121 research outputs found

    ATP mimics as glutamine synthetase inhibitors : an exploratory synthetic study

    Get PDF
    Using a mechanism-based approach to drug discovery, efforts have been directed towards developing novel ATP mimics that can act as GS inhibitors. The purine-based systems, adenosine, adenine and allopurinol, were identified as possible scaffolds for potential ATP mimics, while various meta-disubstituted benzenoid compounds, 3-aminobenzonitrile, 3-aminophenol, resorcinol, 3-aminobenzyl alcohol, 3-hydroxybenzoic acid and 3-aminobenzoic acid have been explored as adenine analogues. These compounds were treated with different alkylating and acylating agents. Allylation of all the substrates was achieved using allyl bromide and N-9 alkylation of protected allopurinol was effected using a number of specially prepared Baylis-Hillman adducts. Acylation of the benzenoid precursors with chloroacetyl chloride, acetoxyacetyl chloride, acryloyl chloride and specially prepared 2,3,4,5,6-pentaacetylgluconoyl chloride afforded the corresponding mono- and /or diacylated products in varying yields (4-96%). Elaboration of the alkylated and acylated products has involved the reaction of hydroxy systems with diethyl chloro phosphate and chloro derivatives with triethyl phosphite in Arbuzov-type reactions to afford phosphorylated products. In all cases, products were fully characterized using 1- and 2-D NMR analysis and, where appropriate, high-resolution mass spectrometry. The application of Modgraph and ChemWindow NMR prediction programmes has been explored and the resulting data have been compared with experimental chemical shift assignments to confirm chemical structures and, in some cases, to establish the position of allylation or acylation. Experimental assignments were found to be generally comparable with the Modgraph data, but not always with the ChemWindow values. The docking of selected products in the 'active-site' of GS and their structural homology with ATP, both in their free and bound conformations have been studied using the ACCELERYS Cerius² platform. All the selected ATP mimics exhibit some form of interaction with the 'active-site' residues, and a number of them appear to be promising GS ligands

    Optical and physicochemical characterizations of a cellulosic/CdSe-QDs@S-DAB5 film

    Full text link
    CdSe quantum dots nanoparticles were coated with the thiolated (DiAminoButane based dendrimer) DAB dendrimer of fifth generation (S-DAB(5)) and embedded in a highly hydrophilic regenerated cellulose (RC) film by simple dip-coating method (immersion in QD-dendrimer aqueous solution) as a way to get a flexible nano-engineered film (RC-4/CdSe-QDs@S-DAB(5)) with high transparency and photoluminescence properties for different applications. Optical changes in the RC film associated with QDs inclusion were determined by spectroscopic ellipsometry (SE) measurements, which provide information on changes caused in the refraction index and the extinction coefficients of the film, as well as by light transmittance/reflectance curves and photoluminescence (PL) spectra. Impedance spectroscopy (IS) and other typical physicochemical techniques for material characterization (TEM, SEM and XPS) have also been used in order to have more complete information on film characteristics. A comparison of RC-4/CdSe-QDs@S-DAB(5) film optical characteristics with those exhibited by other RC-modified films depending on the type of dendrimer was also carried out

    Formation and Structural Analysis of Novel Dibornyl Ethers

    Get PDF
    One- and two-dimensional NMR spectroscopy has been used to establish the regio- and stereochemistry of novel dibornyl ethers, obtained by acid-catalysed condensation of camphor-derived a-hydroxybornanones South African Journal of Chemistry Vol.55 2002: 111-11

    Application of the Baylis-Hillman methodology in the construction of novel heterocyclic derivatives

    Get PDF
    Baylis-Hillman reactions of 2,2’-dithiodibenzaldehyde with the acyclic alkenes, methyl vinyl ketone (MVK) and methyl acrylate have afforded the thiochromene derivatives in moderate yields, and this approach has been extended to the use of the cyclic alkenes, 2-cyclohexenone and 2-cyclopentenone to afford the tricyclic analogues. In all cases, reduction of the disulphide link and intramolecular cyclisation occurred in situ, and a preliminary kinetic study of this reaction using the acyclic substrates MVK and methyl acrylate was undertaken with the aim of elucidating the mechanism involved. The results obtained showed that the consumption of both 2,2’-dithiodibenzaldehyde and MVK and/or methyl acrylate followed 1st-order kinetics during the initial stages of the reaction, but then deviated from 1st-order linearity. The reaction with methyl acrylate was much slower than with MVK, and the kinetic data indicates the mechanism to be more complex than anticipated. Conjugate addition reactions of methyl acrylate-derived 2-nitrobenzaldehyde Baylis-Hillman adducts with the amines, piperidine and benzylamine, afforded a range of conjugate addition products as diastereomeric mixtures in excellent yield (80-100%). Catalytic hydrogenation of the conjugate addition products using a Pd-C catalyst in ethanol, has afforded the corresponding, novel 3-amino-2-quinolone derivatives in lower yield (22-37%).The application of [superscript 13]C NMR prediction programmes to selected compounds synthesized in this study has revealed reasonable correlations between the experimental and predicted values

    Guide for Authors

    Get PDF
    Guide for Author

    Nanoporous alumina support covered by imidazole moiety-based ionic liquids: optical characterization and application

    Get PDF
    This work analyzes chemical surface and optical characteristics of a commercial nanoporous alumina structure (NPAS) as a result of surface coverage by different imidazolium-based ionic liquids (1-butyl-3-metylimidazolium hexafluorophosphate, 3-methyl-1-octylimidazolium hexafluorophosphate, or 1-ethyl-3-methylimidazolium tetrafluoroborate). Optical characteristics of the IL/NPAS samples were determined by photoluminescence (at different excitation wavelengths (from 300 nm to 400 nm), ellipsometry spectroscopy, and light transmittance/reflectance measurements for a range of wavelengths that provide information on modifications related to both visible and near-infrared regions. Chemical surface characterization of the three IL/NPAS samples was performed by X-ray photoelectron spectroscopy (XPS), which indicates almost total support coverage by the ILs. The IL/NPAS analyzed samples exhibit different photoluminescence behavior, high transparency (<85%), and a reflection maximum at wavelength ~380 nm, with slight differences depending on the IL, while the refractive index values are rather similar to those shown by the ILs. Moreover, the illuminated I–V curves (under standard conditions) of the IL/NPAS samples were also measured for determining the efficiency energy conversion to estimate their possible application as solar cells. On the other hand, a computational quantum mechanical modeling method (DFT) was used to establish the most stable bond between the ILs and the NPAS support.M.A. thanks the SpanishMinistry of Science and Innovation (MCIN/AEI/10.13039/ 501100011033) through project PID2021-122613OB-I00

    Nanoporous Alumina Support Covered by Imidazole Moiety–Based Ionic Liquids: Optical Characterization and Application

    Get PDF
    This work analyzes chemical surface and optical characteristics of a commercial nanoporous alumina structure (NPAS) as a result of surface coverage by different imidazolium-based ionic liquids (1-butyl-3-metylimidazolium hexafluorophosphate, 3-methyl-1-octylimidazolium hexafluorophosphate, or 1-ethyl-3-methylimidazolium tetrafluoroborate). Optical characteristics of the IL/NPAS samples were determined by photoluminescence (at different excitation wavelengths (from 300 nm to 400 nm), ellipsometry spectroscopy, and light transmittance/reflectance measurements for a range of wavelengths that provide information on modifications related to both visible and near-infrared regions. Chemical surface characterization of the three IL/NPAS samples was performed by X-ray photoelectron spectroscopy (XPS), which indicates almost total support coverage by the ILs. The IL/NPAS analyzed samples exhibit different photoluminescence behavior, high transparency (<85%), and a reflection maximum at wavelength ~380 nm, with slight differences depending on the IL, while the refractive index values are rather similar to those shown by the ILs. Moreover, the illuminated I–V curves (under standard conditions) of the IL/NPAS samples were also measured for determining the efficiency energy conversion to estimate their possible application as solar cells. On the other hand, a computational quantum mechanical modeling method (DFT) was used to establish the most stable bond between the ILs and the NPAS support.Partial funding for open access charge: Universidad de Mála
    • …
    corecore