33 research outputs found

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Learning and Reacting with Inaccurate Prediction: Applications to Autonomous Excavation

    Get PDF
    Motivated by autonomous excavation, this work investigates solutions to a class of problem where disturbance prediction is critical to overcoming poor performance of a feedback controller, but where the disturbance prediction is intrinsically inaccurate. Poor feedback controller performance is related to a fundamental control problem: there is only a limited amount of disturbance rejection that feedback compensation can provide. It is known, however, that predictive action can improve the disturbance rejection of a control system beyond the limitations of feedback. While prediction is desirable, the problem in excavation is that disturbance predictions are prone to error due to the variability and complexity of soil-tool interaction forces. This work proposes the use of iterative learning control to map the repetitive components of excavation forces into feedforward commands. Although feedforward action shows useful to improve excavation performance, the non-repetitive nature of soil-tool interaction forces is a source of inaccurate predictions. To explicitly address the use of imperfect predictive compensation, a disturbance observer is used to estimate the prediction error. To quantify inaccuracy in prediction, a feedforward model of excavation disturbances is interpreted as a communication channel that transmits corrupted disturbance previews, for which metrics based on the sensitivity function exist. During field trials the proposed method demonstrated the ability to iteratively achieve a desired dig geometry, independent of the initial feasibility of the excavation passes in relation to actuator saturation. Predictive commands adapted to different soil conditions and passes were repeated autonomously until a pre-specified finish quality of the trench was achieved. Evidence of improvement in disturbance rejection is presented as a comparison of sensitivity functions of systems with and without the use of predictive disturbance compensation

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    observer and energy-balance based approaches

    Get PDF
    Due to the increasing complexity of modern technical processes, the most critical issues in the design of an automated system nowadays are safety/reliability, higher performance and cost efficiency. Faults in process components can lead to a considerable reduce of the efficiency of the process, quality of the product and in some cases even result in fatalities. In order to avert these losses, an efficient diagnosis of the faults plays a central role. Therefore, fault diagnosis is becoming an essential part of modern control systems. Fault diagnosis of linear dynamical systems has been extensively studied since decades and well-established techniques exist in the literature. However, fault diagnosis for nonlinear dynamical systems is yet an active field of research. Since most of real systems are nonlinear in nature, classically, linear fault diagnosis techniques have been applied to nonlinear systems based on the linearized system model around an operating point. The drawback of this approach is the limited fault diagnosis performance. In order to fulfill the increasing demand of more effective fault diagnosis systems for nonlinear processes, a lot of attention has been paid to nonlinear fault diagnosis techniques, which is the major topic of this thesis. Different from linear systems, there is no uniform solution for the fault diagnosis of general nonlinear systems. Various schemes have been proposed for nonlinear systems with special structures. Among them, Lipschitz nonlinear systems have been intensively studied, since on one hand more general nonlinear systems can be transformed into Lipschitz nonlinear systems, and on the other hand, many linear fault diagnosis approaches can be extended to this kind of nonlinear systems. For Lipschitz nonlinear systems, observer-based fault detection approach has been mostly applied, which consists of an observer-based residual generator and a residual evaluator. Classically, residual generator and residual evaluator are designed separately. Since the performance of fault detection system is decided by residual generator and evaluator together, it can be expected that, higher fault detection performance can be achieved by designing these two units in an integrated manner instead of separate handling of them. Motivated by this fact, an integrated design approach of observer-based residual generator and evaluator is proposed for Lipschitz nonlinear systems. Besides the schemes extended from linear methods (i.e. observer-based approach, parity space approach etc.), new nonlinear fault diagnosis techniques have also been studied recently, which can be effectively applied to complex nonlinear systems i.e. switched nonlinear systems, hybrid nonlinear systems etc. Among them, new fault diagnosis schemes based on passivity and energy-balance which are closely related to system “energy” have a great potential due to their clear physical meanings. In this thesis, this approach is extended to a complete fault detection and isolation framework with the focus on passive nonlinear systems. The fault diagnosis methodologies proposed in this thesis are tested with the design examples in the respective chapters and with the robot manipulator benchmark problem. The simulation results show the effectiveness of the proposed schemes.Aufgrund der zunehmenden Komplexität moderner technischer Verfahren sind heutzutage Sicherheit/Zuverlässigkeit, höhere Leistung und Kosteneffizienz wichtige Probleme bei der Gestaltung eines automatisierten Systems. Fehler in Prozesskomponenten führen zu einer erheblichen Reduzierung im Wirkungsgrad des Prozesses, in der Qualität des Produktes und können im schlimmsten Fall sogar katastrophale Folgen haben. Um dies zu vermeiden ist eine effiziente Diagnose der Fehler von zentraler Bedeutung. Fehlerdiagnose ist daher ein wesentlicher Bestandteil von modernen Steuerungssystemen geworden. Die Fehlerdiagnose bei linearen dynamischen Systemen wurde seit Jahrzehnten ausführlich untersucht und gut etablierte Techniken existieren in der Literatur, dagegen ist die Fehlerdiagnose für nichtlineare dynamische Systeme noch ein aktives Forschungsfeld. Da die meisten realen Systemen nichtlineare sind, werden lineare Fehlerdiagnosetechniken meistens auf ein linearisiertes Systemmodell angewendet, was sich jedoch nachteilig auf die Leistung auswirkt. Deshalb gewinnt nichtlineare Fehlerdiagnosetechnik zur Erfüllung der wachsenden Nachfrage nach einer besseren Fehlerdiagnose für nichtlineare Prozesse immer mehr an Bedeutung und ist daher das Hauptthema dieser Dissertation. Da es keine einheitliche Lösung für die Fehlerdiagnose allgemeiner nichtlinearer Systeme gibt werden bestimmte nichtlineare Systeme mit speziellen Strukturen untersucht. Unter ihnen sind besonders die Lipschitz Systeme intensiv untersucht worden, da einerseits viele allgemeine nichtlineare Systeme in Lipschitz Systeme umgewandelt werden können und andererseits viele lineare Fehlerdiagnose Ansätze für diese Art von nichtlinearen Systemen erweitert werden können. Für Lipschitz Systeme werden meist beobachtergestützte Fehlerdetektionsverfahren verwendet, die aus einem Residuengenerator und einer Residuenauswertung bestehen. Klassischerweise werden Residuengenerator und Residuenauswertung getrennt entworfen. Da die Leistung der Fehlerdetektion sowohl von Residuengenerator als auch von Residuenauswertung gemeinsam abhängt, ist zu erwarten, dass eine höhere Fehlererkennungsleistung erreicht werden kann, wenn der Entwurf dieser beiden Einheiten integriert erfolgt. Deshalb wird hier ein integrierter Design-Ansatz zur beobachtergestützten Fehlererkennung für Lipschitz Systeme vorgeschlagen. Neben der Erweiterung von linearen Methoden (beobachtergestützter Ansatz, Paritäts Raum Ansatz usw.) werden neue, nichtlineare Fehlerdiagnosetechniken seit kurzem untersucht, die auch auf komplexe, nichtlineare Systeme (geschaltete nichtlineare Systeme, hybride nichtlineare Systeme usw.) angewendet werden können. Unter ihnen besonders Passivitäts- und Energie-Bilanz- gestützte Verfahren, die eng mit der " Systemenergien" verbunden sind, ein großes Potenzial durch ihre klare physikalische Bedeutung. Diese Verfahren werden in dieser Dissertation zu einer vollständigen Fehlererkennungs- und Isolationsmethodik mit dem Fokus auf passive nichtlineare Systeme erweitert. Die gezeigten Algorithmen werden in den entsprechenden Kapiteln anhand von numerischen Beispielen getestet. Weiterhin wird die Verwendung der Algorithmen an dem geläufigen Beispielprozess eines Roboter Manipulators gezeigt um deren Nutzen und Anwendbarkeit zu demonstrieren

    Adaptive Systems: History, Techniques, Problems, and Perspectives

    Get PDF
    We survey some of the rich history of control over the past century with a focus on the major milestones in adaptive systems. We review classic methods and examples in adaptive linear systems for both control and observation/identification. The focus is on linear plants to facilitate understanding, but we also provide the tools necessary for many classes of nonlinear systems. We discuss practical issues encountered in making these systems stable and robust with respect to additive and multiplicative uncertainties. We discuss various perspectives on adaptive systems and their role in various fields. Finally, we present some of the ongoing research and expose problems in the field of adaptive control

    Technology for large space systems: A bibliography with indexes (supplement 20)

    Get PDF
    This bibliography lists 694 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July, 1988 and December, 1988. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems
    corecore