274 research outputs found

    Submicron Systems Architecture Project : Semiannual Technical Report

    Get PDF
    The Mosaic C is an experimental fine-grain multicomputer based on single-chip nodes. The Mosaic C chip includes 64KB of fast dynamic RAM, processor, packet interface, ROM for bootstrap and self-test, and a two-dimensional selftimed router. The chip architecture provides low-overhead and low-latency handling of message packets, and high memory and network bandwidth. Sixty-four Mosaic chips are packaged by tape-automated bonding (TAB) in an 8 x 8 array on circuit boards that can, in turn, be arrayed in two dimensions to build arbitrarily large machines. These 8 x 8 boards are now in prototype production under a subcontract with Hewlett-Packard. We are planning to construct a 16K-node Mosaic C system from 256 of these boards. The suite of Mosaic C hardware also includes host-interface boards and high-speed communication cables. The hardware developments and activities of the past eight months are described in section 2.1. The programming system that we are developing for the Mosaic C is based on the same message-passing, reactive-process, computational model that we have used with earlier multicomputers, but the model is implemented for the Mosaic in a way that supports finegrain concurrency. A process executes only in response to receiving a message, and may in execution send messages, create new processes, and modify its persistent variables before it either exits or becomes dormant in preparation for receiving another message. These computations are expressed in an object-oriented programming notation, a derivative of C++ called C+-. The computational model and the C+- programming notation are described in section 2.2. The Mosaic C runtime system, which is written in C+-, provides automatic process placement and highly distributed management of system resources. The Mosaic C runtime system is described in section 2.3

    Anode Front-End Electronics for the Cathode Strip Chambers of the CMS Endcap Muon Detector

    Get PDF
    The front-end electronics system for the anode signals of the CMS Endcap Muon cathode strip chambers has about 183000 channels. The purposes of the anode front-end electronics are to acquire precise muon timing information for bunch crossing number identification at the Level-1 muon trigger system and to provide a coarse radial position of the muon track. Each anode channel consists of an input protection network, amplifier, shaper, constant-fraction discriminator, and a programmable delay. The essential parts of the electronics include a 16-channel amplifier-shaper-discriminator ASIC CMP16 and a 16-channel ASIC D16G providing programmable time delay. The ASIC CMP16 was optimized for the large cathode chamber size (up to 3 x 2.5 m2) and for the large input capacitance (up to 200 pf). The ASIC combines low power consumption (30 mW/channel) with good time resolution (2 - 3 ns). The del ay ASIC D16G makes possible the alignment of signals with an accuracy of 2.2 ns. This note presents the anode front-end electronics structure and results of the preproduction and the mass production tests, including radiation resistance and reliability tests. The special set of test equipment, techniques, and corresponding software developed and used in the test procedures are also described

    Avionics for a Small Satellite

    Get PDF
    This paper discusses a small. seven and a half (7.5) inch diameter. satellite that NASA-JSC is developing as a technology demonstrator for an astronaut assistant free flyer. The Free Flyer is designed to off load flight crew work load by performing inspections of the exterior of Space Shuttle or International Space Station. The Free Flyer is designed to be operated by the flight crew thereby reducing the number of Extra Vehicle Activities (EVA) or by an astronaut on the ground further reducing crew work load. The paper focuses on the design constraint of a small satellite and the technology approach used to achieve the set of high performance requirements specified for the Free Flyer. Particular attention is paid to the processor card as it is the heart and system integration point of the Free Flyer

    Scale Control Processor Test-Chip

    Get PDF
    We are investigating vector-thread architectures which provide competitive performance and efficiency across a broad class of application domains. Vector-thread architectures unify data-level, thread-level, and instruction-level parallelism, providing new ways of parallelizing codes that are difficult to vectorize or that incur excessive synchronization costs when multithreaded. To illustrate these ideas we have developed the Scale processor, which is an example of a vector-thread architecture designed for low-power and high-performance embedded systems. The prototype includes a single-issue 32-bit RISC control processor, a vector-thread unit which supports up to 128 virtual processor threads and can execute up to 16 instructions per cycle, and a 32 KB shared primary cache.Since the Scale Vector-Thread Processor is a large and complex design (especially for an academic project), we first designed and fabricated the Scale Test Chip (STC1). STC1 includes a simplified version of the Scale control processor, 8 KB of RAM, a host interface, and a custom clock generator. STC1 helped mitigate the risk involved in fabricating the full Scale chip in several ways. First, we were able to establish and test our CAD toolflow. Our toolflow included several custom tools which had not previously been used in any tapeouts. Second, we were able to better characterize our target package and process. For example, STC1 enabled us to better correlate the static timing numbers from our CAD tools with actual silicon and also to characterize the expected rise/fall times of our external signal pins. Finally, STC1 allowed us to test our custom clock generator. We used our experiences with STC1 to help us implement the Scale vector-thread processor. Scale was taped out on October 15, 2006 and it is currently being fabricated through MOSIS. This report discusses the fabrication of STC1 and presents power and performance results

    Teaching integrated circuit and semiconductor device design in New Zealand: the University of Canterbury approach

    Get PDF
    Teaching the practical aspects of device and chip design in New Zealand presents many problems, including high manufacturing costs, long lead times, and the lack of local industry strength. Nonetheless, it is possible to overcome these issues. This paper describes the courses in these areas at the University of Canterbury, including a practical IC design project that has been running successfully for the past four years. The IC design project takes final year students through a full custom design using modern design tools and fabrication processes. The design is quite straightforward — a 4-bit arithmetic logic unit — but it emphasises the importance of design, simulation and testing. The final circuits contain a few hundred transistors, so good practice is essential. Twelve designs are integrated on to a single chip to keep costs down, and individual designs are addressed via multiplexers. The designs are fabricated using a 0.5 micron process, accessed through a multi-project vendor (MOSIS). Getting chips back from a manufacturer is significantly more motivating for the students than just performing a paper design

    Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    Get PDF
    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis

    Interfaces, modularity and ecosystem emergence: How DARPA modularized the semiconductor ecosystem

    Get PDF
    Scholars have identified the pivotal role that modularity plays in promoting innovation. Modularity affects industry structure by breaking up the value chain along technical interfaces, thereby allowing new entrants to specialize and innovate. Less well-understood is where modularity comes from. Firms seem to behave consistently with the theory in some settings, especially the information technology sector, but not in others, such as automobiles. Here we show how the government has a role to play in generating open interfaces needed for modularity, utilizing a case study of the semiconductor industry from 1970 to 1980. We show how the Defense Department\u27s support for this effort aligned with its mission-based interest in semiconductors. We thus contribute a new source of open standards to the modularity literature, as well as a new analytical perspective to the public research funding literature

    RF circulator structures via offset lithography

    Get PDF
    Further developments are reported of the conductive lithographic film (CLF) process in which components of radio-frequency circulators are fabricated economically via offset lithography. The performance of centre conductor elements printed from silver-loaded inks on polymer substrates is compared with that of conventional solid copper structures
    • 

    corecore