Background: Xenobiotic chemicals with estrogenic activity (EA), such as bisphenol A (BPA), have been reported to
have potential adverse health effects in mammals, including humans, especially in fetal and infant stages. Concerns
about safety have caused many manufacturers to use alternatives to polycarbonate (PC) resins to make hard and
clear, reusable, plastic products that do not leach BPA. However, no study has focused on whether such BPA-free
PC-replacement products, chosen for their perceived higher safety, especially for babies, also release other chemicals
that have EA.
Methods: We used two, well-established, mammalian cell-based, assays (MCF-7 and BG1Luc) to assess the EA of
chemicals that leached into over 1000 saline or ethanol extracts of 50 unstressed or stressed (autoclaving,
microwaving, and UV radiation) BPA-free PC-replacement products. An EA antagonist, ICI 182,780, was used to confirm
that agonist activity in leachates was due to chemicals that activated the mammalian estrogen receptor.
Results: Many unstressed and stressed, PC-replacement-products made from acrylic, polystyrene, polyethersulfone, and
Tritan™ resins leached chemicals with EA, including products made for use by babies. Exposure to various forms of UV
radiation often increased the leaching of chemicals with EA. In contrast, some BPA-free PC-replacement products made
from glycol-modified polyethylene terephthalate or cyclic olefin polymer or co-polymer resins did not release chemicals
with detectable EA under any conditions tested.
Conclusions: This hazard assessment survey showed that many BPA-free PC- replacement products still leached
chemicals having significant levels of EA, as did BPA-containing PC counterparts they were meant to replace. That is,
BPA-free did not mean EA-free. However, this study also showed that some PC-replacement products did not leach
chemicals having significant levels of EA. That is, EA-free PC-replacement products could be made in commercial
quantities at prices that compete with PC-replacement products that were not BPA-free. Since plastic products often
have advantages (price, weight, shatter-resistance, etc.) compared to other materials such as steel or glass, it is not
necessary to forgo those advantages to avoid release into foodstuffs or the environment of chemicals having EA that
may have potential adverse effects on our health or the health of future generations.This work was supported by the following NIH/NIEHS grants: R44 ES011469,
01–03 (CZY); 1R43/44 ES014806, 01–03 (CZY); subcontract (CZY, PI) on
an NIH Grant 01–03 43/44ES018083-01 to PlastiPure (DK, SY PIs).Neuroscienc