975,755 research outputs found

    Toxic Chemicals (title provided or enhanced by cataloger)

    Get PDF
    This lesson introduces students to the concept of toxic chemicals. Topics include a definition of the term 'toxic', factors that can affect the potential for a chemical to be harmful, and a brief overview of federal agencies that have authority to regulate chemicals in the United States. The lesson includes a a five-part activity in which students use the internet to investigate various toxic chemicals, pollution issues (releases), and some studies on the effects of chemical pollutants in the human body. They will also use data from their household inventories made in the previous exercise (Home Chemicals) to research less hazardous alternatives for each of the products they listed. Educational levels: Undergraduate lower division, High school

    The Effects of Shale Gas Production on Natural Gas Prices

    Get PDF
    The Producer Price Index (PPI) for natural gas, measured on an annual average basis, fell 56.8 percent between 2007 and 2012, in response to strong growth in domestic energy production. The application of horizontal hydraulic fracturing (fracking) to shale rock formations contributed significantly to this increase in supply, as the technique boosted natural gas production yield by more than 25 percent over this period. Since shale gas has been a key player in domestic natural gas production for only a few years, and because it has been tracked over a relatively short period (since 2007) by the Energy Information Administration (EIA), analysts find that it is difficult to quantify precisely the effects that shale gas has had on natural gas prices. However, data indicate that increasingly higher natural gas prices during the first half of 2008 lured additional shale gas to the market. As natural gas prices peaked in July 2008, drilling activity (as measured by rig counts) hit an all-time high.2 Eventually, effects of oversupply took hold

    Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research.

    Get PDF
    BackgroundThe National Institutes of Health's Environmental influences on Child Health Outcomes (ECHO) initiative aims to understand the impact of environmental factors on childhood disease. Over 40,000 chemicals are approved for commercial use. The challenge is to prioritize chemicals for biomonitoring that may present health risk concerns.ObjectivesOur aim was to prioritize chemicals that may elicit child health effects of interest to ECHO but that have not been biomonitored nationwide and to identify gaps needing additional research.MethodsWe searched databases and the literature for chemicals in environmental media and in consumer products that were potentially toxic. We selected chemicals that were not measured in the National Health and Nutrition Examination Survey. From over 700 chemicals, we chose 155 chemicals and created eight chemical panels. For each chemical, we compiled biomonitoring and toxicity data, U.S. Environmental Protection Agency exposure predictions, and annual production usage. We also applied predictive modeling to estimate toxicity. Using these data, we recommended chemicals either for biomonitoring, to be deferred pending additional data, or as low priority for biomonitoring.ResultsFor the 155 chemicals, 97 were measured in food or water, 67 in air or house dust, and 52 in biospecimens. We found in vivo endocrine, developmental, reproductive, and neurotoxic effects for 61, 74, 47, and 32 chemicals, respectively. Eighty-six had data from high-throughput in vitro assays. Positive results for endocrine, developmental, neurotoxicity, and obesity were observed for 32, 11, 35, and 60 chemicals, respectively. Predictive modeling results suggested 90% are toxicants. Biomarkers were reported for 76 chemicals. Thirty-six were recommended for biomonitoring, 108 deferred pending additional research, and 11 as low priority for biomonitoring.DiscussionThe 108 deferred chemicals included those lacking biomonitoring methods or toxicity data, representing an opportunity for future research. Our evaluation was, in general, limited by the large number of unmeasured or untested chemicals. https://doi.org/10.1289/EHP5133

    Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment

    Get PDF
    A rapidly increasing number of chemicals, or their degradation products, are being recognized as possessing estrogenic activity, albeit usually weak. We have found that effluent from sewage treatment works contains a chemical, or mixture of chemicals, that induces vitellogenin synthesis in male fish maintained in the effluent, thus indicating that the effluent is estrogenic. The effect was extremely pronounced and occurred at all sewage treatment works tested. The nature of the chemical or chemicals causing the effect is presently not known. However, we have tested a number of chemicals known to be estrogenic to mammals and have shown that they are also estrogenic to fish; that is, no species specificity was apparent. Many of these weakly estrogenic chemicals are known to be present in effluents. Further, a mixture of different estrogenic chemicals was considerably more potent than each of the chemicals when tested individually, suggesting that enhanced effects could occur when fish are exposed simultaneously to various estrogenic chemicals (as is likely to occur in rivers receiving effluent). Subsequent work should determine whether exposure to these chemicals at the concentrations present in the environment leads to any deleterious physiological effects

    Identification of Cytotoxic Flavor Chemicals in Top-Selling Electronic Cigarette Refill Fluids.

    Get PDF
    We identified the most popular electronic cigarette (EC) refill fluids using an Internet survey and local and online sales information, quantified their flavor chemicals, and evaluated cytotoxicities of the fluids and flavor chemicals. "Berries/Fruits/Citrus" was the most popular EC refill fluid flavor category. Twenty popular EC refill fluids were purchased from local shops, and the ingredient flavor chemicals were identified and quantified by gas chromatography-mass spectrometry. Total flavor chemical concentrations ranged from 0.6 to 27.9 mg/ml, and in 95% of the fluids, total flavor concentration was greater than nicotine concentration. The 20 most popular refill fluids contained 99 quantifiable flavor chemicals; each refill fluid contained 22 to 47 flavor chemicals, most being esters. Some chemicals were found frequently, and several were present in most products. At a 1% concentration, 80% of the refill fluids were cytotoxic in the MTT assay. Six pure standards of the flavor chemicals found at the highest concentrations in the two most cytotoxic refill fluids were effective in the MTT assay, and ethyl maltol, which was in over 50% of the products, was the most cytotoxic. These data show that the cytotoxicity of some popular refill fluids can be attributed to their high concentrations of flavor chemicals

    Impacts of Climate Change on indirect human exposure to pathogens and chemicals from agriculture

    Get PDF
    Objective: Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources: In this review, we used expert input and considered literature on climate change ; health effects resulting from exposure to pathogens and chemicals arising from agriculture ; inputs of chemicals and pathogens to agricultural systems ; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis: We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment ; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems ; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions: Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes

    High concentrations of flavor chemicals are present in electronic cigarette refill fluids.

    Get PDF
    We characterized the flavor chemicals in a broad sample of commercially available electronic cigarette (EC) refill fluids that were purchased in four different countries. Flavor chemicals in 277 refill fluids were identified and quantified by gas chromatography-mass spectrometry, and two commonly used flavor chemicals were tested for cytotoxicity with the MTT assay using human lung fibroblasts and epithelial cells. About 85% of the refill fluids had total flavor concentrations >1 mg/ml, and 37% were >10 mg/ml (1% by weight). Of the 155 flavor chemicals identified in the 277 refill fluids, 50 were present at ≥1 mg/ml in at least one sample and 11 were ≥10 mg/ml in 54 of the refill fluids. Sixty-one% (170 out of 277) of the samples contained nicotine, and of these, 56% had a total flavor chemical/nicotine ratio >2. Four chemicals were present in 50% (menthol, triacetin, and cinnamaldehyde) to 80% (ethyl maltol) of the samples. Some products had concentrations of menthol ("Menthol Arctic") and ethyl maltol ("No. 64") that were 30 times (menthol) and 100 times (ethyl maltol) their cytotoxic concentration. One refill fluid contained cinnamaldehyde at ~34% (343 mg/ml), more than 100,000 times its cytotoxic level. High concentrations of some flavor chemicals in EC refill fluids are potentially harmful to users, and continued absence of any regulations regarding flavor chemicals in EC fluids will likely be detrimental to human health

    Synergistic disruption of external male sex organ development by a mixture of four antiandrogens

    Get PDF
    Reproduced with permission from Environmental Health Perspectives.Background: By disrupting the action of androgens during gestation, certain chemicals present in food, consumer products, and the environment can induce irreversible demasculinization and malformations of sex organs among male offspring. However, the consequences of simultaneous exposure to such chemicals are not well described, especially when they exert their actions by differing molecular mechanisms. Objectives: To fill this gap, we investigated the effects of mixtures of a widely used plasticizer, di(2-ethylhexyl) phthalate (DEHP); two fungicides present in food, vinclozolin and prochloraz; and a pharmaceutical, finasteride, on landmarks of male sexual development in the rat, including changes in anogenital distance (AGD), retained nipples, sex organ weights, and malformations of genitalia. These chemicals were chosen because they disrupt androgen action with differing mechanisms of action. Results: Strikingly, the effect of combined exposure to the selected chemicals on malformations of external sex organs was synergistic, and the observed responses were greater than would be predicted from the toxicities of the individual chemicals. In relation to other hallmarks of disrupted male sexual development, including changes in AGD, retained nipples, and sex organ weights, the combined effects were dose additive. When the four chemicals were combined at doses equal to no observed adverse effect levels estimated for nipple retention, significant reductions in AGD were observed in male offspring. Conclusions: Because unhindered androgen action is essential for human male development in fetal life, these findings are highly relevant to human risk assessment. Evaluations that ignore the possibility of combination effects may lead to considerable underestimations of risks associated with exposures to chemicals that disrupt male sexual differentiation.European Union and the Danish Environmental Protection Agency

    Estrogenic chemicals often leach from BPA-free plastic products that are replacements for BPA-containing polycarbonate products

    Get PDF
    Background: Xenobiotic chemicals with estrogenic activity (EA), such as bisphenol A (BPA), have been reported to have potential adverse health effects in mammals, including humans, especially in fetal and infant stages. Concerns about safety have caused many manufacturers to use alternatives to polycarbonate (PC) resins to make hard and clear, reusable, plastic products that do not leach BPA. However, no study has focused on whether such BPA-free PC-replacement products, chosen for their perceived higher safety, especially for babies, also release other chemicals that have EA. Methods: We used two, well-established, mammalian cell-based, assays (MCF-7 and BG1Luc) to assess the EA of chemicals that leached into over 1000 saline or ethanol extracts of 50 unstressed or stressed (autoclaving, microwaving, and UV radiation) BPA-free PC-replacement products. An EA antagonist, ICI 182,780, was used to confirm that agonist activity in leachates was due to chemicals that activated the mammalian estrogen receptor. Results: Many unstressed and stressed, PC-replacement-products made from acrylic, polystyrene, polyethersulfone, and Tritan™ resins leached chemicals with EA, including products made for use by babies. Exposure to various forms of UV radiation often increased the leaching of chemicals with EA. In contrast, some BPA-free PC-replacement products made from glycol-modified polyethylene terephthalate or cyclic olefin polymer or co-polymer resins did not release chemicals with detectable EA under any conditions tested. Conclusions: This hazard assessment survey showed that many BPA-free PC- replacement products still leached chemicals having significant levels of EA, as did BPA-containing PC counterparts they were meant to replace. That is, BPA-free did not mean EA-free. However, this study also showed that some PC-replacement products did not leach chemicals having significant levels of EA. That is, EA-free PC-replacement products could be made in commercial quantities at prices that compete with PC-replacement products that were not BPA-free. Since plastic products often have advantages (price, weight, shatter-resistance, etc.) compared to other materials such as steel or glass, it is not necessary to forgo those advantages to avoid release into foodstuffs or the environment of chemicals having EA that may have potential adverse effects on our health or the health of future generations.This work was supported by the following NIH/NIEHS grants: R44 ES011469, 01–03 (CZY); 1R43/44 ES014806, 01–03 (CZY); subcontract (CZY, PI) on an NIH Grant 01–03 43/44ES018083-01 to PlastiPure (DK, SY PIs).Neuroscienc

    European chemicals regulation and its effect on innovation: An assessment of the EU's White Paper on the strategy for a future chemicals policy

    Get PDF
    In February 2001, the European Commission published its White Paper on a Strategy for a Future Chemicals Policy. The publication launched a heated debate on principles, aims, instruments, implementation, and management of future chemicals control in the European Communities. The White Paper came in wake of massive criticism of current chemicals legislation. Various parties involved repeatedly expressed their concern about a tremendous lack of effectiveness. Furthermore, comparisons with other industrialized countries outside the EU indicated that the current regulatory framework actually discourages innovation in the European chemicals industry. This paper examines current European chemicals policy and main elements of the White Paper strategy with a special focus on the impact of chemicals regulation on innovation towards sustainability. The claim that chemicals regulation tends to block innovation is rejected for lack of conclusive proofs. In contrast, the paper reinforces the view that the White paper strategy is an important step forward towards sustainability in the chemicals sector. However, with the aim to make it pay for companies to pursue environmentally orientated innovation strategies, supporting measures and instruments need to be developed further. --
    • …
    corecore