for z1

1 , z
1
2 , z

1
3 , . . . , z

m
1 , z

m
2 , z

m
3 P tJ,Ku

and x1
1, x

1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 P A with xj

i P Azj
i

we have

Φpz1
1 , z

1
2 , z

1
3 , . . . , z

m
1 , z

m
2 , z

m
3 q “ J iff satΦpx

1
1, x

1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q “ ah´1.

The polynomial satΦ can be constructed (from the formula Φ) in time bounded by 2Opmq while
the circuit that computes satΦ can be constructed in linear time Opmq.

Now we are ready to prove our results stated in the Introduction.

Proof of Theorem 1.2. We are going to translate a 3-CNF formula Φ with m clauses into
an equation of length 2Opm1{ph´1q

q (and with the very same time needed for this translation)
such that the formula Φ is satisfiable iff the corresponding equation has a solution. This,
according to ETH (together with the Sparsification Lemma) shows that the time needed to
check if an equation of length ℓ has a solution is at least 2Ωplogh´1 ℓq. For if not, a PolSatpAq
algorithm working in 2oplogh´1 ℓq time would solve 3-CNF-SAT in 2opmq, contrary to ETH.

Without loss of generality we assume that m “ kh´1. We will produce a 3m-ary
polynomial ΦSat represented by a tree having:

exactly h levels,
3m leaves, all of them on the level h,
m{k “ kh´2 nodes on level h´ 1, each of which labeled by 3k-ary polynomial of the form
sat provided by Lemma 2.2,
m{kh´l “ kl´1 nodes at the l-th level (for l “ h´ 2, ..., 1), each of which labeled by k-ary
polynomial of the form andk supplied by Lemma 2.1.

To do that we start with a 3-CNF formula Φ with m “ kh´1 clauses and group them into m{k
groups each of which containing exactly k clauses. Thus Φ can be represented as

Źm{k
j“1 Φj ,

with Φj being a conjunction of k clauses in the j-th group. Now, with the help of Lemma
2.2 we produce:

the partition A “ AJ YAK,
the join irreducible congruence δh´1 with nr

`

δh´1˘

“ h´ 1 “ 1` nr
`

δh´1
´

˘

,
the elements eh´1, ah´1 with δh´1 “ Θpeh´1, ah´1q,
and for each Φj a corresponding 3k-ary polynomial satΦj

with the property described by
the Lemma 2.2.

Next we go down with l “ h ´ 1, ..., 2 to use Lemma 2.1 and for δl “ Θpel, alq satisfying
nr

`

δl
˘

“ l we produce
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the congruence δl´1 “ Θpel´1, al´1q with nr
`

δl´1˘

“ l ´ 1 by putting δl´1 “
`

δl
˘˚,

el´1 “ e˚
l and al´1 “ a˚

l ,
the k-ary polynomial andl´1

k with the range tel´1, al´1u, so that

andl´1
k px1, . . . , xkq “

"

al´1, if x1 “ . . . “ xk “ al,

el´1, otherwise,

whenever x1, . . . , xk P tel, alu.
To get the polynomial ΦSat we first compute satΦ1pxq, . . . , satΦm{k

pxq. Note that in fact
in each of the satΦj

pxq’s at most 3k variables (from x) may occur, as the zj
i ’s in different

clauses do not have to be different. Next, to pass from level l “ h ´ 1, . . . , 2 to l ´ 1 we
group kl´1 values into kl´2 groups, each of which having k elements and apply the k-ary
polynomial andl´1

k to each of these groups to get kl´2 values on level l ´ 1. Note that, due
the properties of the ranges of the satΦj

’s and of the andl
k’s, the only values that may occur

at the l-th level (with l “ h´ 1, . . . , 1) are el and al. Moreover the value al occurs only if
the conjunction of kh´l clauses that were used to compute this value is properly evaluated
(to be satisfied). In particular arriving at level 1 we get one of the values e1 or a1 so that the
resulting 3m-ary polynomial ΦSatpx1

1, x
1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q satisfies

Φpz1
1 , z

1
2 , z

1
3 , . . . , z

m
1 , z

m
2 , z

m
3 q “ J iff ΦSatpx1

1, x
1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q “ a1,

whenever z1
1 , z

1
2 , z

1
3 , . . . , z

m
1 , z

m
2 , z

m
3 P tJ,Ku and x1

1, x
1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 P A are such that

xj
i P Azj

i
. This means that the equation ΦSatpx1

1, x
1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q “ a1 has a solution

iff the formula Φ is satisfiable.

To conclude the proof we observe that Lemmas 2.1 and 2.2 guarantee that the polynomials
of the form satΦj and andl

k have their size bounded by 2Opkq and in fact they can be
constructed in the very same amount of steps. Thus composing them to get ΦSat we need
roughly

`

2Opkq
˘h
“ 2Opm1{ph´1q

q steps, as promised. ◀

Proof of Corollary 1.3. As we have already mentioned in the Introduction a finite Malcev
algebra admits only two kinds of a local behaviour. One of them is Boolean (or type 3 in the
sense of tame congruence theory [9]). Modifying our argument used in Section 5 of [18] we
show that the presence of type 3 leads to NP-completeness. Indeed, in this case the algebra
has:

two elements, say 0, 1,
an idempotent unary polynomial e01pxq with range t0, 1u,
two binary polynomials ^,_ and a unary polynomial ␣ that act on the set t0, 1u like
Boolean operation, i.e. meet, join and negation, respectively.

Let c be a constant bounding the sizes of all these four polynomials.
The presence of these polynomials allows us to translate each 3-CNF-SAT instance

Φ ”
Źm

i“1 ℓ
i
1 _ ℓ

i
2 _ ℓ

i
3, where ℓi

j P

!

zj
i ,␣z

j
i

)

, into the equation of the algebra A

m
ľ

j“1
δj

1e01px
j
1q _ δ

j
2e01px

j
2q _ δ

j
3e01px

j
3q “ 1, (1)

where

δi
je01px

j
i q “

#

e01px
j
i q, if the literal ℓi

j is the variable, i.e., ℓi
j “ zj

i ,

␣e01px
j
i q, if ℓi

j is the negated variable, i.e., ℓi
j “ ␣z

j
i .
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It should be obvious that the formula Φ is satisfiable if and only if the equation (1) has
a solution. However we need to take care of the size of this equation. But this can be
secured by representing the m-ary conjunction in (1) in a balanced form, i.e. by a complete
binary tree. This ensures us that the size of our equation is bounded by Opclog mq, i.e. by
a polynomial in m. This shows that in the presence of local Boolean behaviour in A the
problem PolSatpAq is NP-complete, so that in view of ETH it cannot be in P.

Now we may assume that there is no local Boolean behaviour in A, or in other words
that the algebra A is solvable. In this case we simply refer to Theorem 1.2 to conclude that
PolSatpAq P P implies nr pAq ď 2, as claimed. ◀

By using the circuits constructed in Lemma 2.1 we can easily derive Theorem 1.1.

Proof of Theorem 1.1. The first part of the proof of Corollary 1.3 shows that the presence
of Boolean local behaviour leads to NP-completeness of PolSatpAq and therefore also of
CSatpAq. Thus we may assume that A is solvable. In this case Lemma 2.2 supplies us with
an element ah´1 P A so that each 3-CNF formula Φ can be turned, in a polynomial time,
into a corresponding circuit satΦ such that the equation satΦpxq “ ah´1 has a solution iff Φ
is satisfiable.

This reduction obviously shows NP-completeness of CSatpAq. ◀

3 Proofs of the Lemmas

For the proofs of Lemmas 2.1 and 2.2 we need an auxiliary Lemma. It uses the concept of
the centralizer pα : βq, that is the largest congruence θ satisfying rθ, βs ď α.

▶ Lemma 3.1. Let A be a finite solvable Malcev algebra and α ă β be a covering pair of its
congruences such that nr pβq ą nr pαq ą 0. Then there is a join irreducible congruence γ with
nr pγq “ nr pαq and α ď pγ´ : γq but β ę pγ´ : γq.

Moreover for any pair pe1, a1q P γ ´ γ´ and pe, aq R pγ´ : γq there is a binary polynomial
seapx, yq of A, satisfying

seape
1, yq “ e1, for all y P A,

seapa
1, eq

γ´

” e1, (2)
seapa

1, aq “ a1.

Proof. Let k “ nr pβq ą nr pαq “ k ´ 1, i.e. β ę νk´1 ě α. Since nr
`

βpωq
˘

“ nr pβq ´ 1 we
know that βpωq ę νk´2 so there is a congruence φ such that βpωq X νk´2 ď φ ă βpωq. Put
ρ0 “ βpωq and ρi`1 “ rρi, αs and observe that ρi ď αpiq whenever i ě 1. Since αpωq “ αpjq

holds for some j, we have ρj ď αpjq “ αpωq ď βpωq X νk´2 ď φ. As ρ0 “ βpωq ę φ then
the minimal integer ℓ for which ρℓ ď φ is at least 1. Thus ρℓ´1 _ φ “ βpωq so that in
fact ρ1 “

“

βpωq, α
‰

“ rρℓ´1 _ φ, αs “ rρℓ´1, αs _ rφ, αs “ ρℓ _ rφ, αs ď φ. This shows
α ď

`

φ : βpωq
˘

. Obviously β ę
`

φ : βpωq
˘

as
“

βpωq, β
‰

“ βpωq ę φ. Now we pick a minimal
congruence γ below βpωq but not below φ. Obviously γ is join irreducible and the covering
pair φ ă βpωq transposes down to γ´ ă γ where γ´ is the unique subcover of γ. Consequently
pγ´ : γq “

`

φ : βpωq
˘

, i. e. γ has the properties described in the Lemma. To calculate
nr pγq note first that γ ď βpωq ď νk´1 so that nr pγq ď k ´ 1. But nr pγq ď k ´ 2 would give
γ ď νk´2 X β

pωq ď φ, contrary to our choice of γ.
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For the second part of the Lemma we fix any pair pe1, a1q P γ´ γ´. Due to the join irredu-
cibility of γ we know that γ “ Θpe1, a1q. Now if pe, aq R pγ´ : γq then rΘpe, aq,Θpe1, a1qs ę γ´

so that Exercise 6.6 in [6] supplies us with a binary polynomial spx, yq of A such that

spe1, eq
γ´

” spa1, eq,

spe1, aq
γ´

ı spa1, aq.

The very last line gives Θpspe1, aq, spa1, aqq “ γ Q pe1, a1q and therefore there is a unary
polynomial p of A that takes the pair pspe1, aq, spa1, aqq to pe1, a1q. Using Malcev polynomial
d we modify spx, yq to a new polynomial seapx, yq “ dppspx, yq,pspe1, yq, e1q for which it
should be easy to check that

seape
1, yq “ dppspe1, yq,pspe1, yq, e1q “ e1,

seapa
1, eq “ dppspa1, eq,pspe1, eq, e1q

γ´

” dppspe1, eq,pspe1, eq, e1q “ e1,

seapa
1, aq “ dppspa1, aq,pspe1, aq, e1q “ dpa1, e1, e1q “ a1,

so that all three conditions of (2) hold. ◀

With the help of Lemma 3.1 we are ready to prove Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. We start our proof by referring to Lemma 3.1 with pα, βq “ pδ´, δq

to get a join irreducible congruence γ with δ ę pγ´ : γq ě δ´. We fix a pγ´, γq-minimal
set V of A and a pair pe1, a1q P γ|V ´ γ´. On the other hand δ “ Θpe, aq ensures us that
pe, aq R pγ´ : γq so that Lemma 3.1 supplies us with a polynomial seapx, yq satisfying (2). Our
first goal is to consecutively modify this polynomial sea to force the middle line in the display
(2) to be the real equality instead of

γ´

” . First we replace seapx, yq with eV seapeV pxq, yq, where
eV is a unary idempotent polynomial of A with range V . This new seapx, yq not only satisfies
(2) but also has its range contained in V and for any fixed y we have seapA, yq “ seapV, yq.

Now, note that the first two lines of (2) tell us that the unary polynomial s0pxq “ seapx, eq

does not permute V and consequently s0pAq “ s0pV q Ł V . Note also that for all φ ă ψ ď γ

we have s0pψq Ď φ, as otherwise the range of s0 would contain an pφ,ψq-minimal set properly
contained in V . This however (in view of Lemma 4.30 of [9]) cannot happen as V is a
minimal set of type 2. Now if a maximal chain of congruences strictly below γ has exactly l
congruences then by replacing the polynomial seapx, yq with seap. . . seapseapx, yq, yq . . . , yq,
where the iteration in the variable x is done l times, we keep the first and the third line of
(2) to be true, while the middle one can be replaced by the equality. Thus we end up with a
new polynomial seapx, yq satisfying

seape
1, yq “ e1, for all y P A,

seapa
1, eq “ e1, (3)

seapa
1, aq “ a1.

Now the n-ary polynomial and0
npx1, . . . , xnq “ seap. . . seapseapa

1, x1q, x2q . . . , xnq satisfies

and0
npx1, . . . , xnq “

"

a1, if x1 “ . . . “ xn “ a,

e1, otherwise, (4)

whenever x1, . . . , xn P te, au.
To conclude our argument note that γ ę νnrpδ´q´1 and then simply pick a minimal

congruence δ‹ below γ but not below νnrpδ´q´1. Obviously δ‹ is join irreducible (with the
unique subcover δ‹

´) so that it is principal, say δ‹ “ Θpe‹, a‹q. Also, by minimality we have
nr pδ‹q “ nr pδ´q and nr

`

δ‹
´

˘

“ nr pδ´q ´ 1.
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Finally pe‹, a‹q P δ‹ Ď γ “ Θpe1, a1q, so that there is a unary polynomial p of A
that maps e1 onto e‹ and a1 onto a‹. By (4) it should be clear that the polynomial
andnpx1, . . . , xnq “ ppand0

npx1, . . . , xnqq does the job described in the Lemma.
To bound the length of the polynomial andn and the size of the circuits that compute

andn, first note that the polynomial sea can be realized by a circuit of a constant size
(independent of n). Thus the entire circuit computing and0

n, and therefore of andn, can
be constructed in a linear time Opnq. On the other hand unwinding this circuit to the tree
(corresponding to the polynomial andn) enlarges the size exponentially and requires at most
exponential time 2Opnq. ◀

The proof of Lemma 2.2 is slightly more involved.

Proof of Lemma 2.2. We start with observing that νh´1 ă 1A so that we can pick a cover
β ą νh´1. This together with α set to νh´1 allows us to use Lemma 3.1 to produce a join
irreducible congruence γ with νh´1 ď pγ´ : γq ğ β. In particular we know that pγ´ : γq ‰ 1A.

By Lemma 3.1 we know that nr pγq “ nr pνh´1q “ h ´ 1 so that γ ę νh´2 and we can
pick δh´1 to be a minimal congruence below γ but not below νh´2. Obviously δh´1 is join
irreducible so that it is a principal congruence, say δh´1 “ Θpeh´1, ah´1q. By the very same
token we know that γ is principal, but here we need to choose its generating pair more
carefully. First we fix a pγ´, γq-minimal set V and then a pair pe1, a1q P γ|V ´ γ´ to have
γ “ Θpe1, a1q. The pγ´, γq-trace of V containing both e1 and a1 is denoted by N . We know
that the induced algebra pA|N q {γ´ is polynomially equivalent to a (one dimensional) vector
space and we may assume that e1{γ´ is its zero element with respect to the vectors addition
` which has to be a polynomial of A. Since Θpeh´1, ah´1q “ δh´1 ď γ “ Θpe1, a1q we can
pick a unary polynomial p of A that maps e1 to eh´1 and a1 to ah´1. This polynomial is
going to be used at the end of the proof.

Now we put τ “ pγ´ : γq and choose a transversal td0, d1, . . . , dru of A{τ . If i ‰ j then
pdi, djq R pγ´ : γq and Lemma 3.1 gives us a binary polynomial sij “ sdi,dj

satisfying

sijpe
1, yq “ e1, for all y P A,

sijpa
1, diq

γ´

” e1, (5)
sijpa

1, djq “ a1.

As in the proof of Lemma 2.1 we replace sijpx, yq by eV sijpeV pxq, yq, where eV is the unary
idempotent polynomial of A with the range V . Obviously the properties in the display (5)
hold for this new sij , but this new polynomial has the range contained in V and for any
fixed y P A the mapping V Q v ÞÝÑ sijpv, yq P V is either a permutation of V or collapses
γ|V to γ´, i.e. it is constant modulo γ´ on γ|V -classes. Thus, iterating sijpv, yq in the first
variable a sufficient number of times, we can modify sij to additionally have that (for each
fixed y P A) the new polynomial sijpv, yq is either the identity map on V or it is constant
modulo γ´ on γ|V -classes. Actually, in the second case, i.e. if sijpv, yq collapses γ|V to γ´, it
collapses the entire trace N to sijpe

1, yq{γ´ “ e1{γ´. Summing up, we produced polynomials
sij satisfying

sijpe
1, yq “ e1, for each y P A,

sijpv, diq
γ´

” e1, for each v P N,

sijpv, djq “ v, for each v P V.
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Now, using the fact that rγ, τ s ď γ´ we can keep the above equalities modulo γ´ by varying
the second variable modulo τ :

sijpe
1, yq “ e1, for each y P A,

sijpv, yq
γ´

” e1, for each v P N and y P di{τ,

sijpv, yq
γ´

” v, for each v P V and y P dj{τ.

(6)

Now for each j “ 0, . . . , r define

sjpx, yq “ si1jp. . . sir´1jpsirjpx, yq, yq . . . , yq,

where tj, i1, . . . , iru “ t0, 1, . . . , ru. Obviously sj has the range contained in V and

sjpe
1, yq “ e1, for each y P A,

sjpv, yq
γ´

” e1, for each v P N and y P A´ dj{τ,

sjpv, yq
γ´

” v, for each v P V and y P dj{τ.

(7)

Indeed, the first and the last item follow directly from the definition of sj . To see the middle
one, note that for v P N and y P diℓ

{τ , defining v1 “ siℓ`1p. . . sir´1jpsirjpv, yq, yq . . . , yq we
have

v1 γ
” siℓ`1jp. . . sir´1jpsirjpe

1, yq, yq . . . , yq “ e1,

i.e. v1 P N so that siℓjpv
1, yq

γ´

” e1, and consequently

sjpv, yq “ si1jp. . . siℓ´1jpsiℓjpv
1, yq, yq . . . , yq

γ´

” si1jp. . . siℓ´1jpe
1, yq . . . , yq “ e1.

Recall that pA|N q{γ´ is polynomially equivalent to a vector space in which e1{γ´ serves as
a zero element, while the addition is defined by x ` y “ dpx, e1, yq and x ´ y “ dpx, y, e1q.
Obviously this addition does not behave so nice outside the trace N and before factoring out
by γ´ but since for v P N (and arbitrary y P A) the elements sjpv, yq are in A|N , it makes
sense to sum them up and define

sJpx, yq “
r

ÿ

j“1
sjpx, yq

(by associating the “summands” to the left) to observe that

sJpe
1, yq “ e1, for each y P A,

sJpv, yq
γ´

” e1, for each v P N and y P d0{τ,

sJpv, yq
γ´

” v, for each v P N and y P A´ d0{τ.

(8)

To see (8) first note that in the sum defining sJ for v P N , at most one summand lies outside
of e1{γ´, namely sjpv, yq with j ‰ 0 for which y P dj{τ . This obviously gives the last two
lines in (8) as well as sJpe

1, yq
γ´

” e1. To replace this by the equality note that due to the
first line in (7) all summands in sJpe

1, yq are equal to e1 so that “summing” them up with
the help of Malcev polynomial d returns e1.

Now we put sKpx, yq “ s0px, yq and observe that for any fixed v P N both sJpv, yq and
sKpv, yq have their ranges contained in e1{γ´Yv{γ´. Moreover sJ and sK are complementary
in the sense that sJpv, yq ` sKpv, yq “ v. In fact they switch their values (between v and e1)
depending on whether y is in AK “ d0{τ or in its complement AJ “ A´AK “

Ťr
i“1 di{τ .
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Now, for ε “ pε1, ε2, ε3q P tJ,Ku
3 we define the polynomial

qsεpv, y1, y2, y3q “ sε3psε2psε1pv, y1q, y2q, y3q ` sε1pv, y1q ` sε2pv, y2q ` sε3pv, y3q

´ sε2psε1pv, y1q, y2q ´ sε3psε1pv, y1q, y3q ´ sε2psε3pv, y2q, y3q,

Using (7) and (8) one can calculate that

qsεpe
1, y1, y2, y3q “ e1,

qsεpv, y1, y2, y3q
γ´

” e1, if yi R Aεi
for i P t1, 2, 3u,

qsεpv, y1, y2, y3q
γ´

” v, if yi P Aεi
for some i,

(9)

due to the fact that, modulo γ´, each of the seven summands in qsεpv, y1, y2, y3q is either e1,
or v, or ´v.
Arguing like in the proof of Lemma 2.1, by going down from γ´ to 0 through a maximal
chain of congruences (and iterating qsε in the first variable), we improve (9) to get

qsεpe
1, y1, y2, y3q “ e1,

qsεpv, y1, y2, y3q “ e1, if yi R Aεi
for every i P t1, 2, 3u,

qsεpv, y1, y2, y3q “ v, if yi P Aεi for some i.
(10)

With the help of the polynomials qsε (which have been invented to code clauses) we can create
the polynomial satΦ for a given 3-CNF formula Φ ”

Źm
j“1 ℓ

j
1_ ℓ

j
2_ ℓ

j
3, where ℓj

i P

!

zj
i ,␣z

j
i

)

,
by first putting

εj
i “

#

J, if the literal ℓj
i is the variable, i.e., ℓj

i “ zj
i ,

K, if the literal ℓj
i is the negated variable, i.e., ℓj

i “ ␣z
j
i ,

then εj “ pεj
1, ε

j
2, ε

j
3q and finally

satΦpx
1
1, x

1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q “ ppqsεmp. . .qsε1pa1, x1

1, x
1
2, x

1
3q, . . . x

m
1 , x

m
2 , x

m
3 qq.

By (10) it should be clear that for any evaluation of the zj
i ’s in tJ,Ku and xj

i ’s in A so that
xj

i P Azj
i

we have

Φpz1
1 , z

1
2 , z

1
3 , . . . , z

m
1 , z

m
2 , z

m
3 q “ J iff satΦpx

1
1, x

1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q “ ah´1.

as required by the Lemma.

The complexity arguments simply repeat those from the proof of Lemma 2.1 to bound
the time needed to construct the polynomial satΦ by 2Opmq, while to construct the circuit
computing satΦ by Opmq. ◀

4 Conclusions and Open Problems

Since Theorem 1.1 that improves the result from [18], one can hope for a classification of
finite algebras from congruence modular varieties that have tractable CSat. Indeed, by [18,
Corollary 6.5], such an algebra has to decompose into a direct product Sˆ L of a solvable
algebra S and an algebra L that behaves pretty similarly to a lattice (at least locally). Now,
our Theorem 1.1 forces S to be nilpotent without actually assuming (like it has been done
in [18]) that CSat is tractable for all quotients of S. The paper [18] also enforces that
the algebra L has to behave not only like a lattice, but in fact like a distributive lattice,
provided CSat is tractable for all quotients of L. The natural problem is to eliminate this
strong assumption about quotients also from the L side, i.e. for algebras from congruence
distributive varieties. Thus, we are left with the following
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▶ Question 1. Does tractability of CSat for a finite algebra L from a congruence distributive
variety implies tractability of CSat for all quotients of L?

As we have already mentioned in the Introduction the classification of finite algebras with
tractable CSat is not fully done on the solvable side. Now, by Theorem 1.1, we know that
such an algebra S has to be nilpotent. Moreover, due to the work of Kompatscher [23], we
know that in fact sr pAq ď 2. Unfortunately this bound does not suffice to have tractable
CSatpSq, as it has been shown by some examples described in [17]. On the other hand
one cannot hope to strengthen this bound and force S to be supernilpotent (in which case
[18] gives a polynomial time algorithm for CSat). This in turn has been witnessed by our
examples provided in [15]. Thus we are left with the following

▶ Problem 2. Characterize finite nilpotent Malcev algebras of supernilpotent rank at most 2
with tractable CSat.

A very similar, and somehow connected, problem CEqvpAq of circuit equivalence has also
been considered in [18]. This time we ask if two circuits over A compute the same function.
In this case, if a finite algebra A is taken from a congruence modular variety then [18] shows
that tractability of CEqvpAq implies that A is solvable. Note that there is no lattice-like
part here, as the co-NP-completeness of CEqv even over the 2-element lattice eliminates
this part. Arguing like in the proof of Theorem 1.1 we can force nilpotency of algebras with
tractable CEqv. Again, Kompatscher [23] forces such algebras to have supernilpotent rank
bounded by 2. Suprisingly, here we do not have any single example of a nilpotent algebra A
with sr pAq “ 2 and intractable CEqvpAq. In fact among the examples in [17] of algebras
with sr pAq “ 2 but intractable CSatpAq there are 2-nilpotent algebras. However, [19] shows
that for 2-nilpotent algebras the problem CEqv is tractable. Therefore the answer to the
next Problem differs from the answer to Problem 2.

▶ Problem 3. Characterize finite nilpotent Malcev algebras of supernilpotent rank at most 2
with tractable CEqv.

In our opinion this difference in the complexity for CSat and CEqv may result in a search
for completely new techniques. Nevertheless, note that both CSat and CEqv behave the
same on supernilpotent algebras, as CEqv for such algebras has been shown to be tractable
in [1].

Now we switch to the problem PolSat. For a fixed algebra its complexity is not bigger
than this of CSat. However, as there are examples (e.g. the already mentioned groups
S3 or A4) where CSat is essentially harder. This is because using (in CSat) additional
polynomials we compress (in our opinion artificially inflated) the input of PolSat. For a
better understanding of this phenomenon among Malcev algebras first note that, due to
Theorem 1.2, PolSatpAq P P S CSatpAq may happen only if nr pAq ď 2. Among algebras
of nilpotent rank 1, i.e. among nilpotent algebras, all known cases (i.e. both tractable and
intractable examples, as well as some more general results, like for supernilpotent algebras)
enjoy the same complexity for both PolSat and CSat. This leads to the following:

▶ Question 4. Does there exist a finite nilpotent Malcev algebra with tractable PolSat and
intractable CSat?

A careful reading of the proof of Corollary 6.5 in [18] shows that the earlier described
decomposition A “ Sˆ L requires in fact a weaker assumption that only PolSatpAq (but
not necessarily CSat) is not NP-complete. Note that a positive answer to Question 1 can
possibly be carried out to PolSat. Thus we believe that the next question, similar to
Question 4, has a negative answer.
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▶ Question 5. Does there exist a finite algebra from a congruence distributive variety with
tractable PolSat and intractable CSat?

Summing up we expect that the following conjecture holds.

▶ Conjecture 6. The only examples of finite algebras (from a congruence modular variety)
that separate complexity of PolSat and CSat have to be solvable and of nilpotent rank 2.

When considering complexity of i.e. the polynomial equivalence problem, versus this of
CEqv we can repeat Questions 4 and Conjecture 6. An analogous modification of Question 5
is already answered, as both PolEqv and CEqv are co-NP-complete for nontrivial algebras
in this realm.
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