904 research outputs found

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    Higher Distance Energies and Expanders with Structure

    Get PDF
    We adapt the idea of higher moment energies, originally used in Additive Combinatorics, so that it would apply to problems in Discrete Geometry. This new approach leads to a variety of new results, such as (i) Improved bounds for the problem of distinct distances with local properties. (ii) Improved bounds for problems involving expanding polynomials in R[x,y]{\mathbb R}[x,y] (Elekes-Ronyai type bounds) when one or two of the sets have structure. Higher moment energies seem to be related to additional problems in Discrete Geometry, to lead to new elegant theory, and to raise new questions

    Bisector energy and few distinct distances

    Get PDF
    We introduce the bisector energy of an nn-point set PP in R2\mathbb{R}^2, defined as the number of quadruples (a,b,c,d)(a,b,c,d) from PP such that aa and bb determine the same perpendicular bisector as cc and dd. If no line or circle contains M(n)M(n) points of PP, then we prove that the bisector energy is O(M(n)25n125+ϵ+M(n)n2).O(M(n)^{\frac{2}{5}}n^{\frac{12}{5}+\epsilon} + M(n)n^2).. We also prove the lower bound Ω(M(n)n2)\Omega(M(n)n^2), which matches our upper bound when M(n)M(n) is large. We use our upper bound on the bisector energy to obtain two rather different results: (i) If PP determines O(n/logn)O(n/\sqrt{\log n}) distinct distances, then for any 0<α1/40<\alpha\le 1/4, either there exists a line or circle that contains nαn^\alpha points of PP, or there exist Ω(n8/512α/5ϵ)\Omega(n^{8/5-12\alpha/5-\epsilon}) distinct lines that contain Ω(logn)\Omega(\sqrt{\log n}) points of PP. This result provides new information on a conjecture of Erd\H{o}s regarding the structure of point sets with few distinct distances. (ii) If no line or circle contains M(n)M(n) points of PP, then the number of distinct perpendicular bisectors determined by PP is Ω(min{M(n)2/5n8/5ϵ,M(n)1n2})\Omega(\min\{M(n)^{-2/5}n^{8/5-\epsilon}, M(n)^{-1} n^2\}). This appears to be the first higher-dimensional example in a framework for studying the expansion properties of polynomials and rational functions over R\mathbb{R}, initiated by Elekes and R\'onyai.Comment: 18 pages, 2 figure

    Cycle-based Cluster Variational Method for Direct and Inverse Inference

    Get PDF
    We elaborate on the idea that loop corrections to belief propagation could be dealt with in a systematic way on pairwise Markov random fields, by using the elements of a cycle basis to define region in a generalized belief propagation setting. The region graph is specified in such a way as to avoid dual loops as much as possible, by discarding redundant Lagrange multipliers, in order to facilitate the convergence, while avoiding instabilities associated to minimal factor graph construction. We end up with a two-level algorithm, where a belief propagation algorithm is run alternatively at the level of each cycle and at the inter-region level. The inverse problem of finding the couplings of a Markov random field from empirical covariances can be addressed region wise. It turns out that this can be done efficiently in particular in the Ising context, where fixed point equations can be derived along with a one-parameter log likelihood function to minimize. Numerical experiments confirm the effectiveness of these considerations both for the direct and inverse MRF inference.Comment: 47 pages, 16 figure
    corecore