4,556 research outputs found

    Colour constancy using von Kries transformations: colour constancy "goes to the Lab"

    Get PDF
    Colour constancy algorithms aim at correcting colour towards a correct perception within scenes. To achieve this goal they estimate a white point (the illuminant's colour), and correct the scene for its in uence. In contrast, colour management performs on input images colour transformations according to a pre-established input pro le (ICC pro le) for the given con- stellation of input device (camera) and conditions (illumination situation). The latter case presents a much more analytic approach (it is not based on an estimation), and is based on solid colour science and current industry best practises, but it is rather in exible towards cases with altered conditions or capturing devices. The idea as outlined in this paper is to take up the idea of working on visually linearised and device independent CIE colour spaces as used in colour management, and to try to apply them in the eld of colour constancy. For this purpose two of the most well known colour constancy algorithms White Patch Retinex and Grey World Assumption have been ported to also work on colours in the CIE LAB colour space. Barnard's popular benchmarking set of imagery was corrected with the original imple- mentations as a reference and the modi ed algorithms. The results appeared to be promising, but they also revealed strengths and weaknesses

    The CIECAM02 color appearance model

    Get PDF
    The CIE Technical Committee 8-01, color appearance models for color management applications, has recently proposed a single set of revisions to the CIECAM97s color appearance model. This new model, called CIECAM02, is based on CIECAM97s but includes many revisions1-4 and some simplifications. A partial list of revisions includes a linear chromatic adaptation transform, a new non-linear response compression function and modifications to the calculations for the perceptual attribute correlates. The format of this paper is an annotated description of the forward equations for the model

    Status of CIE color appearance models

    Get PDF

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 127, April 1974

    Get PDF
    This special bibliography lists 279 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1974

    The LLAB model for quantifying colour appearance

    Get PDF
    A reliable colour appearance model is desired by industry to achieve high colour fidelity between images produced using a range of different imaging devices. The aim of this study was to derive a reliable colour appearance model capable of predicting the change of perceived attributes of colour appearance under a wide range of media/viewing conditions. The research was divided into three parts: characterising imaging devices, conducting a psychophysical experiment, and developing a colour appearance model. Various imaging devices were characterised including a graphic art scanner, a Cromalin proofing system, an IRIS ink jet printer, and a Barco Calibrator. For the former three devices, each colour is described by four primaries: cyan (C), magenta (M), yellow (Y), and black (K). Three set of characterisation samples (120 and 31 black printer, and cube data sets) were produced and measured for deriving and testing the printing characterisation models. Four black printer algorithms (BPA), were derived. Each included both forward and reverse processes. A 2nd BPA printing model taking into account additivity failure, grey component replacement (GCR) algorithm gave the most accurate prediction to the characterisation data set than the other BPA models. The PLCC (Piecewise Linear interpolation assuming Constant Chromaticity coordinates) monitor model was also implemented to characterise the Barco monitor. The psychophysical experiment was conducted to compare Cromalin hardcopy images viewed in a viewing cabinet and softcopy images presented on a monitor under a wide range of illuminants (white points) including: D93, D65, D50 and A. Two scaling methods: category judgement and paired comparison, were employed by viewing a pair of images. Three classes of colour models were evaluated: uniform colour spaces, colour appearance models and chromatic adaptation transforms. Six images were selected and processed via each colour model. The results indicated that the BFD chromatic transform gave the most accurate predictions of the visual results. Finally, a colour appearance model, LLAB, was developed. It is a combination of the BFD chromatic transform and a modified version of CIELAB uniform colour space to fit the LUTCRI Colour Appearance Data previously accumulated. The form of the LLAB model is much simpler and its performance is more precise to fit experimental data than those of the other models

    Status of CIE Color Appearance Models

    Get PDF
    In meetings just prior to the 1997 AIC Congress in Kyoto, CIE TC1-37, chaired by M. Fairchild, established the CIE 1997 Interim Colour Appearance Model (Simple Version), known as CIECAM97s. CIECAM97s was formally published in 1998 in CIE publication 131. CIE TC1-37 was dissolved shortly after publication of CIECAM97s at which time, a reportership, R1-24 held by M. Fairchild, was established to monitor ongoing developments in color appearance modeling and notify CIE Division 1 if it became necessary to form a new TC to consider revision or replacement of CIECAM97s. In the four years between AIC Congresses, there has been much activity, both by individual researchers and within the CIE, aimed at furthering our understanding of color appearance models and deriving improved models for consideration. The aim of this paper is to summarize these activities, report on the current status of CIE efforts on color appearance models, and suggest what the future might hold for CIE color appearance models
    • …
    corecore