903 research outputs found

    Study on multi-objective optimization of circuit design by evolutionary computation technologies

    Get PDF
    制度:新 ; 報告番号:甲3364号 ; 学位の種類:博士(工学) ; 授与年月日:2011/4/25 ; 早大学位記番号:新568

    Explaining Adaptation in Genetic Algorithms With Uniform Crossover: The Hyperclimbing Hypothesis

    Full text link
    The hyperclimbing hypothesis is a hypothetical explanation for adaptation in genetic algorithms with uniform crossover (UGAs). Hyperclimbing is an intuitive, general-purpose, non-local search heuristic applicable to discrete product spaces with rugged or stochastic cost functions. The strength of this heuristic lie in its insusceptibility to local optima when the cost function is deterministic, and its tolerance for noise when the cost function is stochastic. Hyperclimbing works by decimating a search space, i.e. by iteratively fixing the values of small numbers of variables. The hyperclimbing hypothesis holds that UGAs work by implementing efficient hyperclimbing. Proof of concept for this hypothesis comes from the use of a novel analytic technique involving the exploitation of algorithmic symmetry. We have also obtained experimental results that show that a simple tweak inspired by the hyperclimbing hypothesis dramatically improves the performance of a UGA on large, random instances of MAX-3SAT and the Sherrington Kirkpatrick Spin Glasses problem.Comment: 22 pages, 5 figure

    Constrained Nonlinear Model Predictive Control of an MMA Polymerization Process via Evolutionary Optimization

    Full text link
    In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller is designed for thermal trajectory tracking of the MMA polymerization. The input control signal to the process is constrained by the maximum thermal power provided by the heaters. The constrained optimization in the model predictive controller is solved via genetic algorithms to minimize a DMC cost function in each sampling interval.Comment: 12 pages, 9 figures, 28 reference

    Compact Modeling and Physical Design Automation of Inkjet-Printed Electronics Technology

    Get PDF

    On generating optimal signal probabilities for random tests: a genetic approach

    Get PDF
    Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed. A brief overview of Genetic Algorithms (GAs) and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance of our GAbased approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger. To account for the relatively quick convergence of the gradient descent methods, we analyze the landscape of the COP-based cost function. We prove that the cost function is unimodal in the search space. This feature makes the cost function amenable to optimization by gradient-descent techniques as compared to random search methods such as Genetic Algorithms

    Multi-Objective Optimization for Speed and Stability of a Sony Aibo Gait

    Get PDF
    Locomotion is a fundamental facet of mobile robotics that many higher level aspects rely on. However, this is not a simple problem for legged robots with many degrees of freedom. For this reason, machine learning techniques have been applied to the domain. Although impressive results have been achieved, there remains a fundamental problem with using most machine learning methods. The learning algorithms usually require a large dataset which is prohibitively hard to collect on an actual robot. Further, learning in simulation has had limited success transitioning to the real world. Also, many learning algorithms optimize for a single fitness function, neglecting many of the effects on other parts of the system. As part of the RoboCup 4-legged league, many researchers have worked on increasing the walking/gait speed of Sony AIBO robots. Recently, the effort shifted from developing a quick gait, to developing a gait that also provides a stable sensing platform. However, to date, optimization of both velocity and camera stability has only occurred using a single fitness function that incorporates the two objectives with a weighting that defines the desired tradeoff between them. However, the true nature of this tradeoff is not understood because the pareto front has never been charted, so this a priori decision is uninformed. This project applies the Nondominated Sorting Genetic Algorithm-II (NSGA-II) to find a pareto set of fast, stable gait parameters. This allows a user to select the best tradeoff between balance and speed for a given application. Three fitness functions are defined: one speed measure and two stability measures. A plot of evolved gaits shows a pareto front that indicates speed and stability are indeed conflicting goals. Interestingly, the results also show that tradeoffs also exist between different measures of stability
    corecore