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Abstract 

Locomotion is a fundamental facet of mobile robotics that many higher level 

aspects rely on. However, this is not a simple problem for legged robots with many 

degrees of freedom. For this reason, machine learning techniques have been applied to 

the domain. Although impressive results have been achieved, there remains a 

fundamental problem with using most machine learning methods. The learning 

algorithms usually require a large dataset which is prohibitively hard to collect on an 

actual robot. Further, learning in simulation has had limited success transitioning to the 

real world. Also, many learning algorithms optimize for a single fitness function, 

neglecting many of the effects on other parts of the system. 

As part of the RoboCup 4-legged league, many researchers have worked on 

increasing the walking/gait speed of Sony AIBO robots. Recently, the effort shifted from 

developing a quick gait, to developing a gait that also provides a stable sensing platform. 

However, to date, optimization of both velocity and camera stability has only occurred 

using a single fitness function that incorporates the two objectives with a weighting that 

defines the desired tradeoff between them. However, the true nature of this tradeoff is not 

understood because the pareto front has never been charted, so this a priori decision is 

uninformed. This project applies the Nondominated Sorting Genetic Algorithm-II 

(NSGA-II) to find a pareto set of fast, stable gait parameters. This allows a user to select 

the best tradeoff between balance and speed for a given application. Three fitness 

functions are defined: one speed measure and two stability measures. A plot of evolved 

gaits shows a pareto front that indicates speed and stability are indeed conflicting goals. 

Interestingly, the results also show that tradeoffs also exist between different measures of 

stability. 
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MULTI-OBJECTIVE OPTIMIZATION FOR SPEED AND STABILITY OF A SONY 

AIBO GAIT 

 

1.  Introduction 

One of the driving forces in robotics research is the RoboCup competition. This is 

an annual, international competition in which robotic soccer teams compete against each 

other. The stated goal of the RoboCup organization is to “develop a team of fully 

autonomous humanoid robots that can win against the human world soccer champion 

team” by 2050 [33]. The RoboCup competition provides an environment where 

competition drives research which is then applied to a real world situation. To compete in 

a RoboCup tournament, teams must solve many of robotics’ core problems. For example, 

they must develop locomotion modules that allow the robot not only to move, but also 

manipulate the ball. They must be able to localize their position and navigate around the 

field. Vision is also important as colors, objects, teammates, and opponents need to be 

recognized. Further, not only must the robots make and execute a plan for themselves, 

but inter-agent cooperation is possible. In addition to the soccer tournament itself, 

RoboCup poses other challenges to push the envelope of robotic technology. Usually 

these challenges relate to the soccer domain, such as testing robots’ ability to complete 

passes and recognize and score on different types of goals. 

There are several RoboCup leagues that use simulated, wheeled, and legged 

robots. One of these is the four-legged league, which uses Sony AIBO robots [33]. 

Legged robots have an advantage over wheeled robots in that they contact the ground at 

distinct points versus the continuous path of wheeled robots. This makes them able to 
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move over rougher terrain than wheeled robots. They also have the advantage of being 

able to strafe sideways and step over obstacles, such as trip wires. On the other hand, 

wheeled robots can achieve greater speed on even terrain, so legged robot gaits are 

designed to mimic wheel motion. Additionally, designing a gait controller is a difficult 

problem when attempted by hand [9] and is only a small part of the challenge to deploy a 

fully autonomous robot in an unstructured, dynamic environment [22]. Part of the 

difficulty in creating a gait controller is that the problem does not fit the commonly 

applied divide-and-conquer software development strategy. How to decompose a 

controller, is not obvious, interactions are not limited to direct connecting links, and 

interactions between sub-parts grow exponentially as joint complexity increases [38]. 

Despite the difficulty, trends have emerged in legged robotics study. Research on 

legged robots has focused on hexapod, quadruped, and biped robots [1] [6] [25]. Machine 

learning techniques have also been applied to the domain of gait development. For 

example, the locomotion control problem has been addressed using evolutionary 

algorithms to find neural network controllers [1] [21] [29], dynamically-rearranging 

neural network controllers [6] [25], and central pattern generators [30] [31]. Another 

trend is to use simulation as the primary method for research. Learning conducted in 

simulation has been shown in some instances to be portable to the real world [38]. 

However, simulation often transfers poorly to real environments which are too 

complicated to simulate (e.g. modeling the fluid dynamics for an underwater robot) [14]. 

One trend that has unfortunately emerged is that when using an optimization 

technique, only a single-objective function is used. This neglects many of the 

interdependencies among the various aspects of robotic controllers. Using the RoboCup 
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example, movement affects locomotion, ball control, and vision. However, most 

movement research has sought only to increase speed, thus improving locomotion while 

neglecting ball control and vision. 

The alternate approach, as presented here, is to use a multi-objective optimization 

technique, such as a multi-objective genetic algorithm. A multi-objective genetic 

algorithm is a stochastic search technique inspired by biological concepts. In particular, a 

population of solutions is evolved such that scores improve along multiple objective 

functions. The multi-objective genetic algorithm produces a variety of solutions that can 

represent tradeoffs between the multiple objectives, and, during operation, can be 

switched between as priorities change. For example, a fast gait that neglects ball control 

can be selected when the robot does not have possession of the ball, which is then 

switched with a gait that sacrifices some speed for ball control once the robot gets the 

ball. In terms of a gait, ball control is improved with a more stable walk that allows for 

better navigation and object tracking and identification. 

1.1  Objectives 

This project fills one of the voids left by a focus on single-objective optimization. 

Using the standard robot for the RoboCup quadruped league, a multi-objective genetic 

algorithm is applied to study the tradeoff between movement speed and camera stability. 

Camera stability is a critical factor in object classification and has effects that spill over 

to localization and planning [34]. Previously, these effects have been sorely neglected as 

leg movement has been optimized only for speed. In order to accomplish this task, the 

following objectives are established: 

- Develop a parameterized walk method 
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- Develop a way to score different walks for both speed and stability 

- Use a multi-objective genetic algorithm to develop fast, stable gaits 

- Analyze the results of the genetic algorithm to better understand the 

speed-stability tradeoff 

1.2  Outline 

The rest of this document is organized as follows: Chapter II discusses other work 

related to the development of gaits for the AIBO. This is followed by the method used to 

characterize the speed/stability tradeoff. Section IV reports results, showing a clear 

tradeoff between speed and stability as well as between different stability characteristics. 

The thesis concludes with a discussion of the potential application of this research and an 

outline for future work. 
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2. Related Work 

A survey of behavior development for evolutionary robotics shows that previous 

research focuses mainly on generating behaviors satisfying a single-objective function. 

Further, when multiple fitness-functions are used, they are often aggregated together to 

form a single, weighted objective function[38]. A multi-objective approach is superior 

because it generates multiple, non-dominated solutions in a single run, minimizing 

experimental effort. Additionally, the aggregation of multiple objectives into a single 

objective  requires assumptions about the fitness score ranges and nature of the pareto 

front. 

One example of where single-objective fitness functions have dominated research 

areas is the learning of a gait on the Sony AIBO. The AIBO is a quadruped robot that is 

used in the four-legged RoboCup league. Because it is used in this annual competition, 

research effort has focused on several methods to develop a fast walk for this particular 

robot. This research is concentrated in two areas, the parameterization of the gait and the 

machine learning techniques used. Although many machine learning techniques have 

been applied to this problem, and multi-objective optimization techniques have been 

applied to develop other behaviors, this is the first use of a multi-objective genetic 

algorithm to tune AIBO gait parameters. 

The remainder of this chapter provides an overview of the previous research that 

is necessary in completing the objectives of this project. First, Section 2.1 outlines the 

various ways that others have parameterized a quadruped gait. Next, machine learning 

methods that have been applied to this problem are discussed. The final two sections 
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cover multi-objective optimization methods and, specifically, multi-objective 

evolutionary algorithms. 

2.1  Gait Parameterization 

At the lowest level, AIBO gaits are determined by a series of angles for each of 

the twelve leg joints. These angles are input to an application-specific integrated circuit 

(ASIC) chip, which controls the servos in the legs. A potentiometer is used to sense the 

current joint angles and the ASIC chip determines the motor inputs necessary to achieve 

the target angles. This cycle occurs every eight milliseconds. A higher level approach is 

to define several parameters to characterize a gait. A software program, or locomotion 

engine, converts these parameters into a series of target angles which are fed to the ASIC 

chip. 

Optimization of these parameters, or gait optimization becomes a search through 

the parameter space for the locomotion engine. Researchers have used several different 

parameterizations to define gaits on the AIBO. These parameterizations can be divided 

into two types: those that are focused on the movement of the body in relationship to the 

ground [3] [14] and those that are focused on the movement of the feet in reference to the 

body [11] [23] [28]. 

2.1.1  Body Centered Gait Parameterization     In developing the gait for the first 

commercially available AIBO (ERS-110), Sony scientists used a body centered 

parameterization, the majority of which specified the position and orientation of the body, 

as well as the body’s oscillation through the cyclical walking cycle. Other parameters 

also described the timing of the gait, such as its period and the phasing of each leg. In 

total, twenty-one parameters were used to describe the gait. On a second experiment they 
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also parameterized the phases of the legs. With this method Hornby, et al. were able to 

develop both a trot and a pace gait and achieve a maximum speed of 600 cm/min [14]. 

However, they concluded that a gait developed in one environment would work in an 

easier environment but not necessarily in a harder environment. Thus, they constructed a 

“hard” environment to train in and produced a robust gait. This process proved to be very 

heavily impacted by the learning environment and platform, and did not prove to be 

applicable in extremely unpredictable environments [14]. In subsequent experiments 

meant to address these problems, the authors developing a gait that moved at 900 cm/min 

[15]. 

In another example of a body centric parameterization, researchers from Carnegie 

Mellon University make use of an acceleration model to describe the trajectory of the 

body and time offsets to determine the phasing of the legs [3]. While a leg is on the 

ground, it is moved in compliance with this trajectory. Once it is lifted, a target location 

for it to be set down is generated and it moves towards its target. The Carnegie Mellon 

team used this twelve-variable parameterization to learn gaits for the Sony AIBO (ERS-

210) that achieved a maximum speed of 290±6 mm/sec (1740 cm/min). However, in both 

of the two best gaits developed with this method, the knees and elbows collide. While 

this did not seem to harm the robot, the possibility exists that it may define a walk where 

such collisions pose a threat to the robot. 

2.1.2  Foot Based Gait Parameterization     Foot based parameterizations define a 

gait by describing a shape or locus, in relation to the body, for the feet to travel around. 

These loci are divided into a set of points based on the frequency of the gait, and inverse 

kinematics is used to determine the next set of target joint angles. This method keeps 
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each pair of diagonal legs in phase with each other and perfectly out of phase with the 

other pair. By using symmetry between the left and right sides, it nearly eliminates the 

problems of turning and falling over. Defining a gait in this way also constrains the 

search space to reduce wear on the robot. Additionally, the loci can be rotated enabling 

turning, strafing, and backing up. 

This method was first introduced in [11] where the authors proposed a rectangular 

locus for use on the AIBO ERS-110. This method resulted in a walk that achieved a 

speed of 1200 cm/min, an improvement over fastest gait at the time of 900 cm/min 

reported in [15]. While this method suffered interference from the robot’s claws, it gave 

the University of New South Wales (UNSW) team a distinct advantage over the other 

teams and has spawned investigation into other locus based gaits. 

In order to solve the problem of the robot’s claws catching and dragging, the 

UNSW team transitioned from a rectangular to a quadrilateral. They described two 

quadrilaterals, one for the front legs and one for the hind legs, using the corners of each 

quadrilateral. This results in eight points in three dimensional space or twenty-four 

parameters. However, instead of representing the points based on a coordinate system, 

they represented the points using twenty four stretches and translations, thus capturing 

key interrelations among the points. Using this method produced a gait that walked at 

26.99±0.50 cm/sec (1619 cm/min) on the ERS-210A. However, the inverse kinematics 

failed to ensure the front feet were below the elbows, so the robot used its forearms as 

skis, resulting in less of a walk and more of a crawl. [18] 

Another example of a locus based gait parameterization is the one used by the 

University of Texas (UT) at Austin team [23]. In this approach, the loci is characterized 
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as two half ellipses, one for the front and one for the hind legs. This technique uses a total 

of twelve parameters, including one that controlled the fraction of time each foot spends 

on the ground, also called its duty time. Despite this parameter, the half ellipse method 

implements a trot gait by keeping each pair of diagonal legs synchronized. While this 

parameterization proved effective in generating a walk with speed 291±3 mm/sec (1746 

cm/min) on the ERS-210A, the path of the robot’s feet did not actually follow an ellipse 

as predicted. The first reason for this is because the best gait set the duty parameter below 

0.5. Thus, the feet were on the ground part of the time the parameterization meant for 

them to be in the air. Another reason that the actual locus was different than expected was 

because the authors used the axis of the ellipse to determine the path of the foot while it 

was on the ground. 

A fourth locus shape was implemented by researchers at the University of 

Newcastle [28]. They implemented an arbitrarily shaped locus on the ERS-201A using 

straight lines to connect a series of ten points. For comparison, they also implemented a 

rectangular, ellipsoid, and trapezoidal locus. They found that the trapezoidal locus was 

fastest, ellipsoid second, and the rectangular last. The arbitrarily shaped locus, however, 

proved faster than any of the other shapes with a reported speed of 29.65±0.7 cm/sec 

(1770 cm/min). While this resulted in only a modest speedup over previous methods, it 

could only be achieved by greatly expanding the parameter space. 

2.2  Gait Learning 

Once a gait has been parameterized, the parameters must be tuned in order to 

produce a walk with the desired behavior. Tuning these parameters can be a long, 

complex, and tedious task. However, by defining a fitness function, tuning the parameters 

9 



becomes a multi-dimensional optimization problem, for which many automated methods 

exist. Another advantage of automating this process is that it eliminates human bias. Gait 

parameter optimization has, in fact, been the subject of much research, and generally 

results in better gaits than hand tuning. 

2.2.1  Reinforcement Learning     The UT Austin team implemented a policy 

gradient reinforcement learning method to tune the half ellipse locus in [23]. Use of this 

method assumes that the fitness function is differentiable. However, because the 

functional form of the problem space is unknown, the gradients must be estimated. They 

did this by generating a number of random permutations of the parameters. This was 

done by taking each component of the current parameter set and either adding or 

subtracting a fixed amount or not changing the component. These sets were evaluated on 

the robot and used to form estimates of the partial derivative for each component. Based 

on the best scores, the parameter set was changed and the cycle continued. The fitness 

function, defined as the time it took the AIBO to walk between two fixed landmarks, was 

set to be minimized. Because of the noise in the AIBOs’ sensors, each evaluation was 

completed three times and averaged. The learning took place on a desktop computer 

which delegated the evaluation of each parameter set to one of three AIBO ERS-210As. 

The only human intervention required in this process was to replace batteries. This 

method generated a gait that moved at 291 mm/sec (1746 cm/min), an improvement from 

their best hand tuned speed of 245 mm/sec (1470 cm/min). One advantage of this method 

is that it can be distributed over many AIBOs, decreasing the time needed for learning. 

However, it required moderately hand tuned parameters in order to find its fastest gait. 
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This means that not only is the method prone to hone in on local optima, but also that it 

cannot be used to find an initial gait. 

2.2.2  Powell’s Method     The UNSW team has also automated its parameter 

tuning as reported in [18]. Like the UT Austin team, it had the robot walk between two 

fixed points and had time minimization as the fitness function. They implement Powell’s 

direction set method. This method uses the initial parameters as directions and modifies 

each direction in turn, finding its minimum value and then moving on to the next 

direction. Once it has completed all directions, it uses knowledge gained from the current 

iteration to determine a new set of directions for the next iteration. However, this method, 

when employed by UNSW, failed to meet the goal of reducing the time necessary for 

training to a reasonable period. Indeed, the algorithm did not have the opportunity to run 

to completion because the processing time exceeded constraints. Another flaw is that this 

method also assumes that the sample space is differentiable. The end result was a gait that 

enabled the ERS-210A to move at 26.99±0.50 cm/sec (1619 cm/min) compared to the 

hand tuned gait that had a speed of 25.42±0.50 cm/sec (1525 cm/min). Finally, the 

optimization technique got stuck in a local minimum and needed to be rolled back to a 

previous state in order to continue finding improvement. 

2.2.3  Evolutionary Algorithms     One of the more popular optimization 

techniques is to use an evolutionary algorithm (EA). EAs work on several solutions at 

once, called a population. During an iteration, each solution, or individual, in the 

population is evaluated using the fitness function, and then evolutionary operators are 

applied. These operators are inspired by biology and include techniques such as 

recombination, crossover, and mutation. EAs have many advantages over other 
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optimization methods. For example, they do not rely on any characteristics of the search 

space. Another advantage comes from the fact that most of the computational cost of an 

optimization problem lies in evaluating the fitness function. Since EAs operate on a 

population of individuals, the fitness function calculations can be easily parallelized. 

These advantages have led to EAs being used as the method of choice for AIBO gait 

optimization. 

In fact, the gait that shipped with the first commercially available AIBO was 

configured using an evolutionary algorithm. The development of this gait is documented 

in [14]. The evolutionary algorithm began with randomly generated gaits that were first 

tested to make sure they did not cause the robot to fall. As a fitness function, distance 

traveled in a given timeframe and the straightness of the walk is multiplied together. 

These values were attained using the robot’s onboard sensors. This process also 

compensated well to noise in the problem space. To do this, the authors averaged sensor 

readings and implemented an age in the evolutionary algorithm that forced periodic 

recalculation of the fitness function. This method proved successful on both the OPEN-R 

Prototype and ERS-110 AIBOs. The walk approved for release with the ERS-110 moved 

at 900 cm/min, faster than the fastest hand-tuned gait of 660 cm/min [15]. 

The Carnegie Mellon team also employed a genetic algorithm because of its high 

convergence rate, ability to find optima independent of initial parameters, resistance to 

noise, and parallelizability. A genetic algorithm (GA) is one flavor of evolutionary 

algorithms. In order to compensate for the problem of local optima, the team introduced a 

concept of radiation to force mutation if too many individual solutions became tightly 

grouped. The learning process consisted of two phases. The first phase explored a large 
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solution space, while the second took what was learned from the first phase and fine-

tuned the solution. In order to deal with noise, solutions with a high fitness level were 

double checked by recalculating the fitness and averaging the two results. Additionally, 

all individuals are reevaluated every ten to fifteen generations. Distance traveled was the 

only measure of fitness, which was evaluated on the robots. The robots first used 

kinematics to ensure the gait poses no threat to their hardware and then executed it, using 

their onboard sensors to determine distance traveled. The only human interaction required 

was to change the batteries. The genetic algorithm, on the other hand, ran on an external 

computer. The robots and computer communicated using a wireless network. This 

architecture allowed the authors to parallelize the fitness calculations. They were able to 

evolve a gait for the ERS-210 that moved at 290±6 mm/sec (1740 cm/min), an 

improvement over the hand-tuned walk speed of 235 mm/sec (1410 cm/min) [3]. 

Another example of evolutionary gait learning is presented by Quinlin, et al. [28]. 

In this instance, the authors used an Evolutionary Hill Climbing with Line Search 

algorithm. This algorithm was chosen for its quick learning rate. Again the fitness 

function was time. The ERS-210A robots ran 190 cm, using their vision system to stop 

each run, and used camera frames as a measure of time. Each traversal was completed 

twice for a single episode. This algorithm was first run on rectangular, ellipsoid, and 

trapezoidal trajectories and improved on the best parameter set for all three. It was then 

run on the arbitrary locus shape and resulted in a gait with speed of 29.65±0.7 cm/sec 

(1779 cm/min). However, the technique was only able to fine-tune the parameters 

initially set in a working fashion. One final insight from this method was that many 

different solutions yielded similar results. 
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2.2.4  Comparing Learning Techniques     Kohl and Stone [22], note that gait 

optimization poses two challenges over other multi-dimensional optimization problems. 

First, large amounts of data are prohibitively difficult to collect because of maintenance 

required on the robots and constant human supervision. This requires the optimization 

algorithm be effective with small amounts of data. Second, the dynamic complexity of 

many robots means they cannot be faithfully simulated and even when possible, using 

simulation lessens the unstructured and unpredictable nature of a real world environment 

[22]. Thus, researchers must test and compare different algorithms to see which is most 

effective. The four algorithms used by Kohl and Stone are hill climbing, amoeba, genetic, 

and policy gradient. Note that the Policy Gradient algorithm is the same as in their 

previous work [23]. Each gait is tested on the AIBOs while the learning occurs on a 

central computer. Because of the noise in the AIBOs’ sensors, each evaluation is 

completed three times and averaged. They compare the results of each algorithm by 

comparing the velocity of the resulting gaits, as well as the sample space that is explored 

through the algorithm. Finally, they use a simulation to test how the algorithm degrades 

when noise is introduced into the system. 

While all four algorithms improved over hand tuned gaits, the hill climbing and 

policy gradient algorithms were more successful than the other two. The authors 

concluded that this was due to low coverage of the solution space by the amoeba and 

genetic algorithms. Their attempts to correct this resulted in amoeba becoming 

comparable to the other two algorithms and the genetic algorithm also slightly improved. 

The amoeba algorithm also proved more susceptible to noise in the simulation. While the 
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policy gradient algorithm yielded the best results, it appears that all four algorithms are 

comparable with the correct tuning. 

2.3  Learning with Multiple Objectives 

As gait speeds have increased, they have also become less steady. This leads to 

unsteady camera images which in turn complicate vision-based behaviors such as ball 

tracking and localization. Researchers from the University of Essex were the first to 

address this issue [9]. They defined four fitness functions, forward/backward speed, 

rotational speed, sideways speed, and stability. The speeds were obtained using an 

overhead camera and the stability was measured using the onboard gyroscopes. The 

authors performed a weighted sum of the four fitness functions and used a single-

objective genetic algorithm. For their GA they implemented roulette-wheel selection and 

selection of the fittest. They used four recombination techniques in parallel: guaranteed-

uniform-crossover, guaranteed-average, guaranteed-big-creep, and guaranteed-little-

creep. They then applied mutation with a small probability. Finally, the probability of 

each type of crossover was dependant on its success at generating good solutions in the 

previous repetition. 

The primary contribution of this effort was automating the parameter tuning 

required for a genetic algorithm, which not only required less human interaction but also 

made it more likely to evolve a good solution. From observing how the GA’s parameters 

changed over time, they concluded that recombination was more effective in early 

generations while mutation was more effective in later generations. However, they only 

ran each solution once on the robots and used the onboard gyroscopes, both of which 

introduced a lot of noise into the fitness function. Also, they used an overhead camera to 
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determine the distance traveled instead of using sensors onboard the robot. While it 

would be easy to get information from the robot forward/backward motion, it is less 

obvious how to use onboard sensors to evaluate the success of sideways and rotational 

motion. Thus, it is unclear if this technique could be executed completely on a fielded 

robot. Nonetheless, this experiment began to explore the tradeoffs between speed and 

stability. The authors noted that stability quickly increased in the beginning and then 

plateaued, until it decreased slightly at the end to allow a large speed increase. 

In [34], the UT Austin team incorporates a concept of stability into their previous 

work [22] [23], which uses a half ellipse foot path parameterization and policy gradient 

optimization. The first technique the researchers employed was changing the fitness 

function to account for both speed and stability. They weighted and minimize four 

functions: time to walk a set distance, the standard deviation of the onboard 

accelerometers, the distance a landmark was from the center of an image, and the angle 

of the landmark in the image (it should have appeared vertically). The second technique 

they employed was adding four parameters that moved the head in a cyclical ellipse. Here 

the idea was that the image displacement caused by an unstable walk would be corrected 

by moving the head. This, however, failed as the addition of head movement resulted in a 

slower walk. This was either due to the head movement actually exacerbating the 

problem or the added complexity rendering the optimization less effective. By factoring 

in stability to their fitness function, the learned gait’s speed decreased from 340 mm/sec 

(2040 cm/min) to 259 mm/s (1554 cm/min) on the ERS-7 but resulted in better object 

classification (both increased true positives and decreased false positives). This 

improvement in object classification is of the utmost importance, both in RoboCup and 
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other applications, because many higher level tasks require accurate object classification. 

For example, localization is based on the identification of the field beacons and goals. 

Also, play is heavily dependant on recognition of the ball and other robots. Certainly, the 

gait has an impact on object recognition, and, in turn, most other aspects of the RoboCup 

domain. Having established the importance of this interconnection, it clearly needs to be 

understood further. 

2.4  Multi-Objective Evolutionary Algorithms 

The competing goals of both speed and stability have created an opportunity for 

multi-objective optimization. While multi-objective optimization is an active field of 

study, including the development of autonomous behaviors [10] [16] [7], the methods 

have not yet been applied to AIBO gait development. For example, Teo and Abbass use 

artificial neural networks to control a simulated quadruped robot. Using the Pareto-

frontier Differential Evolution algorithm, they balance the objectives of maximizing 

speed and minimizing the size of the neural network [10]. Central Pattern Generators that 

control a humanoid robot are also optimized using a GA. Here, the fitness functions are 

designed to maintain balance, keep the robot upright, and maximize step length [16]. In 

another case, a humanoid gait is evolved using the Strength Pareto Evolutionary 

Algorithm to minimize the consumed energy and torque change [2]. Finally, a multi-

objective genetic program evolves controllers for a simulated unmanned aerial vehicle in 

[7]. These fitness functions minimize the distance to target, maximize the amount of time 

in level flight, and minimize the number of sharp, sudden turns. 

The presence of multiple objectives in a problem leads to the existence of a set of 

optimal solutions as opposed to a single solution. Without any further information, such 
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as the relative importance of each objective, it is impossible to say one solution in this set 

is more desirable than another. Thus, in order to well define the optimized solution space, 

many non-dominated solutions, or the pareto front, must be found. For terminology, a 

solution A is said to be dominated if there exists another solution B such that B receives a 

higher fitness score for all of the objectives. One method of doing this is to find one 

solution at a time using a single-objective genetic algorithm and specifying different 

objective tradeoffs. Obviously, this is overly burdensome and unpractical. Instead, a 

number of multi-objective evolutionary algorithms have been suggested, which maintain 

a set of non-dominated solutions which are reproduced and mutated in the search for a 

pareto front. 

One such algorithm is the non-dominated sorting genetic algorithm or NSGA. The 

main criticisms of which are that it has a high computational complexity of non-

dominated sorting (O(MN3) where M is the number of objectives and N is the population 

size), lack of elitism which can significantly speed up the performance of GAs, and the 

need to specify a sharing parameter [4]. Another important aspect of multi-objective GAs 

is that a population must remain spread out over full pareto front as best as possible. This 

must occur both when selecting which population members to maintain in the population 

and also when selecting chromosomes for crossover. To speak to these problems, the 

authors first proposed a new non-dominated sorting algorithm that runs in O(MN2) time 

but increased the space complexity from O(N) to O(N2). With this sort, the authors were 

able to introduce an elitism aspect by selecting the solutions from the most dominating 

sets. Also, to maintain diversity of the solution population, they computed a density 
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estimate based on a crowding distance and then gave a survival preference to the least 

crowded solutions within the same rank [4]. 

The authors then compared this new algorithm, which they deemed NSGA-II [4] 

against the favored multi-objective GAs, SPEA [44] and PAES [20] . They tested on nine 

problems and measured both closeness to the known optimal front as well as the spread 

along this front. In all but two of the problems NSGA-II converged better than SPEA or 

PAES. Finally, they added the ability to handle constraints by giving preference to the 

solution that does not violate constraints or to the solution that violates them the least. 

NSGA-II significantly reduced the runtime complexity of the GA while also decreasing 

the number of generations that were required to converge to a good solution set. It was 

also able to arrive at a quality solution set starting with a randomly generated population 

and is expandable to an arbitrary number of objectives. However, the authors noted that, 

in some tests, the method that NSGA-II used to ensure diversity actually hindered the 

algorithms ability to converge onto the optimal solution space. 

One of the problems with multi-objective evolutionary algorithms (MOEAs) is 

that they have difficulty fine-tuning chromosomes that are close to the optimal solution. 

To help them do this, local searches are added, making what are known as memetic 

MOEAs [19]. Permutation problems are one example of where memetic MOEAs have 

performed well. The way these algorithms typically work is using the Lamarckian 

method: if the local search finds a better solution, the original chromosome is replaced 

[19]. The local search can be implemented in one of three ways: after every generation, 

periodically after a group of generations, and after the final generation. MOEAs can also 
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be parallelized by using slave processors to calculate the objective functions and using 

the master processor for all other operations and overhead [19]. 

One example of memetic MOEA use is presented in [19]. In this paper, the 

authors added a local search to the general multi-objective parallel (GENMOP) algorithm 

to find designs of a quantum cascade laser (QCL) [19]. They also added new fitness 

functions in an effort to produce better results. The authors used four types of crossover: 

whole arithmetical crossover, simple crossover, heuristic crossover, and pool crossover 

along with three types of mutation: uniform mutation, boundary mutation, and non-

uniform mutation. The local search procedure limited its search to the area that is within 

0.1 of the total values that the allele can take on and stochastically selected 20 neighbors 

that were above the current allele and 20 below. The authors tested this memetic MOEA 

applying the local search every generation, every 20 generations, every 50 generations, 

and once at the end. Each implementation was run 100 times for 200 generations with an 

initial population of 25 [19]. In all instances, the memetic MOEA was able to find high 

quality solutions. Also, the stochastic search of 20 neighbors above and 20 below 

provided a good balance between effectiveness and efficiency. However, the local search 

did not add anything to the GENMOP algorithm as the authors used a high mutation rate. 

Also, the uniform mutation operator mutated within a set range, essentially searching the 

local space. Thus, the local search proved redundant and provided very little benefit, 

introducing improvement less than 1% of the time. 

In order to allow comparison of MOEAs, a set of test cases were presented in 

[17]. However, because the problems that are solved with MOEAs are so complex, their 

true answers are not known. As such, performance comparisons of MOEAs remain 
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qualitative in nature and do not have much meaning [41]. Van Veldhuizen and Lamont 

claimed that in order to quantitatively compare the performance of MOEAs, they must be 

able to compare the algorithm results with the true pareto front. In order to find this true 

pareto front, the authors exercised the fact that solutions are described in terms of a fixed 

length binary string. This meant that the solution space was fixed once a string length was 

selected. They also noted that this length is akin to a sample resolution as a longer string 

length results in solutions being closer together. 

The authors selected a resolution for each of five test problems they selected to be 

representative of the multi-objective problem (MOP) space. To find the true pareto front, 

they conducted an exhaustive search using dedicated high performance computers. They 

then selected four algorithms that incorporated key aspects of the MOEA domain to 

compare on each problem. These included the MOGA as presented in [5], MOMGA 

presented in [40] and [39] incorporating fitness sharing presented in [13], NPGA 

presented in [13], and NSGA presented in [36] which employ pareto ranking scheme 

presented in [8]. Both the NPGA and NSGA incorporated fitness sharing. 

For fairness, the authors used the same parameters for each algorithm as much as 

possible. Also, each algorithm was limited to the same number of fitness evaluations, 

essentially keeping the computation power the same for all the algorithms. To evaluate 

each algorithm, the authors used four metrics. The first was generational distance which 

measured the distance of PFknown from PFtrue. The second was Spacing which measured 

the spread of PFknown. The third was Overall Non-Dominated Vector Generation (ONVG) 

which measured the size of PFknown. Finally, the last was Ovarall Nondominated Vector 

Generation Ratio which measured the ratio between PFknown and PFtrue. After the 
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evaluations, the authors used statistical hypothesis testing to demonstrate the differences 

between the algorithms. They concluded that MOGA, MOMGA, and NPGA give better 

results than NSGA in terms of generational distance, that MOGA and MOMGA perform 

best in terms of spacing, and that NSGA is again outperformed in terms of ONVG [41]. 

2.5  Summary 

Clearly, the foundation exists to optimize an AIBO gait for both speed and 

stability using a multi-objective optimization technique. Several methods for gait 

parameterization, optimization techniques, and multi-objective optimization have been 

presented. The next chapter selects the most applicable techniques from the related work 

and integrates them, developing an experiment to characterize the speed-stability 

tradeoff. 
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3.  Methodology 

The Sony AIBO is a commercially available robot that has three degrees of 

freedom for each leg, a color camera, wireless LAN capability, infrared range finders, 

and internal gyroscopes. They are programmed in a C++ environment using software 

libraries that Sony released called the OPEN-R software development kit [28]. Using 

these tools, a parameterized gait is implemented and scored on the actual robot. 

Parameters and scores are passed between the robot and a laptop computer running a 

multi-objective GA. 

This chapter describes the experimental setup using a top-down approach. Basic 

overviews are given of the gait representation and fitness function. Then, a genetic 

algorithm is selected and a strategy to integrate the objective calculations outlined. Next, 

the implementation of the robot is covered, including an architectural view of the 

software as well as details about the gait generation, color detection, and trial automation. 

3.1  Gait Representation 

For this implementation, a trot gait with two quadrilateral loci was chosen for 

three reasons. First, use of a locus method helps eliminate the problems of falling and 

turning [11]. Second, the parameterization of the gait using only eight three dimensional 

points represented the best tradeoff between search space size and gait speed [28]. 

Finally, the effect of using the front legs as skis to steady the walk suggested that this 

parameterization would lead to less of a speed/stability trade off than the other methods, 

such as a pace or crawl gait [11]. 
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Figure 3.1  Example of a Walk Locus (Adapted from [42]). 

3.2  Gait Parameterization 

The trot gait is represented using twenty-five parameters. Two quadrilateral loci 

are represented by four points in three dimensional space. Four points in three-

dimensional space represent each of two quadrilateral loci. Each corner of the loci is 

represented with an X, Y, and Z coordinate, relative to the shoulder joint, resulting in the 

first twenty-four parameters (See Figure 3.1). The two loci are for the front and back leg 

pairs respectively. For each leg, the X axis is positive inline with the dog’s forward 

motion, parallel to its body axis. The Y axis is positive downward, in relation to the dog, 

and the Z axis is positive out of the dog’s side. The twenty-fifth parameter is used to 

control the period of a cycle; it represents the number of points to divide the loci, as 

shown in Figure 3.2. 
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Figure 3.2  Breakup of Locus into 18 Points Specified by a 25th Parameter Value of 9. 

3.3  Fitness Evaluation 

Fitness evaluation is conducted onboard the robot, using its internal sensors. 

Three fitness functions are used to determine gait quality: one speed function and two 

stability functions. While the method for measuring gait speed is fairly standard (see [18], 

[22], and [28]), the method for measuring stability is relatively novel, presented by 

D’Silva, et al. [34]. They used three fitness functions to judge stability, the standard 

deviation of the accelerometers, and tilt and jitter readings from the camera. For this 

project, the tilt and jitter methods were adopted, but the accelerometers were not used 

because they are believed to be too inaccurate and noisy to produce useful data. 

3.3.1  Speed     This experiment is configured the same as [18] [22] and [28]. To 

measure the forward speed of the robot, it walks between two fixed landmarks on either 

side of a simplified RoboCup field. This field and the robot are shown in Figure 3.3. 

Upon reaching a landmark, the robot turns around and heads back to the first landmark. 

(The total pace length was approximately 180 cm.) The robot determines when to stop 

moving based on its distance sensors and when to stop turning based on its camera image 

and the location of the landmark within its frame. The camera’s image rate is used as a 

system clock (all other fitness functions are also based on the camera). As the distance is 

fixed, maximizing speed is a matter of minimizing the clock count during a traversal of 
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the field. Because testing each walk is prone to noise, the tests are conducted three times 

each and the average of the three fitness scores are reported to the genetic algorithm. 

Figure 3.3  Experimental Environment. 

3.3.2  Jitter     The first of the stability functions is jitter. This function 

characterizes the average amplitude of any horizontal oscillation. As described above, the 

dog is directed to walk between two landmarks. Under an ideal walk (zero jitter), the dog 

would always be facing the target landmark, which would be centered in its field of view. 

Using the built-in color detection of the AIBO, the center of the landmark is calculated on 

each image received during the test. The absolute values of the pixel distance deviations 

from center are then averaged. Again this score is averaged over the three tests and 

reported to the GA. 
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3.3.3  Tilt     The final fitness function is also meant to measure the stability of the 

gait and characterizes the average amplitude of any rotational oscillation. The landmarks 

described above consist of two colors, pink and black, one on top of the other. When 

walking with an ideal gait (zero tilt), the center of these two color masses would remain 

in line with the vertical of the camera. To measure the tilt of each image, the X-Y image 

coordinates of both the pink and black blobs are calculated, using the color detection 

tables of the AIBO. From these coordinates, an angle is calculated. The absolute value of 

this angle value is averaged over the number of frames within a trial. Again the scores for 

each of the three trials are averaged and reported to the GA. 

3.4  Nondominated Sorting Genetic Algorithm -II 

For this thesis, the Nondominated Sorting Genetic Algorithm-II (NSGA-II) is 

used to search the parameter space and find a pareto front of solutions. A genetic 

algorithm was chosen because of GAs’ resistance to noise and local optima, as noted in 

[22]. NSGA-II, in particular, was chosen because it is a widely known baseline MOEA. 

Although [41] raised some concerns over the NSGA algorithm, the common acceptance 

of NSGA-II evidence that these concerns have been addressed in the second version of 

the GA. Further, MOMGA requires several parameters for its building block 

implementation [32]. Because of the limits imposed by hardware degradation and time 

constraints, tuning of these parameters would not be possible. Each population member is 

evaluated by running it on the robot. To do this, the GA needs to send the parameters to 

the AIBO which tests the gait and then return the results of its test. 

3.4.1  Genetic Algorithm Design     The specification of NSGA-II includes a main 

loop that generates a child population using genetic operators. The members of the child 
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population are then evaluated and combined with the parent population. This interim 

population (which is double the specified population size) is then sorted and only the 

upper half survives into the next iteration. It is this sorting which incorporates elitism and 

minimizes crowding. First, the population members are scored based upon domination. 

This is done by grouping all non-dominated members into the first front.  Members of the 

second front are only dominated by members of the first, members of the third front are 

only dominated by those in the first or second fronts, and so on. By selecting all the 

members of the first front, then all the members of the second front, and so on, NSGA-II 

incorporates elitism. Within each front, the members are sorted by a crowding factor. 

This is estimated by calculating the average side length of the hyper volume formed by 

using the nearest neighbors’ (within the same front) fitness scores as the vertices. 

Preference is given to the members with less crowding, thus maintaining diversity [3]. 

For this project, an off-the-shelf version of NSGA-II, obtained from Kanpur 

Genetic Algorithm Laboratory, is used [26]. This implementation uses basic crossover 

and mutation as its genetic operators to create the children. The crossover and mutation 

probabilities are specified by the user. To create the child population, each member of the 

parent population is cloned and the resulting child is pared with a mate. The mate is 

simply the next member of the population, based on the sorting described above. Next, 

the crossover and then mutation operations occur. Crossover stochastically occurs based 

upon the specified probability. When it does take place, a single crossover point is 

determined randomly and the child and its mate exchange gene values, up to the 

crossover point. Following crossover, mutation occurs. Each bit is examined 
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independently, and is flipped based on the probability specified. The rest of the algorithm 

follows the NSGA-II specification described above. 

3.4.2  Fitness Function Integration     Use of this off-the-shelf implementation 

only requires the programming of the objective functions. In order to integrate the fitness 

function calculations into the genetic algorithm, a separate package was called by the 

main program. Implementing a separate package kept this functionality generic enough to 

be substituted into other GAs. Regardless of which GA used, the main program calls a 

function, passing in the gait parameters as an array. This function converts these 

parameters to joint angles, just as the software on the robot does. This is necessary in 

order to catch infeasible solutions. Specifically, if a locus point is unreachable, one or 

more of the joint angles takes on a not-a-number value. If the joint were to actually be set 

to this value, the robot’s software would crash, resulting in a complete shutdown. After 

ensuring that the parameters will not induce this crash, the function begins its 

communication with the robot. 

After ensuring that all points in the locus are reachable, the package enters a loop. 

Within this loop, it continually tries to connect with the robot, unless the user cancels 

operation. Once connected, the program transmits the original parameters to the robot and 

waits for the results. If the robot reports an error, the loop is restarted, giving the user 

time to fix the robot. This was designed to give the user a chance to replace the AIBO’s 

battery without having to interrupt the genetic algorithm. Once the robot returns results, 

these results are passed out to the caller (the GA) and the connection to the robot is 

closed. 
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3.5  OPEN-R Software 

Programming the AIBO is done by creating several processes, or OPEN-R 

Objects, that run in a parallel, real time environment. These OPEN-R Objects are event-

driven programs, responding to messages passed between the processes. Message passing 

is set up so that a message port within an OPEN-R Object either sends or receives the 

message. All message passing is one way, so two messages are required to enable two-

way communication between objects. An Object that sends the message is called the 

Subject while the Object that receives it is called the Observer. Further, to prevent an 

Observer from being inundated with incoming messages, an acknowledgement is 

required between incoming messages. This acknowledgement is used to help manage 

control flow, as described below. The message passing scheme is also how the software 

interacts with the robot’s hardware. An object can send messages to an Observer that 

controls actuators (e.g. motors) and/or receive messages from a Subject that contain 

sensor (e.g. the camera) data. [35] 

3.5.1  Architecture and Control Flow Design     Because of the concurrency issues 

inherent in a parallel, real time environment, the AIBO software is broken down in a 

functional manner. Specifically, a different OPEN-R Object is created for each aspect of 

the robot’s hardware in use. This results in a total of six Objects, which are shown in 

Figure 3.4. There is one object each to operate the legs, operate the head, interpret the 

camera data, interpret the range finder data, monitor the battery condition, and to handle 

wireless communication. 

Having established a functional breakdown of processes, a communication 

architecture had to be established. Because OPEN-R is an event driven paradigm, this 

30 



communication architecture also represents the control flow for the program. First, the 

object that controls the motors in the head is isolated from the other five components. 

This is because the head is moved into position on startup and held in place through the 

entire operation. Next, it is natural for information flow to start in through the wireless 

network, as receiving a set of parameters triggers the robot to begin testing. Before the 

wireless communication object forwards the parameters to the legs controller, it checks 

the status of the battery to ensure there is enough charge for the test. Once the legs 

controller converts the parameters and is ready to walk, it informs the camera object and 

range finder object that it is ready to begin the walk. At this point, the camera object 

begins scoring the walk and the range finder object begins sensing for the end of the trial. 

Once the range finder determines it is time to end the walk, it notifies both the camera 

object to stop scoring and the legs object to stop walking. The legs object then begins 

turning, and the camera object reports the scores for that trial to the legs object and 

begins to sense for the appropriate time to stop the turn, at which point it sends a message 

to the legs. After the third trial for each set of parameters, the legs object averages the 

scores and transmits them to the wireless object. The wireless object communicates these 

scores to the genetic algorithm, which then sends the next set of parameters to test. This 

architecture is illustrated in Figure 3.4. 
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Figure 3.4  Software Architecture with Message Passing. 

Camera 
Observer 

Battery 
Checker 

Head 
Control 

Wireless 
Communication

Legs 
Control 

Genetic 
Algorithm 

Parameters 

Parameters 

Scores 

Scores 

Battery Status 

AIBO LAPTOP 

Score Start 
Scoring 
(ack) 

Stop Turning 

Stop Scoring 

Start Sensing To 
Stop Walk (ack) 

Stop Walking 

IR Range 
Observer 

3.5.2  Parameter Translation     Translation from the parameters to the set of joint 

angles used on the robot is modeled after the translation described in [18]. In order to 

minimize network traffic, this translation is completed onboard the robot. Conceptually, 

each locus is divided into two strokes. The power stroke occurs when the foot is at the 

bottom of the locus. While touching the ground, the foot thrusts backward, pulling the 

robot forward. The power stroke begins as the foot is placed down and extended forward 

and ends once it is extended back and is lifted up. The recovery stroke, on the other hand, 

occurs when the foot is in the air, moving forward to reposition for the next power stroke. 

In order to maintain a trot gait, the power stroke and recovery stroke must occur in the 

same amount of time. If the recovery stroke takes longer, more than two legs would be 
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recovering at any given time. Similarly, if the power stroke takes longer, more than two 

legs would be on the ground at the same time. 

Points along the locus are calculated based on the twenty-fifth parameter with the 

goal of maintaining the smoothest movement possible. As stated in Section 3.2 and 

shown in Figure 3.2, the twenty-fifth parameter represents the number of points in a 

single stroke. Thus, there are two times the twenty-fifth parameter many points in a 

complete cycle of the legs. Extrapolation for the power stroke is the simplest, because it 

is a straight line. This line is simply broken down into equal segments, the number of 

which is based on the time parameter. 

Unfortunately, extrapolation for the recovery stroke is more complicated, due to 

the lifting and lowering motions. Translation begins by calculating the total distance 

required for the recovery stroke, then distributing points to the lifting, moving, and 

lowering phases according to their proportionate contribution to the total distance. For 

example, if the lifting and lowering phases both cover a distance of 10mm and the 

moving phase covers a distance of 20mm, the total distance covered is 40mm and the 

proportions are ¼ for the lifting and lowering phases and ½ for the moving phase. If there 

are eight points to be assigned, two would be assigned to lifting, two to lowering, and 

four to moving. Because the proportions do not always divide the number of points 

specified by the time parameter evenly, rounding has to be used. This means that the foot 

may travel at a different speed during each of the three phases. Also, because the 

recovery stroke is necessarily longer than the power stroke, the foot travels faster while 

recovering. 
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Once a complete set of locus points is created, they must be translated into joint 

angles. This was accomplished using the inverse kinematics described in [12] and [42]. 

This process begins by finding the angle for the joint between the upper and lower legs. 

This is a unique solution because it determines the distance between the shoulder and 

paw. Next, the angle between the limb-plane and the body is calculated based on the 

distance of the paw away from the body (z value). Finally, the rotation of the shoulder 

joint is calculated to place the paw on the correct location in the x-y plane. The code to 

complete this translation, as well as the dimensions for the ERS-7, the version of AIBO 

used, was taken from the 2003 rUNSWift code [27]. 

3.5.3  Color Detection     As mentioned above, the AIBO comes with a built-in 

hardware color detection algorithm. However, only one color detection table (CDT) is 

included with the OPEN-R Software Development Kit (SDK). The CDT provided 

identifies the neon pink color used on the pink ball and AIBO-One bone that come with 

the robot. The other color that was predetermined for this experiment was the carpet 

color. Because the carpet texture has a large impact on the effectiveness of various gaits, 

we wanted to standardize our carpet with those used by other researchers. As most AIBO 

research is driven by the RoboCup competitions, most gait research has been conducted 

on a green carpet. For testing we used the Indoor/Outdoor Coronet Nature’s Choice 

carpet, color #758, Irish Spring, which is the carpet used by American teams, according 

to Manuela Veloso from Carnegie Mellon University, the regional contact provided on 

the RoboCup website[33]. Having the carpet color and one of the beacon colors 

predetermined, two colors remained to be chosen -- the perimeter color and the second 

beacon color. 
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Here, background on the color detection algorithm is required. First, the AIBO 

returns images in the YCrCb format. Each pixel is represented with three bytes. The Y 

byte represents the brightness of the pixel, the Cr byte represents the redness of the pixel, 

and the Cb byte represents the blueness of the pixel. The AIBO hardware color detection 

algorithm breaks the Y component into thirty-two levels. For each level, a minimum and 

maximum value for the Cr and Cb values are specified to create a color detection table. 

The AIBO supports eight CDTs. A pixel’s membership in each of the eight colors is 

represented with a fourth byte. In this way, a pixel can belong to all the defined colors, 

none of them, or any other combination [35]. 

It is this ability for colors to overlap that drove the decision for the border color 

and the second beacon color. Clearly, the beacon colors had to be unique to the 

environment. Otherwise, the fitness values would be inaccurate. In order to provide the 

most contrast possible, and also to maximize the ease of hand tuning a CDT, white was 

selected for the border and black for the second beacon color. This capitalized on the 

YCrCB color representation, specifically the brightness component. The black CDT was 

hand tuned using the BallTrackingHead sample program, provided as part of the SDK, 

for testing. Initially, there was some color overlap where the green carpet met the white 

border. This was determined to be caused by the shadow of the foam board walls falling 

onto the carpet. To compensate for this, the foam board is tilted slightly outwards to 

allow more light onto the carpet, and the CDT was adjusted. 

3.5.4  Fitness Function Automation     In keeping with the spirit of autonomous 

robots, and speed data collection, the experiment is designed so that the robot not only 

implements the gait and score the fitness functions, but also sets itself up for the next 
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trial. In fact, the only human interaction designed into the experiment is the switching of 

batteries. Although the robot could have been programmed to find its charging station 

and recharge its own battery, it is quicker to change the battery than to wait for it to 

recharge. 

The primary challenge of this automation was making the AIBO turn around after 

completing a trial. This was accomplished by having the robot return to the standing pose 

(defined by Sony in [37]) and then executing a series of moves based on the turning 

motion presented in 28rrr]. Essentially, this turning motion consisted of shifting the 

weight so that the robot was leaning as much as possible to the left by shifting its legs 

right and then moving the back legs all the way to the left. With the back legs all the way 

to the left and the front legs all the way to the right, when the dog straightened its legs, it 

rotates to the right. The robot continues turning until it sees the beacon on the other side 

of the field. 

Unfortunately, this automation process suffered from two major pitfalls. First, 

developing an effective turn motion is similar to the difficulty of developing an effective 

gait. Although the turn motion was effective, it was very inefficient. Further, this turn 

motion started and ended with the dog in the standing position. This pose keeps the dog’s 

legs extended, so its body is high off the ground. However, the trot gaits keep the robot’s 

body low to the ground, so that the power strokes can be longer. Because of this 

dichotomy, transitioning to and from the standing pose in order to execute the turn 

proved difficult to choreograph and decreased the efficiency of having an automated turn. 

The second pitfall to this automation was the fact that the beacons were the same on both 

sides of the course. Often, the robot veers too far to the side when walking, so that when 
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turning, it stops turning facing the incorrect beacon. This then results in an exceptional 

fitness score for the next trial, as the robot has only a short walk before being close 

enough for the distance sensors to trigger the legs to stop walking. Because of these two 

problems, automating the turn ultimately proved less efficient than turning the robot by 

hand. 

3.6  Summary 

After selecting and implementing a gait parameterization and fitness scores and 

integrating these with a multi-objective genetic algorithm, all design decisions necessary 

to begin experimentation are made. A multi-objective problem representation of the 

domain is to minimize time, tilt, and jitter by way of the twenty-five gait parameters. The 

final system consists of a workstation running the GA, the robot operating in a controlled 

environment, a wireless network connecting the two, and an experimenter manipulating 

the robot and overseeing the testing process.  
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4.  Experimental Results 

This chapter outlines the configurations used for each experiment, as well as the 

results of testing. First, details of the testing environment are presented. Next, the gait and 

GA parameter sets are developed. Then, quantitative results, including the effect of GA 

parameter tuning and the analysis of tradeoffs between the three fitness functions, are 

presented. The chapter concludes with empirical observations, including effects on the 

robot and fitness scores, and emerging trends. 

4.1  Experimental Setup 

The goal of configuring the experimental setup was to match it as closely as 

possible to the previous research. In keeping with the previous experiments, the green 

carpet described in Section 3.5.3 was used for the ground surface. It lay over the tile 

floor, unpadded. The walls surrounding the experiment field were white foam-core that 

rose 32 inches (81.5 cm) off the carpet. The field length was 217 cm, limited by the 

robot’s ability to detect the beacons at range. The robots were programmed to stop within 

33 cm of the walls, which resulted in them stopping at a range of about 20 cm, giving a 

total pace length of 180 cm. Two pink over black beacons, created on a color laser 

printer, were placed at either end of the field at ground level. The beacon size was 

increased from a size of 3 in. x 3 in. (approximately the size of the pink ball) to 7 in. x 4 

in. (approximately filling an 8 ½ in x 11 in. sheet of paper) in order to increase the 

distance at which they were detectable and make the jitter calculation possible over the 

length of the path. The standard laboratory lighting (fluorescent overhead lights) was 

used to light the field, which was placed in the corner of the room. 
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Initial testing showed that transmission of scores over the wireless network 

proved unreliable, prompting a slight change from the experimental process planned and 

described in Chapter 3. The dog’s software frequently crashed between transmitting a set 

of scores and receiving the next set of parameters. However, because the genetic 

algorithm had already opened the connection to the robot, there was no way to recover 

and the experiment had to be restarted. To overcome this obstacle, the robot printed the 

scores to the console and they were entered by hand into the genetic algorithm. This 

meant that the walk parameters were the only things transmitted over the wireless 

network. As this was completed instantaneously, the system became very robust. If for 

some reason the fitness scores became corrupted or there was a reboot of the robot (e.g. 

battery change), the reboot could occur without interference from the wireless network 

(establishing a wireless connection before the robot was completely booted resulted in a 

shutdown). Also, test parameters could be manually entered by way of a separate 

terminal application, these scores entered to the GA, and operation would resume 

normally. 

Having to enter the scores manually actually proved fortunate, when one of the 

fitness function evaluations encountered a problem. For example, there are times that the 

range finder registers the ground at the beginning of a traversal. When this happens, the 

time score for the trial is very low. Because the GA is set to minimize fitness scores, one 

of these values corrupts the experiment. However, because the fitness values are entered 

by hand, these bogus values can be removed from the averages reported to the GA. Also, 

if this occurs for all three trials of a gait, it is given a very poor score of 99999 (maximum 
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observed scores were in the 1200s) so as to penalize the gait and hopefully eliminate the 

behavior from the population. 

4.2  Gait Parameter Refinement 

The initial experiment searches the space of all attainable coordinate values. 

These initial values are shown as configuration 1 in Table 4.1. The naming convention 

used is based on a profile view of the robot with it facing to the right (see Figure 4.1). 

The problem that resulted with these settings is that not all combinations of possible X, 

Y, and Z values are achievable. For example, it may be possible for the leg to reach out 

125 mm in front or 125 mm out to the side, but it is not possible to achieve both of these 

simultaneously; the leg is simply too short. The result of these situations being fed to the 

dog for testing is that the robot attempts to move its joints to infeasible joint angles, 

which results in the robot’s software crashing and shutting down. 

Figure 4.1  Naming Convention of Gait Parameters (Adapted from [24]). 
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An attempt was made to correct this by limiting the range of the twenty-four 

parameters defining the paw loci. Although limiting the range of the parameters alleviates 

the problem of moving the leg to an unreachable point, it does not eliminate all instances 

of this problem. Therefore, bound checks are added to the robot and genetic algorithm 

software. If any joint angle is out of bounds, the scores for that parameter set are reported 

as 99999, 99999, 99999. Initially, the angle bounds were taken from the Sony 

publications on the ERS-7 AIBO [24]. First the software limits were used, then the 

hardware limits. However, these bounds eliminated every gait generated by the GA. The 

published limits are overly conservative, so the ultimate check simply ensured that the 

angles are legitimate. That is, they are within the range -360 to 360, and do not contain 

not-a-number values. 

Although this checking ensures that the robot does not crash and shutdown, it 

does not eliminate all infeasible solutions. In particular, the points generated for the 

members of the initial configuration do not create a viable locus, with a power stroke and 

recovery stroke. Instead, the legs twitch irrationally, and the loci do not propel the robot 

at all. This proved a major problem, as the robot never reaches the opposite side of the 

field. Therefore, the trial does not end, no scores are reported to the genetic algorithm, 

and the experiment continues indefinitely. 

To overcome this issue, more information added to the system in order for the GA 

to generate viable gaits. The first attempt at this resulted in Configuration 2, shown in 

Table 4.1. This change was contrived by dividing the range of possible points so that the 

1 and 11 o’clock positions are above the 4 and 7 o’clock positions and so the 1 and 4 

o’clock positions are in front of the 7 and 11 o’clock positions. As this still fails to 
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provide a viable gait, a paradigm shift was made. Up until this point, as little information 

was fed into the system as possible. This was motivated by the spirit of autonomous 

learning. However, it became clear that the system needs far more information in order to 

generate useful data. Therefore, the paradigm shift was made away from slowly adding in 

information until the GA was able to perform. Instead, the system is given all the 

information needed, and then information is slowly taken away until it is no longer able 

to function. 

Having determined the need to feed the system a reliable way of generating gaits, 

the first step is to hand tune a gait. After only a few trials, a working gait was developed, 

and is shown in Table 4.1. This gait is typical of the parameterized gaits developed in 

other research. It maintains a forward leaning body posture, most of the propulsion comes 

from the movement of the hind legs, and the front paws do not actually touch the ground. 

Rather, the robot walks on its forearms. Also, because of the forward leaning posture and 

weight differential between the front of rear of the robot (the head moves the center of 

gravity forward), the third point of contact that makes the gait statically stable becomes 

the front leg that is in its recovery stroke. A range is based around these parameters, 

resulting in configuration 3. After cursory testing these parameter ranges, they were 

tightened even further for initial experiments, resulting in configuration 4. Additionally, 

for the fourth configuration, the time parameter range is decreased. The larger range was 

judged too large because the slower gaits would increase experimental run time as well as 

be less representative of other learned gaits. After successful experiments with 

configuration 4, we revert to the third iteration of ranges while maintaining the updated 

time range (see Table 4.1, Final Bounds). These limits are maintained throughout the 
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remaining experiments. During the testing, a few infeasible gaits are developed by the 

genetic algorithm. Usually the result is that the legs slip and no significant forward 

motion results. Because of these infeasible solutions, the ranges are considered to be the 

correct balance between giving the GA room to experiment while also providing enough 

information in the system so as to adequately guide learning. 

Table 4.1  Evolution of Parameter Ranges. 
Parameter Range (min, max) 

 Config 1 Config 2 Hand 
Tuning 

Config 3 Config 4 Final 
Bounds 

Points per stroke 4,24 4,24 8 4,24 4,8 4,8 
Front 1 o’clock X 50,110 50,100 80 60,100 70,90 60,100 
Front 1 o’clock Y 50,100 75,100 50 40,60 45,55 40,60 
Front 1 o’clock Z 0,20 0,20 0 0,20 0,10 0,20 
Front 4 o’clock X 50,110 50,100 80 60,100 70,90 60,100 
Front 4 o’clock Y 50,100 100,125 55 45,65 50,60 45,65 
Front 4 o’clock Z 0,20 0,20 0 0,20 0,10 0,20 
Front 7 o’clock X 50,110 0,50 30 10,50 20,40 10,50 
Front 7 o’clock Y 50,100 100,125 55 45,65 50,60 45,65 
Front 7 o’clock Z 0,20 0,20 0 0,20 0,10 0,20 
Front 11 o’clock X 50,110 0,50 30 10,50 20,40 10,50 
Front 11 o’clock Y 50,100 75,100 50 40,60 45,55 40,60 
Front 11 o’clock Z 0,20 0,20 0 0,20 0,10 0,20 
Rear 1 o’clock X -20,50 -40,20 10 -10,30 0,20 -10,30 
Rear 1 o’clock Y 60,125 10,115 85 75,95 80,90 75,95 
Rear 1 o’clock Z 0,20 0,20 10 0,20 0,10 0,20 
Rear 4 o’clock X -20,50 -40,20 10 -10,30 0,20 -10,30 
Rear 4 o’clock Y 60,125 115,130 110 100,120 105,115 100,120 
Rear 4 o’clock Z 0,20 0,20 10 0,20 0,20 0,20 
Rear 7 o’clock X -20,50 -100,-40 -50 -70,-30 -60,-40 -70,-30 
Rear 7 o’clock Y 60,125 115,130 110 100,120 105,115 100,120 
Rear 7 o’clock Z 0,20 0,20 10 0,20 0,10 0,20 
Rear 11 o’clock X -20,50 -100,-40 -50 -70,-30 -60,-40 -70,-30 
Rear 11 o’clock Y 60,125 100,115 85 75,95 80,90 75,95 
Rear 11 o’clock Z 0,20 0,20 10 0,20 0,10 0,20 
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4.3  Experiment Configurations 

The GA parameters for the first three experiments (shown in Table 4.2) are based 

on the parameter ranges of the genetic algorithm. The mutation and crossover parameters 

were selected to be the middle of the ranges requested by the GA. Specifically, the GA 

asked for a crossover probability between 0.5 and 1.0, so 0.75 was used and a mutation 

probability between 0 and 0.005 was requested, resulting in a mutation rate of 0.0025. 

The gait parameters are represented in binary form, for which a single byte each is 

sufficient, as this can accommodate all ranges. The number of generations and population 

size are set equal to each other in order to maintain balance between the two. Based on 

time estimates, a population size of five was chosen, but because the GA requires an even 

population size in order to perform crossover, this is increased to six. This is increased to 

ten for the second test, but reduced back for the third. The final configuration requires 40 

gait evaluations, which takes between 1 ½ and 2 hours to complete. 

Table 4.2  Initial Genetic Algorithm Parameters. 
Parameter Given Range Run 1 Value Run 2 Value Run 3 Value 
Crossover probability 0.5-1.0 0.75 0.75 0.75 
Crossover type Simple, 

Uniform 
Simple Simple Simple 

Bits per variable NA 8 8 8 
Mutation probability 0.0 - 0.005 0.0025 0.0025 0.0025 
Random seed 0.0-1.0 0.2006 0.2006 0.2006 
Number generations NA 6 (stopped 

after 4) 
10 (stopped 
after 5) 

6 

Population size (Even) 6 10 6 
 

Although these initial experiments did not produce good quantitative data, their 

execution provide vital insights into the testing process and nature of the experiment. For 

example, Run 1 was stopped at the end of the fourth generation. This was due to a dead 

44 



battery. During the battery swap, the genetic algorithm connected to the robot before it 

had a chance to complete rebooting. As mentioned earlier, this caused the robot to crash 

and left no way to recover. During Run 2, battery swaps were perfected, but the test was 

stopped due to time limitations. Run 3 was the first completed test, which demonstrated 

the number of evaluations required for an experiment. Initial assumptions were that it 

would simply be number of generations times population size, when in reality the 

experiment requires evaluations for the zeroth generation. Therefore, an experiment 

requires an extra population size number of evaluations. 

After further exploring the effects of tuning the Genetic Algorithm’s parameters 

and perfected the experimentation technique, it was decided that longer runs are required 

to produce usable data. These runs consist of a larger population size of 10 as well as an 

increased generation count of 24. This requires 250 evaluations, meaning 750 traversals 

of the field. Next, a discretized search of the parameter space was conceived. This 

includes three mutation values and four crossover values, resulting in twelve 

configurations. However, this was not possible due to time and hardware limitations, so 

the decision was made to focus on the effects of mutation instead of crossover. Therefore, 

the crossover probability is fixed at 0.75 while mutation is stepped up from 0.033 to 0.1. 

This represents a significant increase from the recommended ranges. The reasoning is 

that the effects of changing the mutation rate is more noticeable when mutation occurred 

with higher probability. The parameters for these runs (8-10) can be seen in Table 4.3. 
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Table 4.3  Final Experiment Parameters. 
Parameter Run 8 Value Run 9 Value Run 10 Value 
Crossover probability 0.75 0.75 0.75 
Crossover type Simple Simple Simple 
Bits per variable 8 8 8 
Mutation probability 0.033 0.066 0.1 
Random seed 0.1984 0.1984 0.1984 
Number generations 24 24 24 
Population size 10 10 10 
 

4.4  Quantitative Results 

The three runs, conducted with the parameters described above, provide sufficient 

data to draw conclusions. From these experiments, the best mutation probability is 

selected, as well as the tradeoff between fitness functions is demonstrated. 

4.4.1  Effect of GA Parameter Tuning     The final scores, shown in Table 4.4, do 

not clearly show a superior setting. In fact, each of the three parameter settings yields the 

best score for one of the three fitness functions. For example, Run 8 yields the fastest 

gait, with an average of 221 camera frames per trial. For comparison to other developed 

gaits, this was measured to have a speed of 964.2 ± 27.65 cm/min. The reason this is 

significantly slower than other tuned gaits is that stability has forced a slower walk. 

Despite the ambiguity of analyzing the parameter settings based on results, further 

analysis shows that the lowest setting (0.033) is best. Looking at the progression of the 

scores over time, Run 8 appears to have the desired effect. As generations progress, the 

expectation is that each minimum score will decrease. Further, each maximum score will 

most likely increase as tradeoffs are made to lower the other scores. Run 8 best 

exemplifies this trend. The charts of each run’s minimum, average, and maximum time 

scores can be seen in the figures below. 
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Table 4.4  Best Scores Runs 8-10. 
Run (mutation 
probability) 

Minimum Time 
Score 

Minimum Tilt 
Score 

Minimum Jitter 
Score 

8 (0.033) 221 63 8 
9 (0.066) 330 52 10 
19 (0.1) 319 64 7 
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Figure 4.2  Time Progression, Run 8. 
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Figure 4.3  Time Progression, Run 9. 
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Figure 4.4  Time Progression, Run 10. 
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4.4.2  Nature of Trade-Off Between Fitness Functions     Next, the tradeoffs 

between the fitness functions are analyzed for trends. For clarity, projections onto two-

dimensional planes are presented here. The first projection is onto the time-jitter plane, 

disregarding the tilt scores. Of the three data-collection runs, Run 8 provided the best 

pareto front, which can be seen in Figure 4.5. Also, a composite of Runs 8, 9, and 10 are 

shown in Figure 4.6. Here we can see a clear representation that speed and horizontal 

stability are indeed competing goals. In general, as time decreases, jitter increases and 

visa-versa. Further, we can see that this front appears to be smooth, with no distinctive 

gaps of non-dominating scores along the pareto front. 
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Figure 4.5  Time-Jitter Tradeoff, Run 8. 
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Figure 4.6  Time-Jitter Tradeoff, Runs 8, 9, & 10. 

The next projection deals with the tradeoff between jitter and tilt. For these fitness 

functions, Run 10 provided the best pareto front. This data is presented in Figure 4.7, and 

the composite data is shown in Figure 4.8. Again, one can see that jitter and tilt are 

inversely proportional. As one increases, the other decreases. However, this pareto front 

is not as evenly distributed as the previous one. Instead, the data clusters towards low 

jitter and high tilt. Regardless, this tradeoff seems particularly interesting. Clearly the 

property of stability is not unilateral. Also, it appears that some measure of instability is 

inherent in all gaits. At some point, the aim must cease to be “minimize instability” and 

become “allot instability optimally.” 
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Figure 4.7  Jitter-Tilt Tradeoff, Run 10. 
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Figure 4.8  Jitter-Tilt Tradeoff, Runs 8, 9, & 10. 
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Finally, the last tradeoff to be analyzed is that between time and tilt. The initial 

assumption is that tilt-stability and speed are inversely related. However, the previous 

two results suggest an alternative possibility. If jitter-stability decreases with increasing 

speed, and tilt-stability increases with decreasing jitter-stability, will jitter-stability 

increase with increasing speed? To answer this question, the datasets from all three of the 

final experiments are presented. For Runs 8 and 10 and the composite data, there almost 

seems to be one point that dominates all others, except for a couple outliers. On the other 

hand, the data from Run 9 shows a weak pareto front. Due to the high level of noise in 

the fitness evaluations and the conflicting data gathered, no conclusions can be drawn to 

the nature of the time-tilt tradeoff. 
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Figure 4.10  Time-Tilt Tradeoff, Run 9. 
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Figure 4.12  Time-Tilt Tradeoff, Runs 8, 9, & 10. 

4.5  Empirical Observations 

In addition to the quantitative results gathered throughout the experiments, many 

qualitative observations were made that are worth noting. For instance, the 

experimentation process had detrimental effects on the robot hardware. Also, effects of 

learning were evident through observation, as well as factors that affected the fitness 

scores. 

4.5.1  Effects on the Robot     First, experiments quickly deteriorate the robot’s 

hardware. These observations give some insight into the effects on the robot that 

deploying a gait of this type will have. During the experiments, one battery is good for 

testing 20-30 gaits (dependant on gait speed and ability to reacquire the beacon after a 

turn). Although the battery does not completely drained at this point (it still shows one of 

three bars when replaced on the charger), there is a significant drop in motor power and 
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effectiveness, prompting a battery replacement. Because the battery is not completely 

drained before being recharged, there is some concern over the battery developing a 

memory and its charge depleting faster. Although no such deterioration was observed, 

testing represented a relatively small fraction of the robot’s lifespan, and it is possible 

such an effect will be come evident in the future. 

Another impact on the robot comes as a result of the collision of the robot’s knees 

and elbows. This, in addition to the repetitive movement of the joints, causes some slight 

but noticeable wear on the robots’ motors. Development and initial testing was conducted 

on one robot, which had to be switched out for later testing. Because this deterioration 

was gradual, the true impact was not evident until the switch to new hardware had been 

made. However, the development robot had been used in prior research, so not all wear is 

attributable to this project. 

Something else that proves to have a significant impact on the robot is the 

temperature inside the laboratory. During the first set of experiments, the air conditioning 

in the testing room was disabled, and the room grew very warm. When the air 

conditioning was restored for the beginning of the second set of runs, the robot operated 

significantly better. Specifically, the motors moved faster and stronger, the camera was 

better able to recognize colors, and the battery life was extended. This means that instead 

of testing 20-30 gaits on a single charge, 30-40 tests can be conducted in nearly the same 

amount of time. Also, any temperature variation introduces noise into the speed 

calculation. 

4.5.2 Effects of Learning     Empirical observations also showed that the genetic 

algorithm was in fact improving the walk loci. Most obvious was that the walks speed up. 
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Generally, only gaits with the time parameter set to 4 and 7 are maintained in the 

population. This represents those that were being kept for the speed score and those that 

are being kept for the stability scores. Also, the length of the rear power stroke, which is 

responsible for the majority of forward movement, seems to increase, resulting in a faster 

gait. 

Further, it appears that the walks become straighter over time as well. Although it 

may be that systematic error is reduced as the experimenter gains experience, much of 

this improvement should be contributed to learning. It was evident that straighter walks 

score better because they keep the beacon in the center of the camera frame, reducing 

jitter. It appears that the GA is able to pick up on this relationship throughout the 

evolutionary process. Also, the GA may be able to recognize gaits that have a smoother 

transition from the standing pose and favor them for survival as well. 

4.5.3  Effects on Fitness Scores     Probably the most significant effect on the 

fitness evaluations is that the robot often gets turned away from the beacon and has to be 

realigned by hand. There are several reasons for this behavior. The obvious first 

explanation is that inconsistencies in the ground and robot lead to the robot not walking 

completely straight. However, the impact of these variances appears to be eclipsed by the 

fact that the robot is often misaligned from the beginning. One reason for this is that it 

was difficult to place the robot perfectly in line between the two beacons by hand. The 

second reason for misalignment, and the one with the largest impact, is the transition 

from the standing pose to first walking pose. This is a quick movement to a non-

symmetrical pose. Although the angle shift was generally slight, it is often large enough 

to have an impact after the robot walks a fair distance. 
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Although this behavior does not affect the speed measure significantly, it has a 

much more significant impact on the two stability functions. For this reason, the robot is 

manually realigned during the course of the trials. This leads to fitness scores that are 

more reflective of the quality of the gait and influenced less by unimportant factors, such 

as the robot’s initial alignment and the deflection caused when shifting out of the 

standing pose. More reliable fitness scores are necessary if the genetic algorithm is to 

produce gaits with better scores. Also, this manual manipulation is not overly intrusive 

because the robot would have to correct for this under real-world conditions, regardless 

of the causes. Further, because the speed function is not significantly impacted, it is clear 

that this problem is unique to stability optimization. 

Also worth noting are initial insights as to the stability of the camera for a 

parameterized gait. From observation, it is clear that jitter has a bigger impact than tilt. 

This is because the head, which houses the camera, shakes (yaw) with each step. Tilt, 

however, is less of an issue because the robot’s design does not allow the head to roll 

independently of the body. Therefore, all roll is in conjunction with the body or due to the 

give in the neck construction, which is minor. The robot’s design allowes yaw of the 

head, however. In fact, one of the degrees of freedom is the robot’s ability to yaw its 

head. This means that a motor is holding the head in place, making it much easier to 

disturb about the yaw axis than the roll axis. Further, the motor is placed at one end of the 

head, so the motor has to overcome a significant amount of rotational inertia to stabilize 

the head from yawing. 
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4.6  Summary 

In summary, results show a clear tradeoff between the time and jitter scores as 

well as between jitter and tilt. Despite the noise in the system and limited training data, 

NSGA-II is able to evolve a pareto front and improve fitness scores. This project has also 

helped characterize the nature of the domain through empirical observation. Notably, the 

fitness functions are not only useful for creating pressure towards more stable gaits, but 

straighter ones as well. 
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5.  Conclusions and Future Work 

This project is a success, as it meets all the objectives laid out at its onset. These 

included developing a parameterized walk and a way to score gaits for speed and 

stability. Further, this project sought to use a multi-objective genetic algorithm to evolve 

gait parameters and provide results that would be analyzed for the speed-stability 

tradeoff. A parameterized trot method was developed that moved the foot in a wheel like 

motion. By defining two locus paths and a number of points to divide that path into, a 

series of poses was created for the robot to assume, resulting in forward motion. Further, 

two measures of stability, jitter and tilt, and a measure of speed were defined and 

implemented. An experimental environment was developed in which the robot could test 

the performance of each gait against these three fitness functions, using only onboard 

sensors. Finally, a multi-objective genetic algorithm was tied in to the experimental 

system using a wireless network connection. This GA allowed the development of three 

large datasets, which were analyzed to gain a better understanding of tradeoffs between 

the three fitness scores. The results showed a clear tradeoff between speed and stability, 

in the form of jitter. As the time score increased from 221 to 827, the jitter score 

decreased from 41 to 8. Also, a tradeoff between the two stability functions, jitter and tilt, 

was also evident. Here, the tilt score increased from 64 to 83 as the jitter score decreased 

from 37 to 7. 

5.1  Future Work 

The importance of camera stability for object recognition and a host of other tasks 

has been previously established. Therefore, continuing research focused on the speed-

stability tradeoff may be critical. Such future work may take several forms, such as 
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improving the fitness functions, using different optimization techniques, automating the 

process, and moving the head to track the beacon. Some specific topics in these areas are 

discussed below. 

5.1.1  Fitness Function Revision     As mentioned above, the way stability was 

measured and the reliability of those measures had a significant impact on the learning 

process. Although the two fitness functions used in this project are representative of the 

majority of camera instability, other functions may also prove useful. For example, the 

jitter function used in this project only was concerned with horizontal displacement. One 

other possible fitness function would be to consider the vertical jitter as well. The jitter 

function(s) could be further refined by isolating offset by cause. For example, Figure 5.1 

shows that offset can be caused by the twisting of the body while walking (A) or by 

misalignment with the target (B). Also worth investigating would be the way these 

distortions affect object recognition. For instance, is all jitter created equal? If two gaits 

produce the same jitter score but one cycles faster than the other, is the slower cycle 

better for object recognition? 
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A. B. 

 

Figure 5.1  Offset Causes: A. Body Twist, B. Body Alignment. 

Another method of measuring the stability of the camera would be to use 

kinematics to determine the position of the camera as the dog walks. This method is not 

recommended, however, because it has several drawbacks. First, the motors of the robot 

are not always powerful enough to hold their desired position. This is evident in the fact 

that the dog’s motion is different when it is on the ground and when it is suspended, 

keeping its weight off of its legs. Further, the kinematics model would have to be more 

than a simple joint model because the robot does not walk on its front paws, but rather on 

its forearms. This makes the points of contact with the ground hard to calculate, 

especially as the forearms are curved. Finally, a kinematics model would essentially be 

simulating the robot and its environment. It is more realistic to use the actual hardware 

and environment to better understand the interaction of the two. 
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5.1.2  Optimization Method     Another area for future work lies in improving the 

optimization methods used to generate the pareto front. The most basic of these methods 

is further tuning of the parameters of the genetic algorithm. Although crossover rate, 

mutation rate, population size, and number of generations were experimented with, bit 

length representation was not. Further, the changes to the parameters were quite cursory. 

Fine tuning of these parameters may increase the quality of the pareto front and solutions 

generated. Second, other optimization methods could be used, such as linear 

programming or discrete methods. 

5.1.3  Automation     One of the major limitations of this project was the inability 

to collect large amounts of data. Because each experiment lasted for over twelve hours, 

time was the major limitation, although hardware degradation also played a factor. The 

best way to mediate this inhibition would be to automate the testing process. In this way, 

tests could be run in parallel, or, at the very least, in a more continuous manner, given the 

same amount of manpower. 

Despite the obvious advantages to automation the testing process, this proved to 

be outside the scope of this project. The principal hurdle to automating this process is 

getting the robot to turn around and reset itself for the next trial. First, more color 

detection tables would have to be defined so that the robot would be able to distinguish 

between the two beacons. Next, a more effective turning motion would have to be 

developed. This, however, may not be too complicated as the original presentation of a 

parameterized walk [11] claimed that a gait is effective in turning and strafing, in 

addition to forward and backward motion. In fact, the ability to be used to turn may even 

become another fitness measure, although it is unclear how this would be measured on 
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the robot. Also, the wireless communication between the robot and computer would have 

to be corrected and a way developed to pause the genetic algorithm to enable battery 

changes. Finally, the robot would have to be able to detect and correct when it has veered 

off course. Otherwise, the angular errors compound and corrupt the fitness scores. 

5.1.4  Head Stabilization     Another way to enhance the camera stability would be 

to move the head in order to counter the motion induced by the body. Although this 

method has its drawbacks, it may prove helpful. For instance, the robot has no control 

over the roll of its head, so it will only be able to counter yaw. However, as mentioned 

previously, yaw, and hence horizontal jitter, seems to be the major source of instability. 

Also, there will be times when the robot is looking around and will be unable to focus on 

one object. Nevertheless, this method will be able to improve the ability of the robot to 

track an object once it has acquired one. There are two apparent ways to implement such 

stabilization. First, it is possible to explicitly code a program to move the head towards 

the center of an object. In fact, this is one of the sample programs provided with the 

OPEN-R SDK, albeit the most complicated example. The other approach would be to 

learn the head movement in addition to the gait. This is the method used by the UT 

Austin team. Although they had little success learning the head motion in conjunction 

with the gait, it is likely that the process would be more successful if the gait was learned 

independently and then the head motion learned in a second iteration to be custom fitted 

to the chosen gait. 

5.3  Conclusions 

Despite camera stability’s and speed’s impact on several higher-level robot tasks, 

little work has been done, until now, to understand the nature of the tradeoff between 
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these two competing goals. Building off the previous methods for increasing the speed of 

the AIBO’s trot, this project has established a method for increasing both the speed and 

stability of a selected gait. More importantly, however, data has been collected to chart 

the tradeoff between speed and two stability components, jitter and tilt, for the first time. 
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Appendix A. Data for Figure 4.5 

Table A.1  Non-Dominated Points (Based on Time-Jitter projection), Run 8. 
Parameter Values 
Points per stroke 4 5 5 5 6 8 8 8 
Front 1 o’clock X 70 70 73 73 74 73 74 74 
Front 1 o’clock Y 54 54 54 54 42 40 43 43 
Front 1 o’clock Z 9 9 14 14 14 14 14 14 
Front 4 o’clock X 81 84 84 84 83 89 84 84 
Front 4 o’clock Y 64 64 61 61 61 61 61 61 
Front 4 o’clock Z 18 18 19 19 9 20 19 19 
Front 7 o’clock X 11 11 21 24 24 11 21 24 
Front 7 o’clock Y 62 62 59 59 49 60 60 57 
Front 7 o’clock Z 3 4 1 4 4 1 1 1 
Front 11 o’clock X 48 48 39 48 48 34 39 39 
Front 11 o’clock Y 44 44 54 54 54 54 54 54 
Front 11 o’clock Z 16 17 14 14 15 14 14 14 
Rear 1 o’clock X 27 27 18 13 13 13 13 -2 
Rear 1 o’clock Y 77 77 78 88 78 78 78 78 
Rear 1 o’clock Z 19 19 9 7 17 9 9 9 
Rear 4 o’clock X 26 26 11 11 12 11 11 21 
Rear 4 o’clock Y 116 116 103 103 103 101 103 103 
Rear 4 o’clock Z 2 2 15 15 15 16 15 10 
Rear 7 o’clock X -68 -68 -55 -65 -65 -65 -55 -34 
Rear 7 o’clock Y 115 115 109 104 104 104 104 104 
Rear 7 o’clock Z 9 8 8 8 8 8 8 8 
Rear 11 o’clock X -57 -57 -56 -69 -66 -59 -56 -57 
Rear 11 o’clock Y 92 92 92 95 95 95 92 92 
Rear 11 o’clock Z 13 13 13 13 13 10 13 13 
         
Time Score 221 314 438 511 529 606 675 827
Tilt Score 71 73 81 83 79 80 80 82
Jitter Score 41 24 15 13 12 11 10 8
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Appendix B. Data for Figure 4.7 

Table B.1  Non-Dominated Points (Based on Jitter-Tilt projection), Run 10. 
Parameter Values     
Points per stroke 4 6 8 8 5
Front 1 o’clock X 61 93 96 98 65
Front 1 o’clock Y 42 40 46 43 41
Front 1 o’clock Z 3 11 9 6 1
Front 4 o’clock X 89 90 89 90 96
Front 4 o’clock Y 62 59 62 58 61
Front 4 o’clock Z 9 1 9 5 3
Front 7 o’clock X 23 35 14 36 11
Front 7 o’clock Y 60 55 60 56 62
Front 7 o’clock Z 8 7 3 2 3
Front 11 o’clock X 21 47 21 42 25
Front 11 o’clock Y 53 59 53 57 43
Front 11 o’clock Z 10 12 10 1 12
Rear 1 o’clock X -7 15 13 8 18
Rear 1 o’clock Y 79 91 79 88 75
Rear 1 o’clock Z 4 9 9 8 9
Rear 4 o’clock X 11 12 11 25 17
Rear 4 o’clock Y 102 108 101 102 108
Rear 4 o’clock Z 11 17 12 8 16
Rear 7 o’clock X -59 -67 -68 -43 -69
Rear 7 o’clock Y 116 101 116 113 116
Rear 7 o’clock Z 14 18 14 16 11
Rear 11 o’clock X -49 -40 -46 -42 -46
Rear 11 o’clock Y 76 91 91 81 91
Rear 11 o’clock Z 1 2 7 13 7
      
Time Score 540 463 511 616 326
Tilt Score 64 71 74 77 83
Jitter Score 37 22 13 10 7
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