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Abstract

We adapt the idea of higher moment energies, originally used in Additive Combi-
natorics, so that it would apply to problems in Discrete Geometry. This new approach
leads to a variety of new results, such as
(i) Improved bounds for the problem of distinct distances with local properties.
(ii) Improved bounds for problems involving expanding polynomials in R[x, y] (Elekes–
Rónyai type bounds) when one or two of the sets have structure.

Higher moment energies seem to be related to additional problems in Discrete Ge-
ometry, to lead to new elegant theory, and to raise new questions.

1 Introduction

In this work we use techniques from Additive Combinatorics to derive new results for Dis-
crete Geometry problems. We obtain two types of results by using similar techniques: new
bounds for several distinct distances problems and new bounds for expanding polynomials
when the sets have some kind of structure.

The Erdős distinct distances problem is a main problem in Discrete Geometry, which
asks for the minimum number of distinct distances spanned by a set of n points in R

2.
That is, denoting the distance between two points p, q ∈ R

2 as |pq|, the problem asks
for min|P|=n |{|pq| : p, q ∈ P}|. Note that n equally spaced points on a line span n − 1
distinct distances. Erdős [10] observed that a

√
n × √

n section of the integer lattice Z
2

spans Θ(n/
√
log n) distinct distances. Proving that every point set determines at least some

number of distinct distances turned out to be a deep and challenging problem.
The above problem is just one out of a large family of distinct distances problems, in-

cluding higher-dimensional variants, structural problems, and many other types of problems
(for example, see [28]). The main problems in this family were proposed by Erdős and have
been studied for decades. After over 60 years and many works on distinct distances prob-
lems, Guth and Katz [14] almost settled the original question by proving that every set of n
points in R

2 spans Ω(n/ log n) distinct distances. Surprisingly, so far this major discovery
was not followed by significant progress in the other main distinct distances problems.

In recent years various results in Additive Combinatorics have been obtained by using
higher moment energies, which generalize the concept of additive energy (e.g., see [23, 24,
25]). When studying distinct distances problems, one often relies on a set of quadruples
that can be thought of as a variant of additive energy (for example, see [4, 13, 14, 19, 26]).
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It seems fitting to refer to this object as the distance energy of a point set. We extend
the idea of higher moment energies by defining the concept of higher distance energy. This
concept is described in Section 2.

The use of higher distance energy leads to several new distinct distances results, and
to possible strategies for studying other such problems. Moreover, it turns out that just
thinking of distinct distances in terms of energy leads to various new observations. A
similar situation occurs for the family of problems involving expanding polynomials. We
believe that this work exposes just another part of a strong connection between the fields
of Additive Combinatorics and Discrete Geometry. Our hope is that this connection will
continue to unfold, and we plan to continue pursuing this direction.

Distinct distances with local properties. Let φ(n, k, l) denote the minimum number
of distinct distances that are determined by a planar n point set P with the property that
any k points of P determine at least l distinct distances. That is, by having a local property
of every small subset of points, we wish to obtain a global property of the entire point set.

For example, the value of φ(n, 3, 3) is the minimum number of distinct distances that
are determined by a set of n points that do not span any isosceles triangles (including
degenerate triangles with three collinear vertices). Since no isosceles triangles are allowed,
every point determines n−1 distinct distances with the other points of the set, and we thus
have φ(n, 3, 3) = Ω(n). Erdős [7] observed the following upper bound for φ(n, 3, 3). Behrend
[2] proved that there exists a set A of positive integers a1 < a2 < · · · < an such that no three
elements of A determine an arithmetic progression and an < n2O(

√
logn). Therefore, the

point set P1 = {(a1, 0), (a2, 0), . . . , (an, 0)} does not span any isosceles triangles. Since P1 ⊂
P2 = {(1, 0), (2, 0), . . . , (an, 0)} and D(P2) < n2O(

√
logn), we have φ(n, 3, 3) < n2O(

√
logn).

For any k ≥ 4 we have

φ

(

n, k,

(

k

2

)

− ⌊k/2⌋ + 2

)

= Ω
(

n2
)

,

since in this case every distance can occur at most ⌊k/2⌋ − 1 times. A result of Erdős and
Gyárfás [11] implies

φ

(

n, k,

(

k

2

)

− ⌊k/2⌋ + 1

)

= Ω
(

n4/3
)

.

That is, the boundary between a trivial problem and a non-trivial one passes between
ℓ ≥

(k
2

)

− ⌊k/2⌋ + 2 and ℓ ≤
(k
2

)

− ⌊k/2⌋ + 1.
Recently, Fox, Pach, and Suk [13] showed that for any ε > 0

φ

(

n, k,

(

k

2

)

− k + 6

)

= Ω
(

n8/7−ε
)

.

We will prove the following by using higher distance energies.

Theorem 1.1. For any integers c, d ≥ 2 we have1

φ

(

n, c(d + 1),

(

c(d+ 1)

2

)

− dc+ (d+ 1)

)

= Ω
(

n1+ 1
d

)

.

1Here and in the following theorems and lemmas, the hidden constant of the asymptotic notation depends
on the constants defined in the theorem. For example, the Ω(·)-notation in the bound of Theorem 1.1 depends
on c and d.
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For example, by applying Theorem 1.1 with d = 2 we get the bound

φ

(

n, k,

(

k

2

)

− 2k/3 + 7

)

= Ω
(

n3/2
)

.

(We have +7 rather than +3 due to cases where k is not divisible by 3.) While there are
many problems in which the conjectured number of distinct distances is about n2, we are
very far from deriving this bound for any of those. As far as we know, the above is the first
case where a bound stronger than Ω(n4/3) is obtained for a non-trivial distinct distances
problem.

Recall that Erdős and Gyárfás derived a bound of Ω(n4/3) distinct distances when
ℓ =

(k
2

)

− ⌊k/2⌋ + 1. Theorem 1.1 implies this bound already when ℓ ≥
(k
2

)

− 3k/4 + 10.
Finally, Theorem 1.1 leads to a better bound than the one of Fox, Pach, and Suk [13]
whenever ℓ ≥

(

k
2

)

− 7k/8 + 22.
The proof of Theorem 1.1 is presented in Section 4.

Expanding polynomials with structure. Given polynomials f ∈ R[x] and g ∈ R[x, y],
and sets A,B ⊂ R, we write

f(A) = {f(a) : a ∈ A} and g(A,B) = {g(a, b) : a ∈ A, b ∈ B}.

That is, g(A,B) is the set of distinct values that can be obtained by applying g on the
lattice A×B.

Elekes and Rónyai [6] proved that |f(A,B)| must be large, unless the polynomial has one
of the special forms f = h(g1(x) + g2(y)) and f = h(g1(x) · g2(y)), for some h, g1, g2 ∈ R[x].
The current best bound for this problem is the following one by Raz, Sharir, and Solymosi
[21].

Theorem 1.2. Let A,B ⊂ R be finite sets, and let f ∈ R[x, y] be of a constant-degree.
Then, unless f = h(g1(x) + g2(y)) or f = h(g1(x) · g2(y)) for some h, g1, g2 ∈ R[x], we have

f(A,B) = Ω
(

min
{

|A|2/3|B|2/3, |A|2, |B|2
})

.

Theorem 1.2 generalizes many problems from Discrete Geometry and Additive Combi-
natorics, and thus has many applications (for example, see [21]).

Given a finite set A ⊂ R, the difference set of A is defined as A−A = {a− a′ : a, a′ ∈ A}.
When A−A is small, we say that the set A has an “additive structure” (for details about the
meaning of this structure, see for example [32, Chapter 2]). We now derive a stronger Elekes-
Rónyai bound when the sets have such an additive structure. We say that a polynomial
f ∈ R[x, y] is additively degenerate if f = g ◦ L for some g ∈ R[z] and a linear L ∈ R[x, y].

Theorem 1.3. Let A,B ⊂ R be finite sets and let f ∈ R[x, y] be a polynomial of degree at
most d that is not additively degenerate. Then for any ε > 0 we have

|f(A,B)| = Ω

(

min

{

|A|16/9−ε|B|16/9−ε

|A−A||B −B| , |A|2, |B|2
})

.

In the extreme case of |A − A| = Θ(|A|) and |B − B| = Θ(|B|), Theorem 1.3 leads
to the improved bound |f(A,B)| = Ω

(

|A|7/9−ε|B|7/9−ε
)

. More generally, Theorem 1.3 is

stronger than Theorem 1.2 when |A − A||B − B| = O(|A|10/9−ε|B|10/9−ε) (both theorems
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give the same bound when A and B are of significantly different sizes). Moreover, Theorem
1.3 holds for a larger family of polynomials in R[x, y].

The above result holds only for sets with an additive structure. We can often generalize
that result to a much broader definition of structure. We say that a polynomial p ∈ R[x, y] is
decomposable if there exists a univariate polynomial p1 of degree at least two and p2 ∈ R[x, y]
such that p(x, y) = p1(p2(x, y)). A polynomial that is not decomposable is said to be
indecomposable. Given a polynomial τ ∈ R[x], we say that a function φ : τ(R) → R is a
one-sided inverse of τ if it satisfies the following: For every a ∈ τ(R) there exists b ∈ R such
that τ(b) = a and φ(a) = b. That is, we have that f(f−1(x)) = x for every x ∈ τ(R) but
not necessarily f−1(f(y)) = y for every y ∈ R. Note that τ is not required to be injective
and the one-sided inverse is not necessarily unique.

Theorem 1.4. Let A,B ⊂ R be finite sets and let f ∈ R[x, y] be of degree at most d. Let
τA, τB ∈ R[x] be of degree at most d, let deg τB ≥ 2, and let τ−1

A and τ−1
B be respective

one-sided inverses. Assume that f(τA(x), τB(y)) is indecomposable, that A ⊂ τA(R), and
that B ⊂ τB(R). Then for any ε > 0 we have

|f(A,B)| = Ω

(

min

{

|A|16/9−ε|B|16/9−ε

|τ−1
A (A)− τ−1

A (A)||τ−1
B (B)− τ−1

B (B)|
, |A|2, |B|2

})

.

To get some intuition for Theorem 1.4, consider the case where

A = B =

{

15 − 12

2
,
25 − 22

2
,
35 − 32

2
, . . . ,

n5 − n2

2

}

.

By setting τA(x) = τB(x) = (x5−x2)/2 we get f(A,B) = Ω(n14/9−ε) for any f ∈ R[x, y] for
which f((x5 − x2)/2, (y5 − y2)/2) is indecomposable. More generally, this argument holds
for any A and B that contain large subsets of τA({1, 2, 3, . . .}) and τB({1, 2, 3, . . .}), as long
as f(τA(x), τB(y)) is indecomposable and τB is nonlinear. We thus get a good expansion
for sets with a variety of types of polynomial structure. Note that in some cases we also
get an expansion for the special forms f = h(g1(x) + g2(y)) and f = h(g1(x) · g2(y)).

Asking for f(τA(x), τB(y)) to be indecomposable may seem restrictive, but it is not
difficult to find interesting applications with this restriction. For example, the problem of
distinct distances between two lines (see Section 5) can be reduced to an expansion problem
where f(τA(x), τB(y)) is indecomposable for any τA and τB.

One expects f(A,B) to be larger when A and B do not have much structure. For
example, we expect to obtain non-trivial upper bounds for f(A,B) by taking sets A and
B that have some type of structure. Theorems 1.3 and 1.4 are somewhat surprising in the
sense that they shows that f(A,B) is large when A and B do have structure. One possible
approach for improving Theorem 1.2 is to prove that f(A,B) is large when A and B have
no structure. Surprisingly, this seems to be the harder case.

Our techniques allow the derivation of many additional related results, such as for
the case where only one of the two sets has structure and cases where the sets have a
multiplicative structure. We decided not to include such additional results, so as not to
make this work too repetitive.

Section 5 contains a proof of Theorems 1.3 and 1.4, and discusses a couple of applications
of these theorems.

Bipartite distinct distances. In a bipartite distinct distances problem we have two
point sets P1,P2 and are interested only in distances between a point from P1 and another

4



from P2. One basic bipartite problem is when P1,P2 ⊂ R
2, all of the points of P1 are

on a given line, and the points of P2 are unrestricted. Elekes [12] derived the following
non-intuitive result for this problem.

Theorem 1.5. If the positive integers n and m satisfy n ≥ 4m3, then there exist a set
P1 of m points on a line ℓ in R

2 and a set P2 of n unrestricted points in R
2 such that

D(P1,P2) = O(m1/2n1/2).

One non-intuitive consequence of Theorem 1.5 is that the number of distances between
n points and a constant number of points can be as small as Θ(n1/2). Elekes asked how
close the bound of Theorem 1.5 is to being tight. As far as we know, previously no non-
trivial results were known for this question. Brunner and Sharir [3] derived a lower bound
on the number of distinct distances between a set of points on a line and another point set.
However, their second point set has additional restrictions that forbid Elekes’ construction.

By relying on a higher distance energies, we derive the following bound.

Theorem 1.6. Let P1 be a set of m points on a line ℓ in R
2 and let P2 be set of n points

R
2. Then

D(P1,P2) =











Ω(m1/2n1/2 log−1/2 n), when m = Ω(n1/2/ log1/3 n),

Ω
(

n3/8m3/4
)

, when m = O(n1/2/ log1/3 n) and m = Ω(n3/10),

Ω
(

n1/2m1/3
)

, when m = O(n3/10).

Note that whenm = Ω(n1/2/ log1/3 n), Theorem 1.6 matches Elekes’ boundO(m1/2n1/2)
up to the

√
log n. However, Elekes’ construction only holds in the separate range m =

O(n1/3). It is not clear whether similar constructions exist for larger values of m, and
it is also possible that when m > (n/4)1/3 the number of distinct distances jumps to
Ω(n/

√
log n).

While it is conjectured that every set of n points in R
2 spans Ω(n/

√
log n) distinct

distances, the Guth–Katz analysis [14] leads to the slightly weaker bound Ω(n/ log n). In
Theorem 1.6, when m = Ω(n1/2/ log1/3 n) the distinct distances bound does contain

√
log n.

In fact, the bound D(P1,P2) = Ω(m1/2n1/2 log−1/2 n) is what one might expect to obtain
for the general bipartite variant of the distinct distances problem. This leads to asking
whether the third distance energy could lead to such a distinct distances bound in more
general cases.

A proof of Theorem 1.6 can be found in Section 6.

Subsets with few repeating distances. Erdős [8, 9] made the following conjecture.

Conjecture 1.7. Let P be a set of n points in R
2. Then there exists a subset P ′ ⊂ P such

that |P ′| = Ω(n1/2) and no distance is spanned by two pairs of points of P ′.

In other words, the conjecture suggests that every planar point set contains a large
subset with no repeating distances. Charalambides [4] showed that the Guth–Katz result
[14] implies the existence of a subset of size Ω(n1/3 log−1/3 n) with no repeating distances.
This is the current best bound. By using higher distance energies, we can show that there
exists a larger subset with no distance repeating more than twice.

Theorem 1.8. Let P ⊂ R
2 be a set of n points. Then there exists a subset P ′ ⊂ P of size

Ω(n22/63 log−13/63 n) such that no distance is spanned by more than four pairs of points of
P ′. Similarly, there exists a subset P ′ ⊂ P of size Ω(n12/35 log−9/35 n) such that no distance
is spanned by more than two pairs of points of P ′.

5



Once again, our techniques can lead to a variety of related results but we decided not
to include too many similar results. The proof of Theorem 1.8 and one of its variants can
be found in Section 7.

Acknowledgements. The second author would like to thank Micha Sharir for several
useful discussions.

2 Higher distance energies

For a, b ∈ R
2, we denote by |ab| the Euclidean distance between these two points. Let P be

a set of n points in R
2 and let d ≥ 1 be an integer. We define the d’th distance energy of P

as
Ed(P) =

∣

∣

∣

{

(a1, b1, . . . , ad, bd) ∈ P2d : |a1b1| = · · · = |adbd| > 0
}∣

∣

∣ . (1)

The 2d-tuples are ordered, so (a1, b1, a2, b2, . . . , ad, bd) and (b1, a1, a2, b2, . . . , ad, bd) are con-
sidered as two distinct tuples in the above set.

Let ∆ = ∆(P) be the set of distances that are spanned by pairs of points of P. For a
distance δ ∈ ∆, we denote by mδ the number of ordered pairs (a, b) ∈ P2 such that |ab| = δ.
Note that the number of 2d-tuples in (1) that correspond to a specific δ ∈ ∆ is exactly md

δ .
This implies that

Ed(P) =
∑

δ∈∆
md

δ . (2)

Since every ordered pair of distinct points (a, b) ∈ P2 contributes to exactly one mδ,
we have that

∑

δ∈∆ mδ = 2
(n
2

)

= n2 − n. Let D = D(P) = |∆| be the number of distinct
distances spanned by point of P. By Hölder’s inequality, for any d ≥ 2 we have

Ed(P) =
∑

δ∈∆
md

δ ≥
(
∑

δ∈∆ mδ

)d

Dd−1
=

(

n2 − n
)d

Dd−1
= Ω

(

n2d

Dd−1

)

. (3)

Using somewhat different notation, Guth and Katz [14] derived the tight upper bound

E2(P) = O
(

n3 log n
)

. (4)

Also using different notation, Spencer, Szemerédi, and Trotter [30] proved that every
δ ∈ ∆ satisfies

mδ = O
(

n4/3
)

. (5)

For any integer d ≥ 2, combining (4) and (5) implies

Ed(P) =
∑

δ∈∆
md

δ = O

(

(

n4/3
)d−2∑

δ∈∆
m2

δ

)

= O
(

n(4d+1)/3 log n
)

.

It seems reasonable to make the following conjecture

Conjecture 2.1. For every set P of n points in R
2, integer d ≥ 2, and ε > 0,

Ed(P) = O(nd+1+ε).
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The unit distances conjecture suggests that mδ = O(n1+ε) for every δ ∈ ∆, which would
immediately imply conjecture 2.1. In Section 7 we use geometric incidences to prove the

stronger bound E3(P) = O
(

n30/7 log9/7 n
)

. Similar techniques lead to improved bounds

for Ed(P) when d ≥ 4. Further improving these bounds would immediately improve the
results of Section 7, and possibly other parts of this paper.

Distance energy variants. For finite sets P1,P2 ⊂ R
2 and an integer d ≥ 2, we define

the d’th distance energy of P1 and P2 as

Ed(P1,P2) =
{

(a1, . . . , ad, b1, . . . , bd) ∈ Pd
1 × Pd

2 : |a1b1| = · · · = |adbd| > 0
}

.

Note that in this case we are only interested in distances between points from different
sets, and ignore the distances between points in the same set. This corresponds to a
bipartite distinct distances problem, as defined in the introduction. For such problems we
define ∆ = ∆(P1,P2) to be the set of distances spanned by pairs of P1 × P2. The number
of distinct distances is defined accordingly as D = D(P1,P2) = |∆|. By imitating the
argument that led to (3), we obtain the bound

Ed(P1,P2) = Ω

( |P1|d|P2|d
Dd−1

)

. (6)

Finally, for a point set P ⊂ R
2 and a positive integer d ≥ 2, we define

E∗
d(P) =

{

(a1, b1, . . . , ad, bd) ∈ P2d : |a1b1| = · · · = |adbd| and the 2d points are distinct
}

.

In other words, E∗
d(P) is a variant of Ed(P) that considers only tuples with 2d distinct

elements. By definition E∗
d(P) < Ed(P).

3 Geometric preliminaries

Tools from Discrete Geometry. Given a set P of points and a set Γ of curves in R
2

(such as lines, circles, or sine waves), an incidence is a pair (p, γ) ∈ P×Γ such that the point
p is contained in the curve γ. The number of incidences in P×Γ is denoted as I(P,Γ). The
incidence graph of P × Γ is a bipartite graph G = (P ∪ Γ, E), where an edge (vj , vk) ∈ E
implies that the point that corresponds to vj is incident to the curve that corresponds to
vk; that is, there is a bijection between the edges of E and the incidences in P × Γ. The
following incidence bound is by Pach and Sharir [18].

Theorem 3.1. Let P be a set of m points and let Γ be a set of n distinct irreducible
algebraic curves of degree at most k, both in R

2. If the incidence graph of P × Γ contains
no copy of K2,t, then

I(P,Γ) = O
(

m2/3n2/3 +m+ n
)

.

The following incidence bound is a combination of results from several papers (for ex-
ample, see Sharir and Zahl [27]).

Theorem 3.2. Let P be a set of m points and let Γ be a set of n circles, both in R
2. Then

I(P,Γ) = O
(

m6/11n9/11 log2/11 n+m2/3n2/3 +m+ n
)

.

7



The following incidence result is by Sharir and Zahl [27].

Theorem 3.3. Let P be a set of m points and let Γ be a set of n irreducible algebraic
curves of degree at most k in R

2. Assume that we can parameterize these curves using s
parameters. Then for every ε > 0 we have

I(P,Γ) = O
(

m
2s

5s−4
+εn

5s−6

5s−4 +m2/3n2/3 +m+ n
)

.

Note that Theorem 3.3 almost generalizes Theorem 3.2, except thatmε is asymptotically
larger than log2/11 n (for the range of m and n in which the term m6/11n9/11 dominates the
bound).

We will rely on the following distinct distances result of Pach and de Zeeuw [19].

Theorem 3.4. Let γ1 and γ2 be two distinct irreducible algebraic curves of degree at most
d in R

2, which are not parallel lines, orthogonal lines, or concentric circles. Let P1 be a set
of m points that are incident to γ1 and let P2 be a set of n points incident to γ2. Then

D(P1,P2) = Ω
(

min
{

m2/3n2/3,m2, n2
})

.

For a point set P ⊂ R
2, let t(P) denote the number of isosceles triangles that are

spanned by P (that is, isosceles triangles that have their three vertices in P). The following
result is by Pach and Tardos [17].

Theorem 3.5. Let P be a set of n points in R
2. Then t(P) = O(n2.137)

Tools from Algebraic Geometry. For a polynomial f ∈ R[x1, . . . , xd] we denote by
V(f) the variety defined by f (that is, the set of points in R

d on which f vanishes).

Theorem 3.6 (Milnor–Thom [16]). Let f1, . . . , fm ∈ R[x1, . . . , xd] be of degree at most k.
Then the number of connected components of V(f1, . . . , fm) is at most

k(2k − 1)d−1.

A polynomial f ∈ R[x, y] is said to be reducible if there exist polynomials f1, f2 ∈ R[x, y]
of positive degrees such that f(x, y) = f1(x, y) · f2(x, y). A polynomial that is not reducible
is said to be irreducible. The following result is a combination of [1] and [31] (for more
details, see for example [21]).

Theorem 3.7. If f ∈ R[x, y] is indecomposable, then the polynomial f(x, y)−λ is reducible
for at most deg f values of λ ∈ R.

Finally, we will rely on the following Schwartz–Zippel variant in R
2.

Lemma 3.8. Let f ∈ R[x, y] be a polynomial of degree d > 0, and let A,B ⊂ R be finite
sets. Then

|V(f) ∩ (A×B)| = O(|A|+ |B|).

8



4 Distinct Distances with Local Properties

In this section we prove Theorem 1.1. We begin by recalling the statement of this theorem.

Theorem 1.1. For any integers c, d ≥ 2 we have

φ

(

n, c(d + 1),

(

c(d+ 1)

2

)

− dc+ (d+ 1)

)

= Ω
(

n1+ 1
d

)

.

To prove the theorem, we will rely on the following simple counting lemma (for example,
see [15, Lemma 2.3]).

Lemma 4.1. Let A be a set of n elements and let d ≥ 2 be an integer. Let A1, . . . , Ak be
subsets of A, each of size at least m. If k ≥ 2dnd/md then there exist 1 ≤ j1 < . . . < jd ≤ d

such that |Aj1 ∩ . . . ∩Ajd | ≥ md

2nd−1 .

Proof of Theorem 1.1. Let P be a set of n points such that every c(d+1) points of P span
at least

(c(d+1)
2

)

−dc+(d+1) distinct distances. We say that a point p ∈ P spans a distance
δ if there exists a point q ∈ P such that |pq| = δ. We begin by studying some configurations
that cannot occur in P.

Forbidden configurations. Assume that a point p ∈ P is at a distance of δ from at
least dc − d + 1 points of P. Let P ′ ⊂ P consist of p, of dc − d + 1 points of P that are
at a distance of δ from p, and of d + c − 2 additional points of P. Then P ′ is a set of
c(d+1) points of P that span at most

(c(d+1)
2

)

− dc+ d distinct distances, contradicting the
assumption on P. This contradiction implies that for every p ∈ P and distance δ, at most
dc− d points of P are at a distance of δ from p. This in turn implies that every distance is
spanned by at most d(c− 1)n/2 pairs of P2.

Let δ1, . . . , δd be distinct distances and let P ′ ⊂ P be a set of c points, such that every
p ∈ P ′ spans each of the distances δ1, . . . , δd with a point of P \ P ′. We construct a set
P ′′ by going over every point p ∈ P and distance δj , and adding to P ′′ one point of P \ P ′

that is at a distance of δj from p. If a point q ∈ P \ P ′ was added several times to P ′′,
we consider P ′′ as containing one instance of q (that is, P ′′ is not a multiset). We get that
P ′ ∪ P ′′ is a set of at most c(d + 1) points, with at least c pairs of points at distance δj
for every 1 ≤ j ≤ d. That is, the set P ′ ∪ P ′′ ⊂ P spans at most

(c(d+1)
2

)

− dc + d distinct
distances. This contradicts the assumption on P, and implies that P cannot contain such
a configuration.

Next, we slightly change the case studied in the previous paragraph: We assume that
every point of P ′ spans the distances δ1, . . . , δd with points of P (rather than of P \ P ′)
and that each of the distances δ1, . . . , δd is spanned by at least c pairs of points of P. We
construct the set P ′′ ⊂ P as in the previous paragraph: For every p ∈ P and distance δj ,
if there exist points of P \ P ′ at distance δj from p then we add one such point to P ′′. For
1 ≤ j ≤ d, let kj denote the number of points of P ′ that are not at distance δj from any
point of P \ P ′. By the previous paragraph, the case where k1 = · · · = kd = 0 is forbidden.
Note that for every 1 ≤ j ≤ d, at least kj/2 pairs of points of P ′ are at distance δj . That

is, P∗ = P ′ ∪ P ′′ is a set of at most (d + 1)c −
∑d

j=1 kj points of P and at least c − kj/2
pairs of points at distance δj . For 1 ≤ j ≤ d, we add ⌊kj/2⌋ additional pairs at distance
δj by adding at most kj vertices of P to P∗. This is possible by the assumption that δj
is spanned by at least c pairs of points of P. Since the resulting set P∗ contradicts the
assumption about P, this configuration is also forbidden.
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Rich distances. For an integer j, let ∆j be the set of distances spanned by at least j
pairs of points of P, and set kj = |∆j |. Let Pδ be the set of points of P that span δ.

Fix j ≥ d(2cd+1nd−1)1/d and let δ ∈ ∆j . Since every point spans δ with at most dc − d
points of P, we get that |Pδ| ≥ 2j

dc−d > j
dc . By the last forbidden configuration above, for

any choice of δ1, . . . , δd ∈ ∆j we have |Pδ1 ∩ · · · ∩Pδd | < c. By the assumption on j we have

c ≤ jd

2cdddnd−1 . We may thus apply the contrapositive of Lemma 4.1 on the sets Pδ with

δ ∈ ∆j and with m = j
dc . This implies

kj <
2dnd

(j/dc)d
=

2nddd+1cd

jd
. (7)

For j < d(2cd+1nd−1)1/d (and also for larger values of j), we have the straightforward
bound

kj < n2/j. (8)

An energy argument. Recall the notation ∆, D, and mδ from Section 2. Since no
distance is spanned by more than d(c − 1)n/2 pairs of points of P, we have that mδ ≤
d(c− 1)n for every δ ∈ ∆. Let m = ⌊log d(2cd+1nd−1)1/d⌋. By dyadic pigeonholing together
with (7) and (8), we obtain

Ed(P) =
∑

δ∈∆
md

δ =

log(dcn)
∑

j=0

∑

δ∈∆

2j≤mδ<2j+1

md
δ <

log(dcn)
∑

j=0

k2j
(

2j+1
)d

=

m
∑

j=0

k2j2
d(j+1) +

log(dcn)
∑

j=m+1

k2j2
d(j+1)

= O
(

n2+(d−1)2/d
)

+O
(

nd log n
)

= O
(

n2+(d−1)2/d
)

.

Recall from (3) that Ed(P) = Ω
(

n2d

Dd−1

)

. Combining these two bounds on Ed(P) yields

the assertion of the theorem.

One way to improve the proof of Theorem 1.1 might be to derive an upper bound on kj
stronger than the straightforward bound of (8) when j ≈ n(d−1)/d.

5 Elekes–Ronyai bounds with additive structure

In this section we prove Theorems 1.3 and 1.4, and discuss some of their applications. We
begin by recalling the statement of Theorem 1.3.

Theorem 1.3. Let A,B ⊂ R be finite sets and let f ∈ R[x, y] be a polynomial of degree at
most d that is not additively degenerate. Then for any ε > 0 we have

|f(A,B)| = Ω

(

min

{

|A|16/9−ε|B|16/9−ε

|A−A||B −B| , |A|2, |B|2
})

.

Theorem 1.3 has many applications, and we now present a couple of those. We begin
with the following distinct distances result from [26].
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Theorem 5.1. Let ℓ1 and ℓ2 be two lines in R
2 that are neither parallel nor orthogonal.

Let P1 and P2 be sets of points in R
2 of size n and m respectively, such that P1 is contained

in ℓ1, and P2 is contained in ℓ2. Then

D(P1,P2) = Ω
(

min
{

n2/3m2/3, n2,m2
})

.

One reason for why the above distinct distances problem is considered interesting is
that it has many generalizations (such as Theorem 1.2). Improving the known bounds for
the distances problem tends to lead to improvements for various generalizations. Quoting
Hilbert [22]: “The art of doing mathematics is finding that special case that contains all
the germs of generality.” The following is an easy corollary of Theorems 1.3 and 1.4.

Corollary 5.2.

(a) Let ℓ1 and ℓ2 be two lines in R
2 that are neither parallel nor orthogonal. Let P1 and

P2 be sets of points in R
2 of size n and m respectively, such that P1 ⊂ ℓ1 and P2 ⊂ ℓ2. Let

A be the set of x-coordinates of the points of P1, and let B be the set of x-coordinates of
the points of P2 (assuming the neither line is parallel to the y-axis). Then

D(P1,P2) = Ω

(

min

{

m16/9−εn16/9−ε

|A−A||B −B| ,m
2, n2

})

.

(b) Let τA, τB ∈ R[x] be of degree at most d, let deg τB ≥ 2, and let τ−1
A and τ−1

B be
respective one-sided inverses. Assume that f(τA(x), τB(y)) is indecomposable, that A ⊂
τA(R), and that B ⊂ τB(R). Then for any ε > 0

D(P1,P2) = Ω

(

min

{

m16/9−εn16/9−ε

|τ−1
A (A)− τ−1

A (A)||τ−1
B (B)− τ−1

B (B)|
,m2, n2

})

.

Proof sketch. In [26] the distinct distances problem is reduced to showing that the poly-
nomial f(x, y) = x2 − 2xy + (1 + s2)y2 expands (where s ∈ R \ {0} depends on the angle
between ℓ1 and ℓ2). It can be easily verified that f(x, y) is indecomposable, so we can
apply Theorem 1.3 with it. Plugging the resulting expansion bound in the analysis of [26]
immediately leads to the bound of part (a).

For τA and τB of respective degrees d and d′ ≥ 2, assume for contradiction that
f(τA(x), τB(y)) is decomposable. That is, there exist g ∈ R[x, y] and h ∈ R[z] of de-
gree at least two such that f(τA(x), τB(y)) = h(g(x, y)). Note that f(τA(x), τB(y)) contains
terms of the form (c ·x)2d and (1+ s2)(c′ · y)2d′ where c, c′ ∈ R \ {0}. In every other term of
f(τA(x), τB(y)) the degree of x is smaller than 2d and the degree of y is smaller than 2d′.
This implies that 2d = deg h · degx g, and that 2d′ = deg h · degy g.

By the above, f(τA(x), τB(y)) should also contain a term where x is of degree 2d · deg h−1
deg h

and y is of degree at least one. By the definition of f(x, y), we note that f(τA(x), τB(y))
does not contain terms with an exponent of x larger than d that also involve y. We thus
get that degh = 2. Let c2 be the coefficient of z2 in h ∈ R[z]. Recalling the terms

(c · x)2d and (1 + s2)(c′ · y)2d′ , we get that g(x, y) contains the terms c
−1/2
2 (c · x)d and

c
−1/2
2 (1 + s2)1/2(c′ · y)d′ . This in turn implies that f(τA(x), τB(y)) should also contain the
term 2(c ·x)d(1+ s2)1/2(c′ · y)d′ . From the definition of f(x, y) we note that f(τA(x), τB(y))
contains the slightly different term 2(c · x)d(c′ · y)d′ . Since s 6= 0 we get a contradiction,
so f(τA(x), τB(y)) must be indecomposable. Applying Theorem 1.4 with f(τA(x), τB(y))
immediately leads to part (b).
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For example, when |A − A| = Θ(n) and |B − B| = Θ(m) we have D(P1,P2) =
Ω
(

min
{

m7/9−εn7/9−ε,m2, n2
})

. One approach to improving Theorem 5.1 is to improve
the case where A and B have no additive or polynomial structure.

We next consider a result of Shen [29].

Theorem 5.3. Let f ∈ R[x, y] be a polynomial of a constant-degree that is not additively
degenerate, and let A ⊂ R be finite. Then

|A+A|+ |f(A,A)| = Ω
(

|A|5/4
)

.

Theorem 1.3 implies a better lower bound for |f(A,A)| when |A+A| = O(|A|83/72−ε).2

Thus, to improve the bound of Theorem 5.3 it remains to handle the case where |A+A| =
Ω(|A|83/72) and |A+A| = O(|A|5/4).

Theorems 1.3 and 1.4 have many additional applications. See for example the applica-
tions presented in [21].

Proof of Theorem 1.3. If f is decomposable, then there exist a univariate f1 of degree at
least two and f2 ∈ R[x, y] such that f(x, y) = f1(f2(x, y)). Let (f1, f2) be a pair of such
polynomials that minimizes the degree of f2. In particular, this implies that f2 is indecom-
posable. Since f is of degree at most d, so are f1 and f2. Since f1 is univariate, for every
a ∈ R there exist at most d numbers b ∈ R such that f1(b) = a. Thus, if |f2(A,B)| ≥ x for
some x, then |f(A,B)| ≥ x/d. It then remains to derive the bound of the theorem to the
indecomposable f2. Since f is assumed not to be additively degenerate, so is f2. With an
abuse of notation, we will refer to f2 as f . We may thus assume that f is indecomposable.

Let ∆ = {f(a, b) : a ∈ A, b ∈ B}, and let D = |∆|. For δ ∈ ∆, let

mδ = |{(a, b) ∈ A×B : f(a, b) = δ}|.

In other words, mδ is the number of representations of δ as f(a, b). For an integer j ≥ 1,
let ∆j be the set of δ ∈ ∆ that satisfy mδ ≥ j, and let kj = |∆j|.

Imitating the concept of bipartite distance energy, we define the energy

Ef (A,B) =
∣

∣

{

(a1, a2, b1, b2) ∈ A2 ×B2 : f(a1, b1) = f(a2, b2)
}∣

∣ .

Note that mδ = |V(f−δ)∩(A×B)|. By Lemma 3.8, every δ ∈ ∆ satisfies mδ = O(|A|+|B|).
That is, there exists a constant µ such that kµ(|A|+|B|) = 0. We thus have

Ef (A,B) =
∑

δ∈∆
m2

δ =

log µ(|A|+|B|)
∑

j=0

∑

δ∈∆

2j≤mδ<2j+1

m2
δ <

log µ(|A|+|B|)
∑

j=0

22j+2k2j . (9)

Since every (a, b) ∈ A×B contributes to one mδ, we have that
∑

δ∈∆ mδ = |A||B|. By
the Cauchy-Schwarz inequality, we obtain

Ef (A,B) =
∑

δ∈∆
m2

δ ≥
(
∑

δ∈∆ mδ)
2

D
=

|A|2|B|2
D

. (10)

2In Theorem 1.3 it is easy to replace A− A with A+ A: In the proof we take α ∈ A+ A, replace x+ α

with α− x, and handle β in a symmetric manner. The rest of the proof remains the same.
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A set of curves. For a fixed j ≥ 2d, consider the set of curves

Γj = {V(f(x+ α, y + β)− δ) : α ∈ A−A, β ∈ B −B, δ ∈ Dj} .

Assume for contradiction that there exist (α, β, δ), (α′ , β′, δ′) ∈ (A−A)× (B −B)×Dj

and r ∈ R such that

f(x+ α, y + β)− δ = r ·
(

f(x+ α′, y + β′)− δ′
)

.

For the maximum degree terms on both sides to have the same coefficients, we must have
r = 1. We replace x with x−α′ and y with y−β′ (that is, we translate the plane by −α′ in
the x-direction and by −β′ in the y-direction). Setting α0 = α− α′ and β0 = β − β′ leads
to

f(x+ α0, y + β0) = f(x, y)− δ′ + δ. (11)

One obvious solution to (11) is α0 = β0 = 0 and δ = δ′. We now assume that this is
not the case. Without loss of generality we assume that β0 6= 0 and let k be the degree of
x in f (otherwise, α0 6= 0 and we take k to be the degree of y). We claim that in this case
f(x, y) = h(x+ cy) where c = −α0/β0 and h ∈ R[z], and prove this by induction on k. For
the induction basis, consider the case of k = 0. Since f does not depend on x and is of
degree at least two, we get from (11) that f is a constant function. The claim follows by
taking h to be the same constant function.

For the induction step, consider k ≥ 1. For 0 ≤ ℓ ≤ k, let fℓ ∈ R[y] be the coefficient of
xℓ in f . That is,

f(x, y) =

k
∑

ℓ=0

xℓfℓ(y).

From (11) and the assumption β0 6= 0, we have that fk(y) is constant. We set g(x, y) =
f(x, y) − (x + cy)k · fk(y), and note that g(x, y) is of degree k − 1 in x. By (11) and the
definition of c, we have that

g(x+ α0, y + β0) = f(x+ α0, y + β0)− (x+ α0 + c(y + β0))
k · fk(y)

= f(x, y)− δ′ + δ − (x+ cy)k · fk(y) = g(x, y) − δ′ + δ.

We may thus apply the induction hypothesis on g, and obtain that g = h′(x+ cy) for some
h′ ∈ R[z]. Since g(x, y) = f(x, y)− (x+ cy)k · fk(y) and fk(y) is constant, we conclude that
f = h(x + cy) for some h ∈ R[z]. This implies that f is additively degenerate also before
the aforementioned translation of R2.

To recap, we proved that either α0 = β0 = 0 and δ = δ′, or f is additively degenerate.
Since the latter contradicts the assumption, we are in the former case. This in turn implies
that Γj is a set of |A−A||B−B|kj curves that are defined by distinct polynomials. Moreover,
no polynomial is a constant multiple of another. While the polynomials are distinct, the
curves of Γj may still have common components.

Studying rich δ’s. Since f is indecomposable, Theorem 3.7 implies that there are
at most d values of δ ∈ ∆ such that f(x, y) − δ is reducible. For any α, β ∈ R, since
V(f(x + α, y + β) − δ) is a translation of V(f(x, y) − δ), either both curves are reducible
or both are irreducible. Thus, at most d|A−A||B −B| curves of Γj are reducible.

If kj ≥ 2d, then after removing the reducible curves from Γj we still have |Γj | =
Θ(|A − A||B − B|kj). Assume that we are in this case, and let P = A × B ⊂ R

2. By
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applying Theorem 3.3 with s = 3, we obtain

I(P,Γj) = O
(

|A|6/11+ε′ |B|6/11+ε′ |A−A|9/11|B −B|9/11k9/11j

+ |A|2/3|B|2/3k2/3j |A−A|2/3|B −B|2/3 + kj |A−A||B −B|+ |A||B|
)

. (12)

Since kj < |A||B|, |A − A| > |A|, |B − B| > |B|, |A − A| < |A|2, and |B − B| < |B|2,
we get that the bound on the right-hand side of (12) is always dominated by its first term.
That is, we have

I(P,Γj) = O
(

|A|6/11+ε′ |B|6/11+ε′ |A−A|9/11|B −B|9/11k9/11j

)

. (13)

For every δ ∈ Dj, there are at least j pairs (a, b) ∈ A × B that satisfy f(a, b) = δ.
Fix such a pair (a, b). Then for every a′ ∈ A and b′ ∈ B, there exist α ∈ A − A and
β ∈ B−B such that f(a′+α, b′+β) = f(a, b) = δ. Thus, every δ ∈ Dj has at least j|A||B|
corresponding incidences in P × Γj . By summing this over every δ ∈ Dj with irreducible
curves we get that I(P,Γj) = Ω(j|A||B|kj). Combining this with (13) gives

j|A||B|kj = O
(

|A|6/11+ε′ |B|6/11+ε′ |A−A|9/11|B −B|9/11k9/11j

)

.

Rearranging leads to

kj = O

(

|A−A|9/2|B −B|9/2
|A|5/2−11ε′/2|B|5/2−11ε′/2j11/2

)

.

Recall that the above analysis holds only when kj ≥ 2d. Let J be the set of integers
j ≥ 1 that satisfy 1 ≤ kj < 2d. Since every δ ∈ ∆j has at least j corresponding distinct
pairs in A×B, we have the straightforward bound

kj = O(|A||B|/j).

We set ε = 11ε′/9 and γ = |A−A||B−B|
|A|7/9−ε|B|7/9−ε . Combining (9) with both of the above upper

bounds for kj implies

Ef (A,B) <

log µ(|A|+|B|)
∑

j=0

22j+2k2j ≤ 4

log γ
∑

j=0

22jk2j + 4

log µ(|A|+|B|)
∑

log γ+1

22jk2j

= O





log γ
∑

j=0

|A||B|2j +
log µ(|A|+|B|)

∑

j=log γ+1

|A−A|9/2|B −B|9/2
|A|5/2−11ε′/2|B|5/2−11ε′/227j/2

+
∑

j∈J
22j · 2d





= O
(

|A|2/9+ε|B|2/9+ε|A−A||B −B|+ |A|2 + |B|2
)

.

Combining this with (10) immediately implies the assertion of the theorem.

We next recall the statement of Theorem 1.4.

Theorem 1.4. Let A,B ⊂ R be finite sets and let f ∈ R[x, y] be of degree at most d. Let
τA, τB ∈ R[x] be of degree at most d, let deg τB ≥ 2, and let τ−1

A and τ−1
B be respective
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one-sided inverses. Assume that f(τA(x), τB(y)) is indecomposable, that A ⊂ τA(R), and
that B ⊂ τB(R). Then for any ε > 0 we have

|f(A,B)| = Ω

(

min

{

|A|16/9−ε|B|16/9−ε

|τ−1
A (A)− τ−1

A (A)||τ−1
B (B)− τ−1

B (B)|
, |A|2, |B|2

})

.

Unfortunately it is possible for f(x, y) to be indecomposable and for f(τA(x), τB(y)) to
be decomposable. For example, f(x, y) = xy is clearly indecomposable. However, setting
τA(x) = τB(x) = x2 leads to f(τA(x), τB(y)) = x2y2 which is decomposable. Characterizing
exactly when this happens would lead to a stronger variant of Theorem 1.4.

Proof of Theorem 1.4. We use a variant of the proof of Theorem 1.3. In particular, we define
∆, µ,D,Dj , kj , Ef (A,B), and mδ as in the proof of Theorem 1.3. Recall that every δ ∈ ∆
satisfies mδ = O(|A|+ |B|). That is, there exists a constant µ such that kµ(|A|+|B|) = 0. As
in (9), we have

Ef (A,B) =
∑

δ∈∆
m2

δ =

log µ(|A|+|B|)
∑

j=0

∑

δ∈∆

2j≤mδ<2j+1

m2
δ <

log µ(|A|+|B|)
∑

j=0

22j+2k2j . (14)

As in (10), we have

Ef (A,B) =
∑

δ∈∆
m2

δ ≥
(
∑

δ∈∆ mδ)
2

D
=

|A|2|B|2
D

. (15)

For brevity, we write Aτ = τ−1
A (A)− τ−1

A (A) and Bτ = τ−1
B (B)− τ−1

B (B). For a fixed j,
consider the set of curves

Γj =
{

V(f(τA(x+ α), τB(y + β)) − δ) : α ∈ Aτ , β ∈ Bτ , δ ∈ Dj

}

.

Assume for contradiction that there exist (α, β, δ), (α′ , β′, δ′) ∈ Aτ ×Bτ ×Dj and r ∈ R

such that

f(τA(x+ α), τB(y + β))− δ = r ·
(

f(τA(x+ α′), τB(y + β′))− δ′
)

.

For the maximum degree terms on both sides to have the same coefficients, we must have
r = 1. We replace x with x−α′ and y with y−β′ (that is, we translate the plane by −α′ in
the x-direction and by −β′ in the y-direction). Setting α0 = α− α′ and β0 = β − β′ leads
to

f(τA(x+ α0), τB(y + β0)) = f(τA(x), τB(y))− δ′ + δ. (16)

One obvious solution to (16) is α0 = β0 = 0 and δ = δ′. We assume for contradiction
that this is not the case. As explained in the proof of Theorem 1.3, this implies that
f(τA(x), τB(y)) = h(x+cy) where c = −α0/β0 and h ∈ R[z]. Since deg τB ≥ 2, we also have
that deg h ≥ 2. This in turn implies that f(τA(x), τB(y)) is decomposable, contradicting
the assumption.

To recap, we proved that Γj is a set of |Aτ ||Bτ |kj curves that are defined by distinct poly-
nomials. Moreover, no polynomial is a constant multiple of another. While the polynomials
are distinct, the curves of Γj may still have common components.
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By Theorem 3.7, there are at most d2 elements δ ∈ ∆ for which f(τA(x), τB(y)) −
δ is reducible. For any α, β ∈ R, since V(f(τA(x + α), τB(y + β))) is a translation of
V(f(τA(x), τB(y)) − δ), either both curves are reducible or both are irreducible. Thus, at
most d|A−A||B −B| curves of Γj are reducible.

If kj ≥ 2d2, then after removing the reducible curves from Γj we still have |Γj| =
Θ(|Aτ ||Bτ |kj). Assume that we are in this case, and let P = τ−1

A (A)× τ−1
B (B) ⊂ R

2. Note
that τ−1

A and τ−1
B are injective, so P = |A||B|. By repeating the above derivation of (13),

we obtain

I(P,Γj) = O
(

|A|6/11+ε′ |B|6/11+ε′ |Aτ |9/11|Bτ |9/11k9/11j

)

. (17)

For every δ ∈ Dj , there are at least j pairs (a, b) ∈ A × B that satisfy f(a, b) =
δ. For every a′ ∈ τ−1

A (A) and b′ ∈ τ−1
B (B), there exist α ∈ Aτ and β ∈ Bτ such that

f(τA(a
′+α), τB(b

′+β)) = f(a, b) = δ. Thus, every δ ∈ Dj whose curves are irreducible has
at least j|A||B| corresponding incidences in P × Γj . By summing this over every δ ∈ Dj

with irreducible curves we get I(P,Γj) = Ω(j|A||B|kj). Combining this with (17) gives

j|A||B|kj = O
(

|A|6/11+ε′ |B|6/11+ε′ |Aτ |9/11|Bτ |9/11k9/11j

)

.

Rearranging leads to

kj = O

(

|Aτ |9/2|Bτ |9/2
|A|5/2−11ε′/2|B|5/2−11ε′/2j11/2

)

.

We also recall the straightforward bound

kj = O(|A||B|/j).
Let J be the set of integers j ≥ 1 that satisfy 1 ≤ kj < 2d2. We set ε = 11ε′/9 and

γ = |Aτ ||Bτ |
|A|7/9−ε|B|7/9−ε . Combining (14) with both of the above bounds for kj implies

Ef (A,B) <

logµ(|A|+|B|)
∑

j=0

22j+2k2j ≤ 4

log γ
∑

j=0

22jk2j + 4

log µ(|A|+|B|)
∑

log γ+1

22jk2j .

= O





log γ
∑

j=0

|A||B|2j +
log µ(|A|+|B|)

∑

j=log γ+1

|Aτ |9/2|Bτ |9/2
|A|5/2−11ε′/2|B|5/2−11ε′/227j/2

+
∑

j∈J
22j · 2d2





= O
(

|A|2/9+ε|B|2/9+ε|Aτ ||Bτ |+ |A|2 + |B|2
)

.

Combining this with (15) completes the proof.

6 Bipartite distinct distances

In this Section we prove Theorem 1.6. We begin by recalling the statement of this theorem.

Theorem 1.6. Let P1 be a set of m points on a line ℓ in R
2 and let P2 be set of n points

R
2. Then

D(P1,P2) =











Ω(m1/2n1/2 log−1/2 n), when m = Ω(n1/2/ log1/3 n),

Ω
(

n3/8m3/4
)

, when m = O(n1/2/ log1/3 n) and m = Ω(n3/10),

Ω
(

n1/2m1/3
)

, when m = O(n3/10).
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Proof. For any b ∈ P2 and distance δ, at most two points of ℓ are at a distance of δ from
b. This implies that D(P1,P2) ≥ D(P1, {b}) ≥ m/2 (for an arbitrary b ∈ P2). When
m = Ω(n/ log n) this implies that D(P1,P2) = Ω(m1/2n1/2 log−1/2 n) and completes the
proof. We may thus assume that m = O(n/ log n).

If at least half of the points of P2 are contained in ℓ, then for an arbitrary a ∈ P1 we
have D(P1,P2) ≥ D({a},P2 ∩ ℓ) = Θ (n) = Ω

(

n1/2m1/2
)

. We may thus assume that at
most half of the points of P2 are in ℓ. Let P ′

2 = P2 \ ℓ, and note that |P ′
2| = Θ(n).

We rotate the plane so that ℓ becomes the x-axis. If at least half of the points of P ′
2 have

a negative y-coordinate then we reflect R2 about the x-axis. Let P ′′
2 be the set of points of

P ′
2 with a positive y-coordinate, and note that |P ′′

2 | = Θ(n). Since D(P1,P2) ≥ D(P1,P ′′
2 ),

it suffices to derive a lower bound on D(P1,P ′′
2 ). Abusing notation, in the remainder of the

proof we will refer to P ′′
2 as P2 and refer to the size of this set as n.

The rest of the proof is based on double counting E3(P1,P2). By (6) we have

E3(P1,P2) = Ω

(

m3n3

D(P1,P2)2

)

. (18)

As before, for every δ ∈ ∆ we denote by mδ the number of ordered pairs (a, b) ∈ P2

such that |ab| = δ. Recall that for fixed δ ∈ ∆ and b ∈ P2 at most two points a ∈ P1 satisfy
|ab| = δ. This implies that mδ ≤ 2n for every δ ∈ ∆. Let ∆j be the set of distances δ ∈ ∆
that satisfy mδ ≥ j, and set kj = |∆j|. A dyadic decomposition argument gives

E3(P1,P2) =

log(2n)
∑

j=0

∑

δ∈∆

2j≤mδ<2j+1

m3
δ <

log(2n)
∑

j=0

∑

δ∈∆

2j≤mδ<2j+1

(2j+1)3 ≤ 8

log(2n)
∑

j=0

23jk2j . (19)

Studying rich distances. Fix a positive integer j. With (19) in mind, we now study
how large j3kj can be. Consider the set of circles

Γj =
{

V((x − ax)
2 + y2 − δ2) ⊂ R

2 : δ ∈ ∆j, (ax, 0) ∈ P1

}

.

Note that Γj is a set of mkj distinct circles. Since the centers of the circles are on the
x-axis, two such circles intersect in at most one point with a positive y coordinate. Thus,
the incidence graph of P2 × Γj contains no K2,2. By Theorem 3.1

I(P2,Γj) = O
(

m2/3n2/3k
2/3
j + n+mkj

)

. (20)

We divide the analysis into cases according to the term that dominates the bound of (20).

If m2/3n2/3k
2/3
j = O(mkj) then D(P1,P2) ≥ kj = Ω(n2/m) = Ω(n1/2m1/2). This completes

the proof, so we may ignore this case. If m2/3n2/3k
2/3
j = O(n) then kj = O

(

n1/2/m
)

. This
in turn implies

j3kj = O
(

j3n1/2/m
)

.

Finally, consider the case where m2/3n2/3k
2/3
j dominates the bound of (20). For a

distance δ ∈ ∆j, every representation of δ as a distance between a ∈ P1 and b ∈ P2

corresponds to an incidence between b and the circle defined by a and δ. Since each of
the kj distances of ∆j has at least j such representations, we get that I(P,Γj) ≥ jkj .

Combining this with (20) gives jkj = O(m2/3n2/3k
2/3
j ). Tidying up leads to

j3kj = O
(

m2n2
)

.
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By combining the two bounds for j3kj with (19), we obtain

E3(P1,P2) < 8

log(2n)
∑

j=0

23jk2j = O





log(2n)
∑

j=0

(

m2n2 +
23jn1/2

m

)





= O

(

m2n2 log n+
n7/2

m

)

. (21)

When m = Ω(n1/2/ log1/3 n), we get that E3(P1,P2) = O
(

m2n2 log n
)

. Combining this
with (18) implies the asserted bound

D(P1,P2) = Ω
(

n1/2m1/2 log−1/2 n
)

.

The case of small m. We now consider the case where m = O(n1/2/ log1/3 n). We
present two different arguments that lead to the two remaining bounds in the statement of
the theorem. First, assume that there exists δ ∈ ∆ such that mδ ≥ n1/2m4/3. Let C be
the set of circles of radius δ that are centered at points of P1, and note that I(P2, C) ≥
n1/2m4/3. By the pigeonhole principle there exists a circle γ ∈ C that is incident to at least
n1/2m1/3 points of P2. For an arbitrary a ∈ P1 that is not the center of γ, we get that
D(P1,P2) ≥ D({a},P2 ∩ γ) ≥ n1/2m1/3/2.

Next, assume that every δ ∈ ∆ satisfies mδ < n1/2m4/3. Since every pair δ ∈ ∆j

corresponds to at least j distinct ordered pairs of P1 × P2, we have the straightforward
bound kj ≤ mn/j. We use this bound for j = O(m1/2n1/2), and for larger values of j
we use the bound kj = O(n1/2m−1 +m2n2j−3) derived in the previous part of this proof.
Repeating the argument in (19) for E2(P1,P2), we get that

E2(P1,P2) < 4

log n1/2m4/3
∑

j=0

22jk2j = 4

log
√
mn

∑

j=0

22jk2j + 4

logn1/2m4/3
∑

j=log
√
mn

22jk2j

= O





log
√
mn

∑

j=0

mn2j +

logn1/2m4/3
∑

j=log
√
mn

(

22jn1/2m−1 +m2n22−j
)



 = O
(

n3/2m5/3
)

.

By (6) we have

E2(P1,P2) = Ω

(

m2n2

D(P1,P2)

)

. (22)

Combining the two above bounds for E2(P1,P2) gives D(P1,P2) = Ω
(

n1/2m1/3
)

. Thus, in
either case we have that

D(P1,P2) = Ω
(

n1/2m1/3
)

.

For our final bound, assume that m = Ω(n3/10) (and m = O(n1/2/ log1/3 n)). If there
exists δ ∈ ∆ such that mδ ≥ n9/16m9/8, repeating the above argument involving the set of
circles C gives a circle γ that contains Ω(n9/16m1/8) points of P2. By Theorem 3.4, we have

D(P1,P2) ≥ D(P1,P2 ∩ γ) = Ω
(

min
{

|P2 ∩ γ|2/3m2/3, |P2 ∩ γ|2,m2
})

= Ω
(

min
{

n3/8m3/4, n9/8m1/4,m2
})

= Ω
(

n3/8m3/4
)

.
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On the other hand, if every δ ∈ ∆ satisfies mδ < n9/16m9/8 then

E2(P1,P2) < 4

log n9/16m9/8
∑

j=1

22jk2j < 4

log
√
mn

∑

j=1

22jk2j + 4

logn9/16m9/8
∑

j=log
√
mn

22jk2j

= O





log
√
mn

∑

j=1

mn2j +

logn9/16m9/8
∑

j=log
√
mn

(

22jn1/2m−1 +m2n22−j
)



 = O
(

n13/8m5/4
)

.

Combining this with (22) implies D(P1,P2) = Ω
(

n3/8m3/4
)

. Thus, in either case we get

D(P1,P2) = Ω
(

n3/8m3/4
)

.

7 Subsets with few repeating distances

In this section we prove Theorem 1.8 and another related result. We begin by recalling the
statement of this theorem.

Theorem 1.6. Let P ⊂ R
2 be a set of n points. Then there exists a subset P ′ ⊂ P of size

Ω(n22/63 log−13/63 n) such that no distance is spanned by more than four pairs of points of
P ′. Similarly, there exists a subset P ′ ⊂ P of size Ω(n12/35 log−9/35 n) such that no distance
is spanned by more than two pairs of points of P ′.

Proof. Let ∆j be the set of distances that are spanned by at least j pairs of points of P.
Set kj = |∆j|. We begin the proof by studying how large kj can be.

For a fixed j, consider the set of circles

Γj =
{

V
(

(x− ax)
2 + (y − ay)

2 − δ2
)

: δ ∈ ∆j , a ∈ P
}

.

Note that Γj is a set of nkj distinct circles. By Theorem 3.2 and the trivial bound kj =
O(n2), we have

I(P,Γj) = O
(

n6/11(nkj)
9/11 log2/11(nkj) + n2/3(nkj)

2/3 + n+ nkj

)

= O
(

n15/11k
9/11
j log2/11 n

)

. (23)

For every distance δ ∈ ∆j there are at least j pairs of points in P that span δ. Each
such pair corresponds to two incidences in P × Γj, so

I(P,Γj) ≥ 2jkj .

Combining this with (23) yields

kj = O

(

n15/2 log n

j11/2

)

. (24)
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Let ∆ be the set of distances spanned by pairs of points of P. A dyadic pigeonholing
argument gives

∑

δ∈∆
m

11/2
δ =

2 logn
∑

j=0

∑

δ∈∆

2j≤mδ<2j+1

m
11/2
δ <

2 logn
∑

j=0

k2j (2
j+1)11/2 = O





2 logn
∑

j=0

n15/2 log n





= O
(

n15/2 log2 n
)

.

Recall from (4) that
∑

δ∈∆ m2
δ = O(n3 log n). By Hölder’s inequality

E∗
5(P) ≤ E5(P) =

∑

δ∈∆
m5

δ =
∑

δ∈∆
m

33/7
δ m

2/7
δ ≤

(

∑

δ∈∆
m

11/2
δ

)6/7(
∑

δ∈∆
m2

δ

)1/7

= O

(

(

n15/2 log2 n
)6/7 (

n3 log n
)1/7

)

= O
(

n48/7 log13/7 n
)

. (25)

A probabilistic argument. For 0 < p < 1 that will be determined below, let P ′′ be a
set that is obtained by taking every point of P with probability p. Note that3 E[|P ′′|] =
pn, that E[E∗

5(P ′′)] = p10 · E∗
5(P), and that the expected number of isosceles triangles is

E[t(P ′′)] = p3 · t(P). By linearity of expectation, Theorem 3.5, and (25), we have that

E

[

|P ′′| −E∗
5(P ′′)− t(P ′′)

]

= pn− p10 · E∗
5(P) − p3 · t(P)

≥ pn− cp10n48/7 log13/7 n− cp3n2.137,

for a sufficiently large constant c.

To asymptotically maximize the above expectation, we set p =
(

2cn41/7 log13/7 n
)−1/9

.

This implies

E

[

|P ′′| − E∗
5(P ′′)− t(P ′′)

]

≥ n22/63

(

2c log13/7 n
)1/9

− n22/63

2
(

2c log13/7 n
)1/9

− (c)2/3n0.184

(

2 log13/7 n
)1/3

= Ω
(

n22/63 log−13/63 n
)

.

By the above, there exists P ′′ ⊂ P such that |P ′′|−E∗
5(P ′′)−t(P ′′) = Ω(n22/63 log−13/63 n).

We create P ′ ⊂ P ′′ by taking P ′′ and arbitrarily removing one vertex from every isosceles
triangle that is spanned by P ′′ and from every 10-tuple that contributes to E∗

5(P ′′). By the
above, |P ′| = Ω(n22/63 log−13/63 n). Note that no distance is spanned by more than four
pairs of points of P ′. This completes the proof of the first statement of the theorem.

A subset with no distance repeating more than twice. We now prove the second
statement of the theorem. The proof is almost identical to the preceding one, except that

3We denote by E[X] the expectation of the random variable X, to distinguish it from the energy notation
E(X).
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E∗
5(P) is replaced with E∗

3(P). By Hölder’s inequality

E∗
3(P) ≤ E3(P) =

∑

δ∈∆
m3

δ =
∑

δ∈∆
m

11/7
δ m

10/7
δ ≤

(

∑

δ∈∆
m

11/2
δ

)2/7(
∑

δ∈∆
m2

δ

)5/7

= O

(

(

n15/2 log2 n
)2/7 (

n3 log n
)5/7

)

= O
(

n30/7 log9/7 n
)

. (26)

We randomly generate P ′′ as above. By linearity of expectation, Theorem 3.5, and (26),
we have

E

[

|P ′′| − E∗
3(P ′′)− t(P ′′)

]

= pn− p6 · E∗
3(P) − p3 · t(P)

≥ pn− cp6n30/7 log9/7 n− cp3n2.137,

for a sufficiently large constant c.

To asymptotically maximize the above expectation, we set p =
(

2cn23/7 log9/7 n
)−1/5

.

This implies

E

[

|P ′′| − E∗
5(P ′′)− t(P ′′)

]

≥ n12/35

(

2c log9/7 n
)1/5

− n12/35

2
(

2c log9/7 n
)1/5

− (c)2/5n0.166

(

2 log9/7 n
)3/5

= Ω
(

n12/35 log−9/35 n
)

.

The final part of the argument is identical to the one in the previous case.

If Conjecture 2.1 holds, then the proof of Theorem 1.8 would imply significantly stronger
results. For example, if E3(P) = O(n4+ε) then we would get that there exists a subset
P ′ ⊂ P of size Ω(n2/5−ε) such that no distance is spanned more than twice by pairs of
points of P ′.

There are many variants of Conjecture 1.7, and we can derive similar style results for
most of those by using higher distance energies. We now present one such variant by Raz
[20].

Theorem 7.1. Let γ ⊂ R
d be an irreducible algebraic curve of degree k and let P be a set

of n points on γ. Then there exists a subset P ′ ⊂ P of size Ω(n4/9) that does not span any
distance more than once.

Combining Theorem 7.1 with a work of Conlon et al. [5] leads to a family of results
involving subsets that do not span simplices with repeating volumes. As an upper bound
for Theorem 7.1, when taking a set of n equally spaced points on a line we get that every
subset of size Ω(

√
n) contains a repeating distance (this is the Sidon set problem). By using

higher distance energies, we obtain the following variant.

Theorem 7.2. Let γ ⊂ R
d be an irreducible algebraic curve of degree k and let P be a set

of n points on γ. Then for every integer m ≥ 2 there exists a subset P ′ ⊂ P such that

|P ′| = Ω
(

n
3m−2

6m−3

)

and no distance is spanned by more than m− 1 pairs of points of P ′.

Theorem 7.2 implies that for every ε > 0 there exists P ′ ⊂ P such that |P ′| = Ω
(

n0.5−ε
)

and every distance is spanned by O(1) pairs of points of P ′.

21



Proof. By the proof of Theorem 4.1 in [20], either there exists a subset of Θ(n1/2) points
of P that do not span any distance more than once, or there exists a subset T ⊂ P such
that |T | = Θ(n) and E2(T ) = O(|T |8/3). In the former case we are done, so assume that
the latter case holds. Set nT = |T | = Θ(n).

Consider a point p ∈ T and a distance δ. The points of Rd that are at a distance of δ
from p form a hypersphere S centered at p. Note that γ 6⊂ S, since p ∈ γ \ S. Since γ and
S are irreducible varieties with no common components, we get that γ ∩ S is a finite point
set. Theorem 3.6 implies that |γ ∩ S| = O(1). That is, p is at a distance of δ from O(1)
points of T . This in turn implies that t(T ) = O(n2

T ).

For an integer m ≥ 2, we consider the size of Em(T ). Since E2(T ) = O(n
8/3
T ), there

are O(n
8/3
T ) quadruples (a1, a2, b1, b2) ∈ T such that |a1b1| = |a2b2|. Fix such a quadruple

(a1, a2, b1, b2), together with additional points a3, . . . , am ∈ T . By the previous paragraph,
there are O(1) choices of b3, . . . , bm ∈ T such that |a1b1| = |a2b2| = · · · = |ambm|. This
implies that

E∗
m(T ) ≤ Em(T ) = O

(

n
m+2/3
T

)

. (27)

A probabilistic argument. For 0 < p < 1 that will be determined below, let P ′′ be a
set that is obtained by taking every point of T with probability p. Note that E[|T |] = pnT ,
that E[E∗

m(T )] = p2m · E∗
m(T ), and that E[t(P ′′)] = p3 · t(T ). By linearity of expectation,

the aforementioned bound t(T ) = O(n2
T ), and (27), we have that

E

[

|P ′′| − E∗
m(P ′′)− t(P ′′)

]

= pnT − p2m ·E∗
m(T )− p3 · t(T )

≥ pnT − cp2mn
m+2/3
T − cp3n2

T ,

for a sufficiently large constant c (which may depend on d, k, and m).

To asymptotically maximize the above expectation, we set p =
(

2cn
m−1/3
T

)−1/(2m−1)
.

This implies

E

[

|P ′′| − E∗
m(P ′′)− t(P ′′)

]

≥ n
3m−2

6m−3

T

(2c)
1

2m−1

− n
3m−2

6m−3

T

2 (2c)
1

2m−1

− c
2m−4

2m−1n
m−1

2m−1

T

2
3

2m−1

= Ω

(

n
3m−2

6m−3

T

)

= Ω
(

n
3m−2

6m−3

)

.

By the above, there exists P ′′ ⊂ T such that |P ′′| − E∗
m(P ′′) − t(P ′′) = Ω

(

n
3m−2

6m−3

)

.

We create P ′ ⊂ P ′′ by taking P ′′ and arbitrarily removing one vertex from every isosceles
triangle that is spanned by P ′′ and from every 2m-tuple that contributes to E∗

m(P ′′). By

the above, |P ′| = Ω
(

n
3m−2

6m−3

)

. No distance is spanned by more than m − 1 pairs of points

of P ′.
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