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Abstract

Due to the increasing complexity of modern technical processes, the most critical issues
in the design of an automated system nowadays are safety/reliability, higher performance
and cost efficiency. Faults in process components can lead to a considerable reduce of the
efficiency of the process, quality of the product and in some cases even result in fatalities.
In order to avert these losses, an efficient diagnosis of the faults plays a central role.
Therefore, fault diagnosis is becoming an essential part of modern control systems. Fault
diagnosis of linear dynamical systems has been extensively studied since decades and
well-established techniques exist in the literature. However, fault diagnosis for nonlinear
dynamical systems is yet an active field of research. Since most of real systems are
nonlinear in nature, classically, linear fault diagnosis techniques have been applied to
nonlinear systems based on the linearized system model around an operating point. The
drawback of this approach is the limited fault diagnosis performance. In order to fulfill
the increasing demand of more effective fault diagnosis systems for nonlinear processes, a
lot of attention has been paid to nonlinear fault diagnosis techniques, which is the major
topic of this thesis.

Different from linear systems, there is no uniform solution for the fault diagnosis of
general nonlinear systems. Various schemes have been proposed for nonlinear systems
with special structures. Among them, Lipschitz nonlinear systems have been intensively
studied, since on one hand more general nonlinear systems can be transformed into Lip-
schitz nonlinear systems, and on the other hand, many linear fault diagnosis approaches
can be extended to this kind of nonlinear systems. For Lipschitz nonlinear systems,
observer-based fault detection approach has been mostly applied, which consists of an
observer-based residual generator and a residual evaluator. Classically, residual generator
and residual evaluator are designed separately. Since the performance of fault detection
system is decided by residual generator and evaluator together, it can be expected that,
higher fault detection performance can be achieved by designing these two units in an
integrated manner instead of separate handling of them. Motivated by this fact, an in-
tegrated design approach of observer-based residual generator and evaluator is proposed
for Lipschitz nonlinear systems.

Besides the schemes extended from linear methods (i.e. observer-based approach, par-
ity space approach etc.), new nonlinear fault diagnosis techniques have also been studied
recently, which can be effectively applied to complex nonlinear systems i.e. switched non-
linear systems, hybrid nonlinear systems etc. Among them, new fault diagnosis schemes
based on passivity and energy-balance which are closely related to system “energy” have

x



Abstract

a great potential due to their clear physical meanings. In this thesis, this approach is
extended to a complete fault detection and isolation framework with the focus on passive
nonlinear systems.
The fault diagnosis methodologies proposed in this thesis are tested with the design

examples in the respective chapters and with the robot manipulator benchmark problem.
The simulation results show the effectiveness of the proposed schemes.
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Chapter 1

Introduction

This chapter briefly describes the motivations and objectives of this thesis.
The outline and contribution of the thesis are also presented.

1.1 Motivation

Fault detection and isolation. Modern technical processes are becoming more and
more complex. Consequently, the demand for safety/reliability, higher performance and
cost efficiency are of major importance in the design of an automated system nowadays.
Faults can occur in all kinds of process components, for example, pressure drop out
in hydraulic components, leakages in pipes, drifting of sensors etc. Faults may lead
to a considerable reduce of the efficiency of the process, quality of the product and in
some cases even result in complete failure of the process. In [1], it is claimed that 20
billion dollars per year is lost due to poor abnormal situation management only in US
petrochemical industry. For safety-critical systems such as aircrafts, nuclear reactors etc.,
faults may lead to catastrophic incidents which result in big loss of human lives, a few
incidents are listed below:

• Boeing 747-200F lost both engines on taking off from Schiphol Airport in Ams-
terdam. After 15 minutes, the crew lost the control and the plane crashed into a
building with a considerable loss of life.

• The American Airline DC10 crashed at Chigao-OHare International Airport. The
pilot had the indication of fault only 15 seconds prior to the accident.

• An explosion happened in a huge nuclear power plant in the town of Chernobyl in
1986.

Surprisingly, it has been shown in investigations and research reports [2–5] that, these
incidents could have been avoided if there was a suitable fault monitoring and tolerant
system. For example, Maciejowski [2] has shown that the first incident of Boeing 747-
200F could have been avoided by proper reconfiguration of the controller. Motivated by
the above mentioned reasons, the development of fault detection and isolation (FDI) is
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Chapter 1 Introduction

receiving more and more attentions both in academia and industry, for instance, [6–11]
to name a few.

Model-based FDI. The so-called redundancy plays an essential role for a successful
FDI. System redundancy can be realized by reconstruction of the process components
using the identical (redundant) hardware components. Faults are then detected by the
deviation between the actual process output and the output of redundant process com-
ponent. Since the use of redundant hardware results in high costs, its application is only
restricted to a number of key components [6]. Another kind of system redundancy is
called analytical redundancy, which is constructed based on a system model. The model
which represents the system properties is built based on the knowledge of the system.
The fault detection is achieved by comparing the behavior of the system with its model.
Since analytical redundancy can be realized in the same processor which implements the
control algorithms, thus no additional hardware is needed. Due to associated advantages,
analytical redundancy based approaches are becoming more and more popular, and its ef-
ficiency has been demonstrated by a great number of successful applications in industrial
processes and automatic control systems, for instance, vehicle control systems, robots,
power systems etc.

Nonlinear systems. Model-based FDI approaches for linear systems have been well
studied since decades, and quite a large number of methods exist in literature. Since
most pratical systems are nonlinear in nature, the linear FDI schemes are applied usually
based on the linearization of the nonlinear systems at different operating points, and
the linearization errors are modeled as unstructured uncertainties. The disadvantages of
this approach are: (1) It is difficult or even impossible to prove the stability of the FDI
system, since it is based on an approximated system model; (2) Because only part of the
informations of nonlinear system model (linearized model) is used, the performance of
FDI schemes is limited. Therefore, FDI techniques for nonlinear systems have received
a lot of attentions and is a quite active field of research recently, see for instance [12–14]
and the references therein.

Generally speaking, there are three types of model-based FDI approaches including
the observer-based approach, parity-space approach and the parameter identification ap-
proach. In the past few decades, observer-based methods have received considerable at-
tention, due to their advantages of early detection, easy on-line implementation etc [6, 7].
For nonlinear systems, because of the difficulties in stability/convergence analysis, the
application of the classical model-based FDI schemes faces a lot of challenges. Since an
applicable uniform solution for general nonlinear systems is still an open issue, nonlinear
systems with special structure are intensively studied. One kind of widely used nonlinear
systems is systems with Lipschitz nonlinearities, since on one hand more general nonlin-
ear systems can be transformed into Lipschitz nonlinear systems under some conditions
[15], and on the other hand, many linear FDI approaches can be extended to this kind of
nonlinear systems [16–18]. Recently, advanced nonlinear FDI methods have been devel-
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1.2 Objectives of the thesis

oped, among them, passivity and energy-balance based approaches have a great potential
due to its clear physical meaning and easy implementation [19–21]. These approaches
are closely related to system “energy”, where the “energy” could be true physical energy
or an abstract energy function (Lyapunov function) defined in Lyapunov theory [22].

1.2 Objectives of the thesis

In this thesis, new nonlinear FDI schemes based on observer and energy-balance are
studied. The first intention is to develop a more efficient design approach of observer-
based FD for Lipschitz nonlinear systems. The second intention is to establish a complete
energy-balance based FDI framework for passive nonlinear systems. In the following, the
concrete objectives are presented.

Observer-based FD for Lipschitz nonlinear systems. The idea of observer-based
fault detection is to generate estimations of measured system outputs based on system
model, and then the estimations are compared with the real measurements to generate
a so-called residual signal, which carries the information of faults. Ideally, when there is
no modeling error and disturbance, the estimations will converge to the measurements
in fault-free case and the residual signal will go to zero. After the transient, a non-zero
residual signal indicates the occurrence of faults. However, since modelling errors and
disturbances are inevitable, a threshold should be designed to distinguish the non-zero
residual signal driven by faults from that caused by modelling error/disturbances. In
practice, essential requirements on a fault diagnosis system are generally expressed in
terms of a lower false alarm rate (FAR) and a higher fault detection rate (FDR), and an
optimal trade-off between them is of primary interest in designing an FD system [6]. In
this context, the traditional way of separately designing residual generation, evaluation
and threshold computation makes less sense. To achieve a successful design of an observer-
based FD system, an integrated handling of residual generator, evaluator and threshold is
needed. The integrated design of FD for linear systems has been well studied in [23, 24].
The first objective of this dissertation is to extend the integrated design approach to
Lipschitz nonlinear systems, which is summarized as: proposing an integrated design
approach for fault detection of Lipschitz nonlinear systems which achieves an optimal
trade-off between low FAR and high FDR.

Energy-balance based FDI for passive nonlinear systems. Passivity-based fault
detection and fault tolerance analysis have been newly introduced by [21] for switched
nonlinear systems, where the passivity is represented by an energy relation including
the stored energy in the system and the supplied energy from the outside. The fault
detection is then carried out by checking this passive energy relation. In [19, 20], energy
balance of steady-state processes is used for fault detection system design. Motivated
by these studies, the second intention of this thesis is to establish a new energy-balance
based FDI framwork for passive nonlinear systems. Compared with the energy relation
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Chapter 1 Introduction

used in [21], an energy balance which also includes the dissipated energy is constructed.
Based on it, a better fault detectability can be achieved. In order to make full use
of the energy properties of passive systems, faults should be defined according to their
different influences on system energies, and new isolation schemes based on the “energy
properties” of faults need to be developed. These objectives can be summarized in the
following points:

• Establishing the energy balance of passive nonlinear systems.

• Definition of faults according to their different influences on system energies.

• Proposing energy-balance based fault detection and isolation schemes.

1.3 Outline and contribution of the thesis

In the following, the structure and major contributions of the thesis are briefly outlined.

Chapter 2 Background and state of the art presents a review of fault diagnosis
techniques. Fundamental terminology, such as faults, unknown inputs, fault detection,
fault isolation, and fault identification are introduced according to the recommendation of
IFAC technical committee SAFEPROCESS [25]. A widely accepted classification of fault
diagnosis techniques and a comparision between them are presented. A comprehensive
survey on observer-based and energy-balance based fault diagnosis techniques for linear
and nonlinear systems is given which is the focus of this dissertation.

Chapter 3 Observer-based FD for Lipschitz nonlinear systems: an inte-
grated design approach proposes an integrated design approach of observer-based
FD for Lipschitz nonlinear systems, which results in a trade-off between low FAR and
high FDR. The extension of concepts FAR and FDR to the norm-based framework is
introduced, which includes set of disturbances that cause false alarms, set of detectable
faults and the simplified norm-based definition of FDR [6]. Sufficient conditions for the
existence of FD system which achieves the given FDR and FAR are derived in the form
of linear matrix inequalities. Based on it, an iterative algorithm is presented which min-
imizes the FAR for a given FDR. Finally, the proposed approach is illustrated by a
design example.

Chapter 4 Energy-balance based FDI framework for passive nonlinear sys-
tems establishes an energy-balance based FDI framework for passive nonlinear systems.
Based on passivity, an energy balance of passive nonlinear systems is constructed, which
includes stored, dissipated and supplied energies. In the new FDI framework, faults are
defined according to their different influences on system energies. The fault detection is
carried out by checking the validity of the energy balance. The proposed fault isolation
schemes include two steps: (1) Isolation of different classes of faults (energy changes);
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(2) Isolation of different components. For passive nonlinear systems with unknown in-
puts, thresholds for fault detection and isolation are designed based on the bound of
“unknown-input energy”. An RLC circuit example is given to illustrate the proposed
FDI framework.
Chapter 5 Design of energy-balance based FDI for two classes of passive

nonlinear systems proposes design procedures of the energy-balance based FDI schemes
for two classes of nonlinear systems: (1) Input-affine passive systems; (2) Lagrangian
systems. The design procedures include finding a storage function, establishing the energy
balance and computation of the threshold. The proposed design procedure is also applied
to linear passive systems, which can be considered as a special case of input-affine passive
systems.
Chapter 6 Application to the Robot Manipulator benchmark presents the ap-

plication of the energy-balance based FDI schemes to robot manipulator benchmark. This
benchmark has strong nonlinearities and is widely used for factory automation systems.
Since in practice robot manipulators are usually driven by DC motors, the dynamics of
DC motors is also considered in the benchmark model. This benchmark can be modeled
as an interconnection of two Lagrangian systems, which is an excellent benchmark for
illustrating the usefulness of the proposed energy-balance based FDI framework.

5



Chapter 2

State of the art of fault diagnosis techniques

This chapter reviews fault diagnosis techniques. Fundamental terminol-
ogy, such as faults, unknown inputs, fault detection, fault isolation, and fault
identification are introduced. A widely accepted classification of fault diagno-
sis techniques is presented. Model-based fault diagnosis for nonlinear systems
is the focus of this thesis, therefore, a particular attention has been given to
the state of the art of model-based fault diagnosis techniques for nonlinear
systems.

2.1 Some basic concepts

The terminology used in this thesis is fairly standard based on the recommendation of
IFAC technical committee SAFEPROCESS. In the following, basic definitions of faults,
uncertainties, disturbances, and the descriptions of fault detection, fault isolation and
fault analysis/identification are given. The detailed explanation of the above mentioned
terminology can be found in [6, 25].
A fault is an un-permitted deviation of at least one characteristic property or pa-

rameter of the system from the standard/acceptable condition. It can be modeled as
an external input or as parameter deviation which changes the system characteristics.
Mathematically, uncertainties and disturbances can be modeled quite similarly to faults
as parameter deviation and external input. The essential difference between them is that,
uncertainties and disturbances are unavoidable and are present during the normal opera-
tion of system, so they should be taken into account in the control system design. Faults,
on the other hand, are considered as a special situation in the system design since they
appear at an unknown time point and usually lead to severe changes in the system. It is
either impossible or too conservative to consider all the faults in the design of controller
which also works for normal system operation, so a detection of faults is needed in order
to change the control system from the normal operation to a faulty-mode. In this special
mode, proper change of the control system should be made to reduce the effects of faults
on the system.
Generally speaking, fault diagnosis consists of the following three essential tasks [6]:

• Fault detection: detection of the occurrence of faults.

6



2.2 Classification of fault diagnosis techniques

• Fault isolation: localization (classification) of different faults.

• Fault analysis or identification: determination of the type, magnitude and cause of
the fault.

Depending on the function, a fault diagnosis system is called FD or FDI or FDIA
(fault detection, isolation and analysis) system [6]. Since the existence conditions for
fault identification are very strict, FD and FDI systems have been more intensive studied,
which is also the focus in this thesis.

2.2 Classification of fault diagnosis techniques

A number of fault diagnosis techniques have been developed during the last decades. In
the sequel, a rough classification of these techniques is presented.

2.2.1 Hardware redundancy based fault diagnosis

The essential idea of this scheme is to reconstruct the process components using the
redundant hardware components. Since when there is fault in the process component,
the output of the process component will be different from the one of its redundancy,
the fault detection is achieved by comparing the outputs from the process component
and its redundancy. The high reliability and ability of direct fault isolation are the
main advantages of this scheme. However, the use of redundant hardware leads to high
costs. Thus, its use is limited to a number of key components and especially for the
applications which have a very high safety requirement, for example, aerospace task,
flight control systems, etc. [6, 7].

2.2.2 Signal processing based fault diagnosis

The core of this scheme is to extract the information of the faults from the process signals.
Assume that certain process signals carry information about the faults of interest in form
of symptoms, fault diagnosis can be achieved by a suitable signal processing. Typical
symptoms can be time domain functions or frequency domain functions. Time domain
symptoms are for example magnitude, mean values (arithmetic or quadratic), limit values,
trends, and statistical moments of the amplitude distribution or envelope, etc., while the
frequency domain symptoms include spectral power densities, frequency spectral lines
and ceptrum to list a few. Since the dynamics of the process have not been taken into
account in the Signal processing based fault diagnosis, this approach is mainly used for
processes in the steady state [6].
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Chapter 2 State of the art of fault diagnosis techniques

2.2.3 Plausibility test

The basic idea of this technique is to evaluate the measured process variable with regard
to credible, convincing values or their compatibility among each other based on some
simple physical laws. On the assumption that a fault leads to the loss of plausibility, the
information about the presence of a fault can be extracted by the plausibility check. This
approach can be viewed as a first step to model-based fault detection since the physical
laws represent a part of the model information. However, the efficiency of this approach
is limited for detecting faults in a complex process and for fault isolation [6, 10].

2.2.4 Model-based fault diagnosis

The intuitive idea of the model-based FD technique is to replace the hardware redun-
dancy by a process model which is implemented in the form of software. The process
model can be an analytical model represented by a set of differential equations or it can be
knowledge-based model represented by, for example, neural networks, petri nets, experts
systems, fuzzy rules etc [26]. With process model, the process behavior can be recon-
structed on-line. Analogous to hardware redundancy, it is called software redundancy or
analytical redundancy.

In the framework of the model-based fault diagnosis, the process model runs in parallel
to process and is driven by the same process inputs. The information about the fault
is obtained by comparing the measured process variables (output signals) with their
estimates delivered by the process model. The difference between the measured process
variables and their estimates is called residual. When we have an exact process model,
the residual should be zero in the fault-free operating states and become non-zero by
a fault in the process. In this case, fault detection can be carried out by checking the
residual. The procedure of creating the residual signal is called residual generation .
Correspondingly, the process model and the comparision unit build the so-called residual
generator. Residual generation can be considered as an extended plausibility test, where
the plausibility is the complete process input-output behavior which is represented by
process model. The plausibility check here is the comparision of the process outputs with
their estimates [6].

Since modeling error and unknown disturbances are inevitable for technical process,
the generated residual signal is usually non-zero even in the fault-free case. So a post-
processing of the residuals which extracts the information about the fault of interests from
the residual signals is needed, which is called residual evaluation. Residual generation
and residual evaluation builds the core of the model-based fault diagnosis technique. In
the following, different residual generation and evaluation approaches are introduced.
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Observer-based residual generation

In observer-based residual generation approaches, the estimation of the process output
is generated by an observer. It should be noted that the design of observers used for FD
purposes is different from that for control purposes. The observers needed for control
are state observers which are used to estimate the unmeasured states. In contrary, the
observers needed for FD (diagnostic observers) are output observers which estimate the
measured states. Generally, the existence conditions for diagnostic observers are much
more relaxed than that for a state observer. Full state observers like fault detection filter
are also widely used for residual generation, the extra design freedom is used to achieve
fault isolation, unknown input deoupling etc.

In order to achieve an optimal residual generation, considerable effort has been devoted
to develop observer-based residual generator which fulfills the following two requirements:
(1) robust to model uncertainties, disturbance and sensor noises; (2) sensitive to faults.
Unknown input observers which decouple the residual signal from the unknown distur-
bances were introduced by the pioneering work of Wuennenberg and Frank in [27] and
then considerable contribution was made in [28–30]. The drawback of this approach is
the hard existing conditions and the reduce of the fault detectability. In order to make a
better trade-off between robustness and sensitiveness, instead of completely decoupling
unknown inputs, much focus has also been paid to design observers which attenuate the
effect of unknown inputs based on H2 or H∞ index [31, 32]. Multi-objective optimiza-
tion approach which consider the robustness and sensitivity problem simultaneously are
studied in [33–35] based on the index H−/H∞, where H− is the measurement of the fault
sensitivity and H∞ index represents the robustness. Recently, [36, 37] have proposed an
unified solution which solves the Hi/H∞ (including H−/H∞ and H∞/H∞) optimization
problem, where Hi represents all nonzero singular values of the transfer matrix from
faults to residual signal.

Parity space based residual generation

In parity space based residual generation approaches, a so-called parity relation is derived
from system model. The residual generation is achieved by checking the consistency of the
parity relation based on a so-called parity vector. This approach has been first proposed
by [38] for state space model of the system, later contributions were made using the
transfer functions in [39–41].

There is a close relationship between parity space approach and observer-based ap-
proach. As mentioned in [6], parity space approach leads to certain types of observer
structures and is therefore structurally equivalent to the observer-based approach, even
though the design procedures are different.
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Parameter identification based methods

The core of the parameter identification based methods is an on-line parameter estima-
tion. The fault decision is performed by comparing the estimated parameter with the
nominal process parameter. An advantage of the approach is that it yields the size of
the deviations of process parameters which is very useful for fault analysis [26]. The
disadvantage is that, in order to estimate the parameters correctly a sufficient excitation
is needed, which is not always available [26]. There are a number of parameter identifi-
cation based schemes, for example, methods based on least squares (LS), recursive least
squares (RLS), extended least squares (ELS), etc.

Residual evaluation schemes

Based on the type of system under consideration, the evaluation schemes can be roughly
divided to statistical-based methods and norm-based methods. For stochastic systems,
the stochastical properties like mean, variance, likelihood ratio (LR), generalized like-
lihood ratio (GLR) are used for the evaluation of residuals [42–44]. For deterministic
systems, the norm-based residual evaluation is employed, where different kinds of norm
like L2, peak and also Root Mean Square value (RMS) are used [6]. Besides requiring
less on-line computation, norm-based schemes also allow a systematic way for threshold
computation.

Integrated design of residual generation and residual evaluation

In most of the studies, these two parts have been designed separately. Since the perfor-
mance of fault detection system is decided by residual generator and evaluator together, a
residual generator optimized under some performance index does not automatically result
in an optimal fault detection system. So in order to achieve an optimal FD performance,
it is necessary to study the approach which design the residual generator and evaluator
in an integrated manner instead of separate handling of these units. [23, 24] have pro-
posed the integrated design approach of FD system for linear systems, which achieves an
optimal trade-off between a lower false alarm rate and a higher fault detection rate.

2.2.5 Summary of fault diagnosis techniques

The selection of a proper FDI scheme depends on many factors. First of all, the prop-
erties of process dynamics should be considered. For example, signal processing based
fault diagnosis can be only used for processes working in the steady-state or with slow
dynamics. Secondly, the availability of a process model is also an important factor.
For example, it is relative easy to obtain a mathmatical model of mechanical systems,
where analytical model-based FDI schemes can be applied. However, for processes like
in chemical industry it is very hard or even impossible to get an analytical model. In this
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case, qualitative model-based approaches or signal-based approaches should be applied.
Thirdly, the choice of FDI schemes is also decided by the requirements like detection
time, ability to isolate the faults, etc. Approaches like Plausibility test can only achieve
the fault detection. Generally speaking, when a process model is available and the re-
quirement of FDI performance is relative high, then the model-based FDI schemes are
the best choice since it has the advantage of low cost, fast detection, ability to deal with
fast dynamical systems and also able to isolate or even identify the faults. So that, the
focus of this dissertation is model-based FDI schemes, specially for nonlinear systems.
The state of art of this area is reviewed in the next section.

2.3 Model-based FDI schemes for nonlinear systems

Most of the real systems are nonlinear in nature. One widely applied approach for the
fault detection of nonlinear systems is to linearize the nonlinear model at a number
of operating points, and for each operating point, the well established theory of linear
model-based FDI is used. In this framework, the linearization error is considered as
model uncertainties and handeled by applying robust FDI schemes. The drawback of
this approach is firstly the FDI performance, since the model uncertainties could be very
large due to the linearization, the threshlod should be set very high in order to avoid
false alarms, which will on the other hand reduce the fault detectability. Secondly, since
FDI systems designed for different operating point are switched between each other and
also because of the linearized models, the stability of the whole FDI system is very hard
or even impossible to guaranty. These limitations of applying linear FDI methods to
nonlinear systems motivated the researchers to study the nonlinear FDI techniques.
The model-based nonlinear FDI schemes are mostly extended from linear FDI the-

ory, which includes observer-based approaches, parity space approaches and parameter
identification based approaches. Among them, observer-based approach has been most
intensively studied and is also one of the focuses in this thesis, so the important meth-
ods of this approach will be reviewed. Recently, new nonlinear FD schemes have been
introduced in [19, 20] based on energy conservation of nonlinear industrial processes and
in [21] using the passive properties of nonlinear systems. These approaches are closely
related to system energy. Due to their clear physical meaning and easy implementation,
they have a great potential for the nonlinear FDI system design. The pioneer studies in
this field will also be introduced.

2.3.1 Observer-based approaches

High-gain observer approach

Proposed in [45–48], high-gain observer approach is developed for the input affine non-
linear systems based on a nonlinear transformation described in [46]. Based on the
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transformed system model, a nonlinear observer can be designed whose observer gain
is obtained by solving a linear algebraic equation. This approach can be applied to a
large class of nonlinear systems and the observer design is carried out in a systematic
way. However, the drawback is the high sensitivity of the nonlinear transformation to
model uncertainties, and also the peaking phenomenon because of the normally very high
observer gain.

Sliding mode observer approach

The inherent property of sliding mode observers is its robustness to uncertainties and
disturbances [49–51]. It can be applied to nonlinear systems whose dynamics include a
linear part and a nonlinear part which is Lipschitz with respect to system states, the un-
certainties and disturbances are assumed to be bounded by an known Lipschitz nonlinear
function. The design of sliding mode observer consists of two steps: construction of a
sliding surface and designing a feedback law which drives the system trajectories to the
sliding surface in finite time. As the trajectories reach the sliding surface, the estimation
becomes insensitive to the external disturbances. The limitation of this approach is its
requirement of sufficient measurements and the chattering phenomenon caused by the
nonlinear feedback in the observer.

Geometric approach

Extended from the detection filter proposed by Massoumnia [52], the nonlinear geometric
approach for fault detection is studied in [53–55]. The basic idea is to construct a subsys-
tem which is decoupled from disturbances and only affected by faults. This is achieved by
finding an unobservability subspace in which all disturbances are unobservable. Observer
is then designed for the subsystem, where the disturbances are decoupled. For fault iso-
lation, all the other faults, except the one to be isolated, are treated as disturbances and
are rendered unobservable to the subsystem. A recursive algorithm is proposed in [53] to
find the unobservability subspace. The drawback of this approach is that, the existing
conditions are very hard to fulfill, and the fault detectability is reduced when part of
faults belong to the same subspace as the disturbances.

Observers for Lipschitz Nonlinear systems

The formulation of Lipschitz nonlinear systems has been widely used in the development
of nonlinear FD techniques, since under some conditions, more general nonlinear systems
can be transformed into Lipschitz nonlinear system as discussed in [15]. The dynamics of
Lipschitz nonlinear systems contain a linear part and a nonlinear part which fulfills the
Lipschitz condition. Based on the well established linear matrix inequality (LMI) tech-
niques, the optimal residual generation problem can be solved for Lipschitz nonlinear
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systems, which achieves the trade-off between robustness against disturbances and sensi-
tiveness to faults [16–18, 56–59]. The first objective of this dissertation is to extend the
integrated FD design approach, which is well developed for linear systems, to Lipschitz
nonlinear systems.

2.3.2 Approaches based on energy-balance and passivity

In [19, 20], energy-balance based approaches have been introduced for the FDI system
design of complex industrial processes, where an input-output model of the system is im-
possible to obtain. Assume the process works in the steady-state or around an operating
point, the energy conservation principle are used to establish an energy balance of the
process, which can be considered as an “energy model”. Based on it, parameter estima-
tion approaches and parity space approaches can be used to generate the residual signal.
In [21], a FD scheme which connects the energy and the passivity has been proposed for
nonlinear switched systems. The concept of passivity relates closely to system energies,
its physical meaning is that, the energy stored in passive systems can not be more than
the energy supplied by the environment outside ([21]). This property can be expressed
by the following inequality:

V (x(τ)) − V (x(0)) ≤
τ

∫
0

yTudt (2.1)

where nonnegative function V with V (0) = 0 is called storage function which represents
the energy stored in the system, and yTu is called supplied rate which represents the
energy supplied from the outside. x are system states. (2.1) is always fulfilled for passive
systems in fault-free case, so fault detection can be carried out by checking (2.1), when
it fails, it means there are faults in the system.

2.4 Summary

In this chapter, a review of fault diagnosis techniques was given. Definitions of basic
terminology such as fault, unknown inputs, fault detection, fault isolation, and fault
identification were presented. The main ideas of different kinds of fault diagnosis tech-
niques including their merits and demerits were introduced. A particular attention has
been given to model-based approaches. A detailed survey of observer and energy based
approaches has been presented, which is the focus of this thesis.
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Chapter 3

Observer-based FD for Lipschitz nonlinear
systems: an integrated design approach

The objective of this chapter is to propose an integrated design approach of
observer-based FD for Lipschitz nonlinear systems, which results in a trade-off
between low FAR and high FDR in the norm-based framework. The original
definitions of FAR and FDR in the statistic framework are first reviewed,
then the extension of these two concepts to the norm-based framework is in-
troduced, which includes set of disturbances that cause false alarms (SDFA),
set of detectable faults (SDF ) and the simplified norm-based definition of
FDR [6]. The FAR in the norm-based framework is introduced in the way
that, SDFA can be minimized. Sufficient conditions for the existence of FD
system which achieves the given FDR and FAR are derived in the form of
linear matrix inequalities. Based on it, an iterative algorithm is presented,
which minimizes the FAR for a given FDR. Finally, a design example is
given to illustrate the proposed approach.

3.1 Introduction

Among model-based FD schemes, observer-based approaches have been most intensively
studied, see for instance [6, 7, 60, 61] and the references therein. Generally speaking,
an observer-based fault detection system consists of an observer-based residual generator
and a residual evaluator. In most of the studies, residual generator and residual evaluator
are designed separately. The residual generator is so designed that, the residual signal is
robust against unknown inputs and simultaneously sensitive to faults, for instance, see
[31, 33–35] to list a few. For residual evaluator design, fewer attentions have been paid.
Since the performance of fault detection system is decided by residual generator and
evaluator together, a residual generator optimized under some performance index does
not automatically result in an optimal fault detection system [6]. Therefore, in order to
achieve an optimal FD performance, it is necessary to study the approach which design
the residual generator and evaluator in an integrated manner instead of separate handling
of these units. For the integrated design of FD system, a criterion which can evaluate the
performance of the whole FD system is needed. In practice, essential requirements on an
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FD system are generally expressed in terms of a lower false alarm rate and a higher fault
detection rate, and an optimal trade-off between them is of primary interest in the FD
system design [6]. The concepts of FDR and FAR are originally defined in the statistic
framework and extended for FD systems with deterministic residual signals by [23, 24]
in the context of a norm-based residual evaluation. An integrated design framework for
linear systems is systematically introduced in [6], where concepts of SDFA, SDF , the
simplified norm-based definition of FAR and FDR are defined. The integrated design
problem has been formulated in two ways: (1) Given FDR, minimizing the SDFA; (2)
Given FAR, maximizing the SDF [6].

On the other hand, since most practical systems are nonlinear in nature, observer-based
FD techniques for nonlinear systems have also received a lot of attention, see for instance
[12, 62–66]. As there is no uniform solution for general nonlinear systems, most of the
time, FD system design for special kinds of nonlinear systems is studied. Among them,
Lipschitz nonlinear systems is one of the most important classes of nonlinear systems,
since under some conditions, more general nonlinear systems can be transformed into
Lipschitz nonlinear systems as discussed in [15]. Different FD approaches for Lipschitz
nonlinear systems have been proposed in [16–18, 56–59]. which mainly focus on residual
generator design. As mentioned above, an integrated design approach is needed to achieve
the optimal performance of the whole FD system. In this chapter, the integrated design
approach is extended to uncertain Lipschitz nonlinear systems. In practice, usually the
requirement of fault detectability should be first fulfilled, so the following integrated
design formulation is used: given FDR, minimizing the SDFA.

3.2 Preliminaries

Consider the following uncertain nonlinear systems

ΣS ∶
⎧⎪⎪⎨⎪⎪⎩
ẋ = Āx + φ(x, u) + B̄u + Ēdd +Eff

y = C̄x + D̄u + F̄dd + Fff
(3.1)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, y ∈ Rp is the output
vector, f ∈ Rl is the fault vector to be detected, and d ∈ Rq is the unknown input
vector. Moreover, matrices Ā, B̄, Ēd, C̄, D̄, F̄d in (3.1) are uncertain of the form X̄ =
X +∆X, where X ∈ {A,B,Ed, C,D,Fd} is a known matrix with appropriate dimension.
Similarly, matrices Ef and Ff are also known. ∆X ∈ {∆A,∆B,∆Ed,∆C,∆D,∆Fd} is
norm bounded uncertainty and can be expressed as

[ ∆A ∆B ∆Ed

∆C ∆D ∆Fd
] = [ E

F
]∆(t) [ G H K ]
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where E, F , G, H, K are known matrices with appropriate dimensions and ∆(t) is
bounded by

∆(t)T∆(t) ≤ I.
The nonlinear function φ(x, u) is assumed to be Lipschitz in x with a Lipschitz constant
γ ≥ 0. i.e ∀x, x̂, u ∥φ(x, u) − φ(x̂, u)∥ ≤ γ∥x − x̂∥.
Here ∥.∥ denotes the Euclidean norm of a vector. In addition the following assumptions
should be made throughout:

1. A +∆A is asymptotically stable for all ∆A;

2. (C,A) is detectable.
The first assumption can be checked by standard Lyapunov approach with LMI tools
[16]. The nonlinear observer based fault detection filter is designed as

ΣF ∶
⎧⎪⎪⎨⎪⎪⎩
˙̂x = Ax̂ + φ(x̂, u) +Bu +L(y −Cx̂ −Du)
r = y −Cx̂ −Du

(3.2)

where r ∈Rp is the residual signal, L ∈Rn×p is the observer gain. Denoting the estimation
error e = x − x̂, then we have the following observer error dynamics

ΣE ∶
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ė = (A −LC)e +Ψ + (∆A −L∆C)x
+(∆B −L∆D)u + (Ēd −LF̄d)d
+(Ef −LFf)f

r = Ce +∆Cx +∆Du + F̄dd + Fff

(3.3)

with Ψ = φ(x, u) − φ(x̂, u). Combining system (3.1) and the error dynamics (3.3), the
residual generator dynamics is as follows

ΣR ∶
⎧⎪⎪⎨⎪⎪⎩
ẋ0 = Ā0x0 +Ψ0 + Ē0d0 +E0,ff

r = C̄0x0 + F̄0d0 + F0,ff
(3.4)

with

x0 = [ x

e
] ;d0 = [ u

d
] ;

[ Ā0 Ē0

C̄0 F̄0

] = [ A0 E0

C0 F0

] + [ ∆A0 ∆E0

∆C0 ∆F0

] ;
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A0 = [ A 0
0 A −LC ] ;E0 = [ B Ed

0 Ed −LFd
] ;

E0,f = [ Ef

Ef −LFf
] ;Ψ0 = [ φ(x, u)

φ(x, u) − φ(x̂, u) ] ;

C0 = [ 0 C ] ;F0 = [ 0 Fd ] ;F0,f = Ff ;

∆A0 = [ ∆A 0
∆A −L∆C 0

] ;∆C0 = [ 0 ∆C ] ;
∆E0 = [ ∆B ∆Ed

∆B −L∆D ∆Ed −L∆Fd
] ;

∆F0 = [ ∆D ∆Fd ] ;

[ ∆A0 ∆E0

∆C0 ∆F0

] = [ Ē

F̄
]∆(t) [ Ḡ H̄ ] ;

Ē = [ ET (E −LF )T ]T ; F̄ = F
Ḡ = [ G 0 ] ; H̄ = [ H K ] .

In control theory, the L2 norm is widely used to measure the “energy” of a signal,
which is defined as follows.

Definition 3.2.1. The L2 norm of a vector-valued signal u(t) is defined by ([6])

∥u∥2 = (
∞

∫
0

uT (t)u(t)dt)1/2.
In practice, the L2 norm is usually computed in a time window [0, τ] as

∥u∥2,[0,τ] = (
τ

∫
0

uT (t)u(t)dt)1/2.
Using the L2 norm, d0 in (3.4) is assumed to be bounded by

∥d0∥2 ≤ δd,max. (3.5)

For the purpose of residual evaluation, the L2 norm of the residual signal is adopted
as evaluation function:

J = ∥r∥2.
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The decision logic of fault detection is as follows:

J > JthÔ⇒ faulty

J ≤ JthÔ⇒ fault − free
where Jth is the threshold. A false alarm is created if

J > Jth for f = 0,
and a fault is detected if

J > Jth for f ≠ 0.
In order to measure the influence of the faults to the residual signal r in (3.4), H−

index is defined.

Definition 3.2.2. [67] Given the system ΣR (3.4), assume that d0 = 0, then the H− index
can be defined as

∥ΣR∥− = inf
f≠0

∥r∥2∥f∥2 .
For H− index to be larger than some positive number β can be defined as

∥ΣR∥− = inf
f≠0

∥r∥2∥f∥2 ≥ β,
or

∥r∥2 ≥ β∥f∥2. (3.6)

β > 0 which fulfills (3.6) is called H− gain of system ΣR.

The following lemma is very useful in the sequel study.

Lemma 3.2.1. [68] Let G, Q, E, F(t) be real matrices of appropriate dimensions with
F(t) being a matrix function and F (t)TF (t) ≤ I, then for any scalar ǫ > 0,

MF (t)E +ETF (t)MT ≤ 1

ǫ
MMT + ǫETE.
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3.3 Definitions of FAR and FDR

3.3.1 Review of the definitions in the statistical framework

FAR and FDR are two concepts that are originally defined in the statistical framework
[42, 44]. Considering a stochastic process corrupted with the unknown input vector d

and the fault vector f , the definitions of FAR and FDR are as follows:

Definition 3.3.1. The probability FAR

FAR = prob(J > Jth∣f = 0)
is called false alarm rate.

Definition 3.3.2. The probability FDR

FDR = prob(J > Jth∣f ≠ 0)
is called fault detection rate.

3.3.2 Definitions in the norm-based framework

For deterministic system (3.1), new definitions are needed. In the context of a norm
based residual evaluation, the following definitions are introduced in [6].

Definition 3.3.3. Given residual generator ΣR and threshold Jth, the set SDF defined
by

SDF = {f ∣J > Jth for f ≠ 0}
is called set of detectable faults.

The size of SDF is a direct measurement of the FD system performance regarding to
the fault detectability. Since it is very difficult to express FDR in terms of the size of
SDF , a simplified definition of FDR is introduced.

Definition 3.3.4. FDR given by

FDR = βδf,min

Jth

is called FDR in the norm based framework. Where β > 0 is the H− gain from faults
to residual signal in the case that there are no disturbances and uncertainties (d0 = 0,
∆ = 0), and δf,min > 0 is the minimum size of the f vector which is defined as faults to be
detected.
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The physical meaning of this definition is that, the larger the faults are (δf,min is larger),
the larger FDR is; the larger the threshold is (Jth is larger), the smaller FDR will be.

Definition 3.3.5. Given residual generator ΣR and threshold Jth, the set SDFA defined
by

SDFA = {d∣J > Jth for f = 0}
is called set of disturbances that cause false alarms.

The size of SDFA indicates the number of the possible false alarms, and thus builds
a direct measurement of the FD system performance regarding to the intensity of false
alarms.

3.4 Integrated design of FD systems

3.4.1 Problem formulation

The objective of the integrated design of FD system is to achieve an optimal trade-
off between fault detectability and false alarm number. Since in practice, usually the
requirement of fault detectability should be first fulfilled, so the integrated design problem
is formulated as: given FDR, minimizing the false alarm number (SDFA).
The design parameters of the FD system are the observer gain L in (3.4) and the

threshold Jth. As FDR is given, according to Definition 3.3.4, threshold Jth should be
set as

Jth = βξfd (3.7)

with

ξfd = δf,min

FDR
, 0 < FDR ≤ 1

and β is the H− gain from faults to residual signal in the case that there are no dis-
turbances and uncertainties. With d0 = 0 and ∆ = 0, residual generator dynamics (3.4)
becomes

⎧⎪⎪⎨⎪⎪⎩
ẋf = (A −LC)xf +Ψ + (Ef −LFf)f
rf = Cxf + Fff.

(3.8)

β fulfills ∥rf∥2 ≥ β∥f∥2.
δf,min is the minimum size of the f vector which is defined as faults to be detected, we
have

∥f∥2 ≥ δf,min.
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By setting Jth as in (3.7), the requirement of FDR is fulfilled. In the following we will
try to minimize the false alarm number. Since false alarms are created in the fault-free
case with f = 0, in this case the residual generator dynamics (3.4) becomes

⎧⎪⎪⎨⎪⎪⎩
ẋ0,d = Ā0x0,d +Ψ0 + Ē0d0

rd = C̄0x0,d + F̄0d0.
(3.9)

According to Definition 3.3.5, for residual generator (3.9) and threshold (3.7), SDFA is
as

SDFA = {d0∣ ∥rd∥2 > βξfd}.
In the norm-based framework, FAR (0 ≤ FAR ≤ 1) can be defined as the size of

SDFA. False alarms are created when evaluated residual driven by disturbances becomes
larger than the threshold in the fault-free case. In the norm-based framework, the size
of disturbances is measured by its L2 norm. For residual generator dynamics (3.9),
the considered disturbances are bounded by ∥d0∥2 ≤ δd,max. Since the upper bound of
disturbances is fixed, FAR can be defined based on the lower bound of disturbances
which leads to false alarms. This lower bound is denoted as δfa,min, we have

∥d0∥2 > δfa,min (3.10)

⇐⇒ ∥rd∥2 − βξfd > 0. (3.11)

In order to achieve a smaller FAR, δfa,min should be larger. This relation can be repre-
sented by (considering the range 0 ≤ FAR ≤ 1)

δfa,min = (1 − FAR)δd,max. (3.12)

Note that, when FAR = 0, (3.10) will never be fulfilled since d0 is bounded by δd,max,
which leads to the smallest size of SDFA; and when FAR = 1, (3.10) is almost always
true, which leads to the largest size of SDFA.
Based on (3.10), (3.11) and (3.12), the integrated design problem is formulated as:

given FDR, finding observer gain L so that FAR is minimized.

3.4.2 A solution to the integrated design problem

With a given FDR, (3.11) can be transformed into

∥rd∥2
βξfd

> 1,
then based on it, one sufficient condition for (3.10) is

∥d∥2 ≥ (1 − FAR)δd,max

∥rd∥2
βξfd

. (3.13)
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In (3.13), FAR and FDR are connected, which is the key step for the optimization.
Because (3.13) is a sufficient condition, for the given FDR, the FAR calculated by
(3.13) is larger or equal to its actual value. So a suboptimal solution can be achieved by
minimizing FAR based on (3.13). The range of FAR has been defined as 0 ≤ FAR ≤ 1,
in the following study, it is assumed that

0 ≤ FAR < 1.
Since FAR should be minimized, this assumption will not lead to a conservative result.
(3.13) can be transformed into

∥rd∥2 − βξfd ∥d∥2(1 − FAR)δd,max

≤ 0 (3.14)

where β fulfills ∥rf∥2 ≥ β∥f∥2. (3.15)

Based on (3.14) and (3.15), for a given FDR, the minimization of FAR can be achieved
in an iterative way as follows:

Step I. Set the initial value of FAR.

Step II. If there exist β and observer gain L, which fulfill (3.14) and (3.15), then de-
crease (otherwise increase) the value of FAR until we get the minimum FAR.

The above algorithm gives an elegant tool for the minimization of FAR provided FDR

is given. Now the question is how to check the existence of β and L in Step II. To this
end, the following theorem is proposed.

Theorem 3.4.1. Given residual generator dynamics (3.8) and (3.9), assume that xf(0) =
0, x0,d(0) = 0. Then

∥rd∥2 − βλ∥d∥2 ≤ 0 (3.16)

∥rf∥2 ≥ β∥f∥2 (3.17)

with

λ = ξfd(1 − FAR)δd,max

,

if there exist some ǫ > 0, β > 0, L and symmetric matrices P1 > 0, P2 > 0, Q ≤ 0 so that

[ Ω1 Ω2∗ Ω3

] ≤ 0 (3.18)

⎡⎢⎢⎢⎢⎢⎣
N5 Q(Ef −LFf) +CTFf γQ∗ F T

f Ff − β2I 0

∗ ∗ I

⎤⎥⎥⎥⎥⎥⎦
≥ 0 (3.19)
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where

Ω1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

N1 0 N3 P1Ed + εGTK∗ N2 0 P2(Ed −LFd)∗ ∗ N4 εHTK∗ ∗ ∗ −β2λ2I + εKTK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Ω2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 P1E 0 γP1

CT P2(E −LF ) γP2 0
0 0 0 0
F T
d 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Ω3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−I −F 0 0∗ −εI 0 0∗ ∗ −I 0∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
N1 = P1A +ATP1 + εGTG + I
N2 = P2(A −LC) + (A −LC)TP2 + I
N3 = P1B + εGTH

N4 = −β2λ2I + εHTH

N5 = Q(A −LC) + (A −LC)TQ − I +CTC

Proof. The proof includes two parts.
Part 1: Let

Vd = xT
0,dPx0,d, P = [ P1 0

0 P2

] > 0.
It holds

rTd rd − β2λ2dTd + V̇d ≤ 0 (3.20)

Ô⇒
∞

∫
0

rTd rd − β2λ2

∞

∫
0

dTd + Vd(∞) ≤ 0
Ô⇒ ∥rd∥2 − βλ∥d∥2 ≤ 0.

Hence (3.20) is the sufficient condition for (3.16). We have

V̇d = 2xT
0,dP [Ā0x0,d + Ē0d0] + 2xT

0,dPΨ0. (3.21)

Using Cauchy-Schwarz inequality and the Lipschitz property of Ψ0, it turns out

2xT
0,dPΨ0 ≤ 2∥Px0,d∥∥Ψ0∥

≤ 2γ∥Px0,d∥∥x0,d∥
≤ γ2xT

0,dPPx0,d + xT
0,dx0,d. (3.22)
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Substituting (3.22) into (3.21) yields

V̇d ≤ 2xT
0,dP [Ā0x0,d + Ē0d0]

+γ2xT
0,dPPx0,d + xT

0,dx0,d.

Based on it, a sufficient condition for (3.20) is

(C̄0x0,d + F̄0d0)T (C̄0x0,d + F̄0d0) − β2λ2dTd

+2xT
0,dP [Ā0x0,d + Ē0d0] + γ2xT

0,dPPx0,d

+xT
0,dx0,d ≤ 0

⇐⇒ [ x0,d

d0
]
T

χ1 [ x0,d

d0
] ≤ 0 (3.23)

where

χ1 = [ C̄T
0

F̄ T
0

] [ C̄0 F̄0 ] + [ N6 PĒ0∗ −β2λ2I
] ,

and

N6 = PĀ0 + ĀT
0 P + γ2PP + I.

Therefore

χ1 ≤ 0 (3.24)

Ô⇒ ∥rd∥2 − βλ∥d∥2 ≤ 0.
Applying the Schur complement we can rewrite (3.24) into

⎡⎢⎢⎢⎢⎢⎣
N6 PĒ0 C̄T

0

ĒT
0
P −β2λ2I F̄ T

0

C̄0 F̄0 −I
⎤⎥⎥⎥⎥⎥⎦
≤ 0⇐⇒ (3.25)

⎡⎢⎢⎢⎢⎢⎣
PA0 +AT

0
P + γ2PP + I PE0 CT

0

ET
0
P −β2λ2I F T

0

C0 F0 −I
⎤⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎢⎣
P∆A0 +∆AT

0
P P∆E0 ∆CT

0

∆ET
0
P 0 ∆F T

0

∆C0 ∆F0 0

⎤⎥⎥⎥⎥⎥⎦
≤ 0.

Split the second matrix in the above inequality into

⎡⎢⎢⎢⎢⎢⎣
P∆A0 +∆AT

0
P P∆E0 ∆CT

0

∆ET
0
P 0 ∆F T

0

∆C0 ∆F0 0

⎤⎥⎥⎥⎥⎥⎦
= χ2 + χT

2
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3.4 Integrated design of FD systems

where

χ2 =
⎡⎢⎢⎢⎢⎢⎣
PĒ

0
F

⎤⎥⎥⎥⎥⎥⎦
∆(t) [ Ḡ H̄ 0 ] .

Then according to Lemma 3.2.1, (3.25) holds if there exists an ε > 0 such that

⎡⎢⎢⎢⎢⎢⎣
N7 PE0 CT

0

ET
0
P −β2λ2I F T

0

C0 F0 −I
⎤⎥⎥⎥⎥⎥⎦
+ 1

ε

⎡⎢⎢⎢⎢⎢⎣
PĒ

0
F

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
PĒ

0
F

⎤⎥⎥⎥⎥⎥⎦

T

+ε [ Ḡ H̄ 0 ]T [ Ḡ H̄ 0 ] ≤ 0
with N7 = PA0 +AT

0
P + γ2PP + I. Applying the Schur complement yields

⎡⎢⎢⎢⎢⎢⎢⎢⎣

N8 PE0 + εḠT H̄ CT
0

PĒ∗ −β2λ2I + εH̄T H̄ F T
0

0∗ ∗ −I F∗ ∗ ∗ −εI

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0

with N8 = PA0 +AT
0
P + γ2PP + I + εḠT Ḡ. Substituting P = [ P1 0

0 P2

] into the above

inequality, it turns out

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N9 0 N10 N11 0 P1E∗ N12 0 N13 CT P2(E −LF )∗ ∗ N14 εHTK 0 0∗ ∗ ∗ N15 F T
d 0∗ ∗ ∗ ∗ −I −F∗ ∗ ∗ ∗ ∗ −εI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0

where

N9 = P1A +ATP1 + εGTG + γ2P1P1 + I
N10 = P1B + εGTH,N11 = P1Ed + εGTK

N12 = P2(A −LC) + (A −LC)TP2 + γ2P2P2 + I
N13 = P2(Ed −LFd),N14 = −β2λ2I + εHTH

N15 = −β2λ2I + εKTK.

Finally, applying the Schur complement again, we have (3.18) of Theorem 3.4.1, which
is the sufficient condition for (3.16).
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Part 2: Let
Vf(x) = xT

f Qxf , Q ≤ 0.
It holds

rTf rf − β2fTf + V̇f ≥ 0 (3.26)

Ô⇒
∞

∫
0

rTf rf − β2

∞

∫
0

fTf + Vf(∞) ≥ 0
Ô⇒ ∥rf∥2 ≥ β∥f∥2.

So (3.26) is the sufficient condition for (3.17). We have

V̇f = 2xT
f Q[(A −LC)xf + (Ef −LFf)f]

+2xT
f QΨ. (3.27)

Using Cauchy-Schwarz inequality and the Lipschitz property of Ψ, it turns out

2xT
f QΨ ≥ −2∥Qxf∥∥Ψ∥

≥ −2γ∥Qxf∥∥xf∥
≥ −γ2xT

f QQxf − xT
f xf . (3.28)

Substituting (3.28) into (3.27) yields

V̇f ≥ 2xT
f Q[(A −LC)xf + (Ef −LFf)f]

−γ2xT
f QQxf − xT

f xf .

Based on it, a sufficient condition for (3.26) is

(Cxf + Fff)T (Cxf + Fff) − β2fTf

+2xT
f Q(A −LC)xf + 2xT

f Q(Ef −LFf)f
−γ2xT

f QQxf − xT
f xf ≥ 0

⇐⇒ [ xf

f
]
T

[ N16 N17∗ F T
f Ff − β2I

] [ xf

f
] ≥ 0

with

N16 = Q(A −LC) + (A −LC)TQ − γ2QQ

−I +CTC

N17 = Q(Ef −LFf) +CTFf .

Applying the Schur complement yields (3.19) of Theorem 3.4.1, which is the sufficient
condition for (3.17). This completes the proof.
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3.5 A design example

In Theorem 3.4.1, (3.18) and (3.19) are nonlinear matrix inequalities (NMIs) which
can be transformed into standard LMIs by setting

Q = −P2, Y = P2L.

So the integrated design problem can be solved by powerful LMI tools.

3.5 A design example

3.5.1 System description

Consider the FD problem of a system in the form of (3.1) with coefficient matrices as

A =
⎡⎢⎢⎢⎢⎢⎣
−6.5 3.9 5.2
0 −9.1 3.9
1.3 3.9 −7.8

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣
1
2
1.5

⎤⎥⎥⎥⎥⎥⎦
,

C = [ 1 2 −1
2 −1 3

] , D = [ 0.5
0.3
] ,

Ed =
⎡⎢⎢⎢⎢⎢⎣
−0.3 1 0.6
0 0.3 0.5
0.4 0 −0.2

⎤⎥⎥⎥⎥⎥⎦
,

Ef =
⎡⎢⎢⎢⎢⎢⎣

1.3 0.65−0.39 1.04
0.78 −1.17

⎤⎥⎥⎥⎥⎥⎦
, F = [ 0.35

0.1
] ,

Fd = [ 0.7 1 −0.3
0 0.6 0.2

] , Ff = [ 1.6 0
0 −1.6 ] ,

E =
⎡⎢⎢⎢⎢⎢⎣

0.2
0.3
0.15

⎤⎥⎥⎥⎥⎥⎦
, φ(x, u) = 0.5

⎡⎢⎢⎢⎢⎢⎣
sin(x1)
cos(x2)

0

⎤⎥⎥⎥⎥⎥⎦
,

G = [ 0.25 0.1 0.33 ] , H = 0.12,
K = [ 0.16 0.23 0.31 ] .

In the integrated design, set

FDR = 1,
then following the algorithm in Section 3.4.2 to minimize the FAR, we get

FARmin = 0.12,
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Chapter 3 Observer-based FD for Lipschitz nonlinear systems: an integrated design approach

and the optimal observer gain matrix is

Lopt =
⎡⎢⎢⎢⎢⎢⎣

0.82 −0.32−0.14 −0.41
0.34 0.52

⎤⎥⎥⎥⎥⎥⎦
.

The H− gain from faults to residual signal of (3.8) is β = 1.5. The input and the distur-
bances are set as

u(t) = 3, d(t) = [ 2.8cos(10t) 2 4sin(10t) ] . (3.29)

The simulations are carried out for τ = 3000 seconds. d0 = [ d u ]T is bounded by

∥d0∥2,[0,τ] ≤ δd,max = 332.4
The faults which are defined to be detected are bounded as

∥f∥2,[0,τ] ≥ δf,min = 136.7
then according to (3.7), the threshold is computed as

Jth = β δf,min

FDR
= 205.6

3.5.2 Simulation results

Two faulty cases are considered as shown in Fig 3.1. For the first case in Fig 3.1a, Fault
1 appears at t = 1500 seconds as a step function f1 = 3 and Fault 2 appears at t = 1700
seconds as a step function f2 = −2. For the second case, Fault 1 and Fault 2 are ramp
signals as in Fig 3.1b. In both cases, the size of the faults is

∥f∥2,[0,τ] = δf,min = 136.7
where f = [ f1 f2 ]T . So the size of the faults equal to the minimum value to be
detected. Two faulty cases are denoted as F1 and F2. In the simulation results, the solid
line represents the behavior of residual signals ri(i = 1,2) or evaluated residual J , and
the dashed line represents the threshold Jth.
Performance of FD system: Fig 3.2 shows the simulation results for the first faulty

case. From Fig 3.2a we can see that, after f1 becomes nonzero at t = 1500 seconds, there
is a significant change in r1, and after f2 becomes nonzero at t = 1700 seconds, there is
a significant change in r2. In Fig 3.2b, after the fault appears, the evaluated residual J
increases much faster and becomes larger than the threshold at t = 1860 seconds, which
leads to a successful fault detection.
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Figure 3.1: Two faulty cases
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(b) Behavior of evaluated residual for F1

Figure 3.2: Performance of FD system for F1
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Study of FDR: According to Definition 3.3.4 of FDR, considering the case when the
system is only driven by the faults i.e. d0 = 0, ∆ = 0. Since fault detection rate is set as
FDR = 1, it means all faults whose size is larger or equal to δf,min should be detected.
Fig 3.3 shows the behavior of evaluated residual J for both faulty cases. We can see that,
before the faults appear, the evaluated residual J is equal to zero since d0 = 0, and after
the occurrence of the faults, J turns to be non-zero and finally crosses the threshold,
which leads to a successful fault detection. So for both cases the requirement of FDR is
fulfilled.
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Figure 3.3: Behavior of evaluated residual for F1 and F2 when d0 = 0, ∆ = 0
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Figure 3.4: Study of FAR

Study of FAR: According to the definition of FAR in (3.10) and (3.11), since we
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3.6 Summary

have FARmin = 0.12, when d0 is bounded by

∥d0∥2 ≤ (1 − FAR)δd,max = 292.5, (3.30)

then there should be no false alarms. Considering the fault-free case with d0 = [ d u ]T ,
where d and u are as in (3.29), we have

∥d0∥2 = 273.4 < 292.5 (3.31)

Fig 3.4a shows the simulation results. We can see that, the evaluated residual stays
under the threshold, there is no false alarm. In order to validate the FAR, a series
of simulations have been carried out, in which the size of disturbances is step by step
increased as d̃(t) = p∗d(t)(p ≥ 1), where d(t) is as in (3.29). The L2-Norm of the residual
signal for different size of d0 is shown in Fig 3.4b. We can see that, the L2-Norm of the
evaluated residual signal increases together with ∥d0∥2, and it reaches the threshold when∥d0∥2 = 302.2, which leads to false alarms. Comparing it with (3.30) we know that, the
obtained FAR is larger than its actual value, which is caused by the sufficient conditions
in the optimization.

3.6 Summary

This chapter has proposed an integrated design approach of observer-based FD for Lip-
schitz nonlinear systems, which results in a suboptimal trade-off between norm-based
FAR and FDR. An iterative algorithm has been presented, which minimizes the FAR

for a given FDR. The effectiveness of the proposed approach has been demonstrated by
a design example.
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Chapter 4

Energy-balance based FDI framework for
passive nonlinear systems

The objective of this chapter is to establish an energy-balance based FDI
framework for passive nonlinear systems. Based on passivity, an energy bal-
ance of passive nonlinear systems is constructed, which includes the stored,
dissipated and supplied energies. In the new FDI framework, faults are defined
according to their different influences on system energies. The fault detection
is carried out by checking the validity of the energy balance. For fault iso-
lation, a two-step approach is proposed including: (1) Isolation of different
classes of faults (energy changes); (2) Isolation of different components. For
passive nonlinear systems with unknown inputs, thresholds for fault detection
and isolation are designed based on the bound of “unknown-input energy”.
Finally, the proposed FDI schemes are illustrated by an RLC circuit example.

4.1 Introduction

In control engineering, the concept of “energy” is widely used in the stability analysis and
control system design. In Lyapunov theory, a function of the system states V (x) is called
Lyapunov function when it fulfills V (x) ≥ 0 with equality if and only if x = 0. Lyapunov
function V (x) can be considered as a measure of the true physical energy of the system.
The asymptotical stability is guaranteed when V̇ (x) ≤ 0 (V̇ (x) = 0 if and only if x = 0),
which represents the fact that, if system loses energy over time and the energy is never
restored, then eventually the system must grind to a stop and reach some final resting
state. In this sense, V (x) is regarded as the system “energy” which can also be applied
to abstract mathematical systems, economic systems or biological systems, where the
original concept of energy is not applicable. For the control system design, dynamical
systems can be viewed as “energy-transformation” devices, the control problem can then
be recast as finding a dynamical system and an interconnection pattern such that the
overall energy function takes the desired form [69]. This “energy-shaping” approach is
the essential of passivity-based control (PBC) [70–74]. Passivity is a very important
concept in control theory which relates closely to system energies. The physical meaning
of passivity is that, passive systems can not store more energy than that supplied by the
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environment outside [21]. Energy-based approaches are particularly useful in studying
complex nonlinear systems by decomposing them into simpler subsystems that, upon
interconnection, add up their energies to determine the full system’s behavior [69]. In
this chapter, an energy-balance based FDI framework for passive nonlinear systems is
proposed. Compared with the classical FDI schemes for nonlinear systems, the proposed
approach can be applied to a large class of nonlinear systems i.e. all kinds of passive
nonlinear systems including complex systems like switched systems, hybrid systems etc.
Since for many complex nonlinear systems, the mathematical formulation of the system
energies is quite simple, the on-line computation of the proposed approaches is very low
which is a very important property for the industry. Moreover, it is generally much
easier to establish an “energy model” than a classical input-output model which is even
impossible for many complex industry processes.

In [19–21], energy equality (energy balance) of steady-state processes and energy in-
equality (passive energy relation) of dynamic systems have been applied for fault detection
system design, where classical FDI framework is still used i.e. fault definition, fault isola-
tion schemes etc. In this chapter, dynamic passive nonlinear systems are considered. In
order to make full use of the energy properties of passive systems, a new FDI framework
is proposed. Firstly, an energy balance of passive nonlinear systems is established based
on passivity. Compared with the energy inequality used in [21], besides the stored and
supplied energies, dissipated energy is also taken into account. Based on it, a higher
fault detectability can be achieved. On the other hand, the consideration of dissipated
energy also makes it possible to isolate the faults in energy-dissipating components. Sec-
ondly, different from the classical FDI framework, the faults are defined according to
their different influences on system energies. Since the change of the system energies can
be detected by the energy balance, it is natural to define the faults based on different
energy changes which has a very clear physical meaning. Thirdly, energy-balance based
fault isolation schemes are proposed, which include two steps. The first step is to find
out which kind of energy change (fault) appears in the system. After the type of the
fault is isolated, the second step is to isolate the location of the fault which is to find out
the faulty component. In practice, unknown inputs (disturbances) are inevitable. The
influence of unknown inputs to the energy balance can be modeled as “unknown-input
energy”. For the fault detection and isolation of passive system with unknown inputs,
thresholds are designed based on the bound of unknown-input energy.

4.2 Preliminaries

Definition 4.2.1. [75] If there exists a function V (x) ≥ 0, called the storage function,
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such that for all x(0), all τ ≥ 0, and all functions u

V (x(τ)) − V (x(0)) ≤
τ

∫
0

yTudt, (4.1)

then the system with input u and output y is passive.

The definition of passive systems has strong physical meanings. V (x(τ)) represents
the energy stored in the system at time τ and ∫ τ

0
yTudt represents the supplied energy

from the outside.

Consider an RLC circuit example as in Fig 4.1, which consists of a resistor, an inductor,
a capacitor and a power source. The RLC circuit can be modeled as a passive system
whose input is the voltage of the source u and output is the current y = i. In this case,

∫ τ

0
yTudt in (4.1) is exactly the power flowing into the circuit, and V (x(τ)) is the energy

stored in capacitor and inductor [22]. Property (4.1) expresses the fact that the “stored
energy” V (x(τ)) of system at any future time τ is at most equal to the sum of the
stored energy V (x(0)) at present time and the total externally supplied energy ∫ τ

0
yTudt

during the time interval [0 τ]. Hence, there can be no internal “creation of energy”,
only internal dissipation of energy is possible [75].

Figure 4.1: RLC circuit
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4.3 Energy balance of passive systems

Based on passive relation (4.1), an energy balance of passive systems can be constructed.
The internal energy dissipation Edis is defined as

Edis =
τ

∫
0

yTudt − (V (x(τ)) − V (x(0))). (4.2)

According to (4.1) we have

Edis ≥ 0.
Since Edis is the sum of the dissipated energy in the time interval [0, τ], it has the
following form

Edis =
τ

∫
0

d(x)dt, d(x) ≥ 0. (4.3)

For the RLC circuit example we have

d(x) = i2Re

where i is the current and Re is the resistance.
The energy balance of passive systems is represented by (4.2) which can be transformed

into

V (x(τ)) − V (x(0)) + Edis =
τ

∫
0

yTudt. (4.4)

Assuming the zero initial condition (i.e. V (x(0)) = 0), the energy balance (4.4) can be
written as

H = 0 (4.5)

with

H = Estor + Edis − Esup (4.6)

Estor = V (x(τ)) (4.7)

Edis =
τ

∫
0

d(x)dt (4.8)

Esup =
τ

∫
0

yTudt. (4.9)

Estor and Esup are stored and supplied energies.
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4.4 Definition of faults

When system faults occur, the stored energy in the system and dissipated energy out
of the system can be changed. In the energy-balance based FDI framework, faults are
defined according to their influences on these two kinds of energies.

4.4.1 Stored-energy change

This kind of fault is caused by the change of capacity of energy-storing components, for
example the change of the capacitance of the capacitor in an RLC circuit. In this case,
the stored energy becomes

Ẽstor = Ṽ (x(τ))
where Ṽ (x(τ)) represents the changed storage function in the faulty case. When only the
faults in energy-storing components are considered, the dissipated and supplied energies
are the same as in (4.8) and (4.9). In this case, the new system energy balance is as

Ẽstor + Edis = Esup. (4.10)

(4.10) is equal to

Edis − Esup = −Ẽstor. (4.11)

Substituting (4.11) into (4.6) results in

H =∆Estor (4.12)

with H as in (4.6) and

∆Estor = Estor − Ẽstor = Ṽ (x(τ)) − V (x(τ)) (4.13)

which is the stored-energy change.

4.4.2 Dissipated-energy change

This kind of fault is caused by the change of the dissipation rate of energy-dissipating
components, for example the change of the resistance of resistor in an RLC circuit. In
this case dissipated energy becomes

Ẽdis =
τ

∫
0

d̃(x)dt (4.14)
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where d̃(x) represents the changed dissipating function in faulty case. The faults which
lead to a larger (smaller) dissipation rate are defined as

⎧⎪⎪⎨⎪⎪⎩
d(x) − d̃(x) ≤ 0 for a larger dissipation rate

d(x) − d̃(x) ≥ 0 for a smaller dissipation rate.
(4.15)

When only faults in energy-dissipating components are considered, the stored and sup-
plied energies are the same as in (4.7) and (4.9). In this case, the new system energy
balance is as

Estor + Ẽdis = Esup. (4.16)

(4.16) is equal to

Estor − Esup = −Ẽdis. (4.17)

Substituting (4.17) into (4.6) leads to

H =∆Edis (4.18)

with H as in (4.6) and

∆Edis = Edis − Ẽdis =
τ

∫
0

(d(x) − d̃(x))dt (4.19)

which is the dissipated-energy change.

4.5 Fault detection

In the previous sections, we have studied the energy balance of passive systems and the
influence of faults to it. Based on (4.5), (4.12) and (4.18) we have

⎧⎪⎪⎨⎪⎪⎩
H = 0 for fault-free case

H = Efault for faulty case
(4.20)

with H as in (4.6), and Efault represents the energy changes:

⎧⎪⎪⎨⎪⎪⎩
Efault =∆Estor for stored-energy change

Efault =∆Edis for dissipated-energy change.

with ∆Estor as in (4.13) and ∆Edis as in (4.19). Based on (4.20), the fault detection logic
can be designed as:

⎧⎪⎪⎨⎪⎪⎩
H ≠ 0Ô⇒ faulty

H = 0Ô⇒ fault-free.
(4.21)
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In practice, it is more convenient to evaluate H in a moving time window [τ, τ + η] as
H (τ) = Estor(τ) + Edis(τ) − Esup(τ) (4.22)

where

Estor(τ) = V (x(τ + η)) − V (x(τ))
Edis(τ) =

τ+η

∫
τ

d(x)dt

Esup(τ) =
τ+η

∫
τ

yTudt. (4.23)

In this case, the fault detection logic is that:

⎧⎪⎪⎨⎪⎪⎩
H (τ) ≠ 0Ô⇒ faulty

H (τ) = 0Ô⇒ fault-free.
(4.24)

4.6 Fault isolation

After the faults have been detected, the next step is to achieve the fault isolation. In
Section 4.4, the faults have been defined as different energy changes. Based on it, the
first step of the fault isolation is to find out which kind of energy change appears in the
system.

4.6.1 Isolation of different energy changes

Firstly, the different properties of energy changes are studied. Based on (4.19), the
dissipated-energy change in the moving time window [τ, τ + η] can be written as

∆Edis(τ) =
τ+η

∫
τ

(d(x) − d̃(x))dt,
then according to (4.15) we have

⎧⎪⎪⎨⎪⎪⎩
∆Edis(τ) ≤ 0 for a larger dissipation rate

∆Edis(τ) ≥ 0 for a smaller dissipation rate

which indicates that, ∆Edis(τ) has the same sign in all evaluation time windows when
there is a fault in energy-dissipating components (i.e. a larger or smaller dissipation rate).
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4.6 Fault isolation

Based on (4.13), the stored-energy change in the moving time window [τ, τ + η] is
∆Estor(τ) = Ṽ (x(τ + η)) − V (x(τ + η)) + Ṽ (x(τ)) − V (x(τ)).

It can be seen that, the sign of ∆Estor(τ) depends also on system states, which is different
from the case of the dissipated-energy change.
In faulty case we have

H (τ) = Efault(τ)
where

⎧⎪⎪⎨⎪⎪⎩
Efault(τ) =∆Edis(τ) for dissipated-energy change

Efault(τ) =∆Estor(τ) for stored-energy change.

So based on the different properties of ∆Edis(τ) and ∆Estor(τ), the type of energy change
can be isolated by

⎧⎪⎪⎨⎪⎪⎩
H (τ) ≥ 0 (τ ≥ τdet) or H (τ) ≤ 0 (τ ≥ τdet) Ô⇒ dissipated-energy change

otherwise Ô⇒ stored-energy change.
(4.25)

Here τdet is the time window when the fault is detected by (4.24). With the knowlege of
the type of the energy change, we can distinguish between the faults in energy-storing
components and the faults in energy-dissipating components.

4.6.2 Isolation of different components

The second step of energy-balance based fault isolation is to find out which energy-storing
or energy-dissipating component is faulty. Since the type of the energy change has been
isolated by the first step, only part of the components (energy-storing components or
energy-dissipating components) need to be considered. Suppose that, Efault(τ) can be
written as:

Efault(τ) = Efault1(τ) + Efault2(τ) + ... + Efaultm(τ) (4.26)

where Efaultj(τ)(j = 1..m) is the energy change caused by the fault in jth component,

Efaultj(τ) =∆pjNj(τ), j = 1..m, (4.27)

and ∆pj is the change of dissipation rate or capacity of jth component. Ni is the function
of system states which relates to jth component. It is assumed that, ∆pj is constant.
Based on (4.27) we have

Efaulti(τ)
Nj(τ) =∆pj, when Nj(τ) ≠ 0. (4.28)
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For the case when Nj(τ) = 0,
Efaultj(τ) = 0. (4.29)

Suppose only the kth component is faulty, then

⎧⎪⎪⎨⎪⎪⎩
Efaultk(τ) ≠ 0
Efaultj(τ) = 0, j = 1..k − 1, k + 1..m.

(4.30)

So based on (4.26) we have

Efault(τ) = Efaultk(τ). (4.31)

For each component, constructing Mj(τ)(j = 1..m) as
Mj(τ) = Efault(τ)

Nj(τ) , when Nj(τ) ≠ 0.
Based on (4.28) and (4.31), for the kth faulty component, it turns out

Mk(τ) =∆pk. (4.32)

Recalling the assumption that ∆pk is constant, Mk(τ) is also constant, while Mj(τ)(j =
1..k − 1, k + 1..m) do not have such property. Based on it and according to (4.29), the
faulty component can be isolated by

⎧⎪⎪⎨⎪⎪⎩
Mj(τ) is constant, when Nj(τ) ≠ 0
Efault(τ) = 0, when Nj(τ) = 0 Ô⇒ jth component is faulty

otherwise Ô⇒ jth component is fault-free. (4.33)

Note that H (τ) is available as in (4.22), and in faulty case we have

H (τ) = Efault(τ),
so in applications, Efault(τ) is replaced by H (τ) in (4.33).

4.7 Energy-balance based FDI for passive systems with

unknown inputs

Since unknown inputs (disturbances) are inevitable in practice, in this section, energy-
balance based FDI schemes for passive systems with unknown inputs are studied. The
influence of unknown inputs to the energy balance is modeled as unknown-input energy
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and denoted by Eun. Based on (4.4), a new energy balance can be constructed by taking
into account Eun as

V (x(τ)) − V (x(0)) + Edis + Eun =
τ

∫
0

yTudt. (4.34)

Evaluated in the time window [τ, τ + η], energy balance (4.34) can be written as

H (τ) = Eun(τ) (4.35)

with
H (τ) = Estor(τ) + Edis(τ) − Esup(τ) (4.36)

and Estor(τ), Edis(τ) and Esup(τ) are as in (4.23). Eun(τ) is the unknown-input energy
in the time window [τ, τ + η], which is assumed to be bounded by

∣Eun(τ)∣ ≤ Θ. (4.37)

4.7.1 Fault detection

Following the same definition of the faults as in Section 4.4, we have

⎧⎪⎪⎨⎪⎪⎩
H (τ) = Eun(τ) for fault-free case

H (τ) = Efault(τ) + Eun(τ) for faulty case
(4.38)

where

⎧⎪⎪⎨⎪⎪⎩
Efault(τ) =∆Estor(τ) for stored-energy change

Efault(τ) =∆Edis(τ) for dissipated-energy change.

Then based on the bound of the unknown-input energy Eun(τ) in (4.37), the fault detec-
tion logic is designed as

⎧⎪⎪⎨⎪⎪⎩
∣H (τ)∣ > ΘÔ⇒ faulty

∣H (τ)∣ ≤ ΘÔ⇒ fault-free
(4.39)

with H (τ) as in (4.36).

4.7.2 Fault isolation

Similar as in Section 4.6, the fault isolation for passive systems with unknown inputs also
includes two steps.
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Isolation of different energy changes

As discussed in Section 4.6.1, the dissipated-energy change and the stored-energy change
have different properties. For dissipated-energy change, Efault(τ) has the same sign in all
time windows after the fault appears; For stored-energy change, Efault(τ) does not have
such property. According to (4.38), in the faulty case,

H (τ) = Efault(τ) + Eun(τ). (4.40)

Because of unknown-input energy Eun(τ), Efault(τ) is no more available, so the properties
of Efault(τ) can not be directly used as in Section 4.6.1. According to (4.39), a fault is
detected when H (τ) exceeds the range [−Θ,Θ] of Eun(τ). Since Efault(τ) will have the
same sign when it is dissipated-energy change, in this case, H (τ) can only cross one of
the bounds Θ or −Θ. For stored-energy change, both Θ and −Θ could be crossed. Based
on this property, assume τdet is the time window when the fault is detected by (4.39),
then the different energy changes can be isolated by

⎧⎪⎪⎨⎪⎪⎩
H (τ) ≥ −Θ (τ ≥ τdet) or H (τ) ≤ Θ (τ ≥ τdet) Ô⇒ dissipated-energy change

otherwise Ô⇒ stored-energy change.
(4.41)

Isolation of different components

Since Efault(τ) is not available, new isolation method will be developed which is extended
from the scheme in Section 4.6.2. Constructing Rj(τ)(j = 1..m) as

Rj(τ) = Nmjw(τ)(H (τ +w)
Nj(τ +w) −

H (τ)
Nj(τ) ),

when Nj(τ) ≠ 0 and Nj(τ +w) ≠ 0, j = 1..m (4.42)

where Nj(τ) is defined in (4.27), and Nmjw(τ) is the smaller value of ∣Nj(τ)∣ and ∣Nj(τ +
w)∣,

Nmjw(τ) =min{∣Nj(τ)∣, ∣Nj(τ +w)∣}.
w > 0 is a design parameter. We have

∣Rj(τ)∣ = Nmjw(τ)∣H (τ +w)
Nj(τ +w) −

H (τ)
Nj(τ) ∣

= Nmjw(τ)∣Efault(τ +w) + Eun(τ +w)
Nj(τ +w) − Efault + Eun(τ)

Nj(τ) ∣
= Nmjw(τ)∣Efault(τ +w)

Nj(τ +w) −
Efault(τ)
Nj(τ) +

Eun(τ +w)
Nj(τ +w) −

Eun(τ)
Nj(τ) ∣

= Nmjw(τ)∣Mj(τ +w) −Mj(τ) + Eun(τ +w)
Nj(τ +w) −

Eun(τ)
Nj(τ) ∣
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with Mj(τ) as in (4.32). For the kth faulty component, as discussed in Section 4.6.2,
Mk(τ) is constant, so that

∣Rk(τ)∣ = Nmkw(τ)∣Eun(τ +w)
Nk(τ +w) −

Eun(τ)
Nk(τ) ∣

where Nmkw(τ) =min{∣Nk(τ)∣, ∣Nk(τ +w)∣}. Since unknown-input energy is bounded by
Eun ≤ Θ, we have

∣Rk(τ)∣ ≤ Nmkw(τ) 2Θ

Nmkw(τ) = 2Θ.

For the case when Nk(τ) = 0, we have Efault(τ) = 0. In this case, the behavior of H (τ)
is the same as the fault-free case, which fulfills

∣H (τ)∣ ≤ Θ.

So that the isolation scheme can be designed as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣Rj(τ)∣ ≤ 2Θ, τ > τdet +w
when Nj(τ) ≠ 0 and Nj(τ +w) ≠ 0
∣H (τ)∣ ≤ Θ when Nj(τ) = 0

Ô⇒ jth component is faulty

otherwise Ô⇒ jth component is fault-free (4.43)

where τdet is the time window when the fault is detected by (4.39). Rj(τ) is evaluated
when τ > τdet +w to avoid the false isolation caused by the case that, H (τ) belongs to
the fault-free case and H (τ +w) belongs to the faulty case.

4.8 RLC Example

In this section, the proposed FDI schemes are illustrated by the RLC example.

4.8.1 System description

Consider the RLC circuit shown in Fig 4.1, which consists of a resistor Re, an inductor
Ld and a capacitor Ca. u is the voltage of the power source, uc is the voltage of the
capacitor and i is the current. With u and i as system input and output, the state space
system model of the RLC circuit can be written as

ẋ = Ax +Bu + d
y = Cx (4.44)
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where

x = [ uc i ]T , C = [ 0 1 ]
A = [ 0 1/Ca−1/Ld −Re/Ld

] , B = [ 0
1/Ld

]
and d is the unknown input vector.

4.8.2 Energy balance construction

The storage function of passive system (4.44) can be designed as the energy stored in
capacitor and inductor:

V = 1

2
Cau

2

c + 1

2
Ldi

2 = 1

2
xTPx (4.45)

with

P = [ Ca 0
0 Ld

] . (4.46)

In order to obtain the system energy balance, deriving the storage function V along the
trajectory of system (4.44) we get

∂V

∂x
ẋ = xTP (Ax +Bu + d)
= 1

2
xT (PA +ATP )x + xTPBu + xTPd. (4.47)

Noticing that

PA +ATP = [ 0 0
0 −2Re

] , PB = [ 0 1 ]T = CT ,

(4.47) can be written as

∂V

∂x
ẋ = −i2Re + iu + xTPd. (4.48)

Integrating (4.48) from 0 to τ leads to

V (x(τ)) − V (x(0)) +
τ

∫
0

i2Redt −
τ

∫
0

iudt =
τ

∫
0

(xTPd)dt. (4.49)
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It holds

τ

∫
0

i2Redt ≥ 0
which is the dissipated energy according to the definition in (4.3).From a physic point of
view, ∫ τ

0
i2Redt is the energy dissipated by the resistor. ∫ τ

0
iudt in (4.49) is the supplied

energy which is the electrical power flowing into the RLC circuit.
(4.49) can be rewritten as the following energy balance:

H = Eun (4.50)

where

H = Estor + Edis − Esup,

Estor = V (x(τ)) − V (x(0)),
Edis =

τ

∫
0

i2Redt,

Esup =
τ

∫
0

iudt,

Eun =
τ

∫
0

(xTPd)dt.

4.8.3 Fault detection

Evaluated in the time window [τ, τ + η], the unknown-input energy is

Eun(τ) =
τ+η

∫
τ

(xTPd)dt. (4.51)

Substituting (4.46) into (4.51) we have

Eun(τ) =
τ+η

∫
τ

(P11x1d1 + P22x2d2)dt (4.52)

where xi(i = 1,2) and di(i = 1,2) are ith element of vector x and d. Suppose the system
states and unknown inputs are bounded by

x2

1 ≤ δ2x1, x
2

2 ≤ δ2x2
d21 ≤ δ2d1, d

2

2 ≤ δ2d2,
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it turns out

∣Eun(τ)∣ ≤ Θ
with

Θ = ηP11δx1δd1 + ηP22δx2δd2 (4.53)

and Pjj being the jth diagonal element of matrix P . The fault detection logic can then
be designed as:

⎧⎪⎪⎨⎪⎪⎩
∣H (τ)∣ > ΘÔ⇒ faulty

∣H (τ)∣ ≤ ΘÔ⇒ fault-free
(4.54)

where

H (τ) = Esup(τ) + Edis(τ) − Estor(τ),
Estor(τ) = V (x(τ + η)) − V (x(τ)),
Edis(τ) =

τ+η

∫
τ

i2Redt,

Esup(τ) =
τ+η

∫
τ

iudt. (4.55)

4.8.4 Fault isolation

Isolation of different energy changes

The faults in the capacitor or inductor will lead to stored-energy change, and faults in
the resistor will lead to dissipated-energy change. These two kinds of energy changes can
be isolated by logic (4.25).

Isolation of different components

Since there are two energy-storing components, isolation logic should be designed to
distinguish the faults between them. Following the proceedure in Section 4.6.2, the
stored-energy change should be first divided into energy changes of different components.
Based on the storage function in (4.45), the stored-energy change in the time window[τ, τ + η] can be written as

Efault(τ) = Efault1(τ) + Efault2(τ)
where

Efault1(τ) =∆CaN1(τ), Efault2(τ) = ∆LdN2(τ)
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and

N1(τ) = 1

2
x(τ + η)T q1x(τ + η) − 1

2
x(τ)T q1x(τ),

N2(τ) = 1

2
x(τ + η)T q2x(τ + η) − 1

2
x(τ)T q2x(τ),

q1 = [ 1 0
0 0

] , q2 = [ 0 0
0 1

] .
Efault1(τ) and Efault2(τ) are the energy changes caused by the fault in capacitor and
inductor. ∆Ca and ∆Ld are the changes of the capacitance and inductance. Constructing
Ri(τ)(i = 1,2) as in (4.42), faults in the capacitor and inductor can then be isolated by
logic (4.43).

4.8.5 Parameter setting and threshold computation

In the simulation study, the parameters of system (4.44) are set as

Re = 10Ω, Ld = 20H, Ca = 0.5F
and the unknown input vector is as

d = [ d1 d2 ]T = [ 0 0.02cos(0.002t) ]T .
So the bounds of the unknown inputs are

d21 ≤ δ2d1 = 0, d22 ≤ δ2d2 = 0.022.
The following input signal is considered:

u = 60sin2(0.1t) + 30cos(0.1t).
Driven by input signal u, the bounds of the system states in fault-free case are

x2

1 ≤ δ2x1 = 352, x2

2 ≤ δ2x2 = 42.
The width of the evaluation time window and the isolation window is set as η = 0.1s and
w = 1s. Then according to (4.53), threshold Θ is as

Θ = ηP11δx1δd1 + ηP22δx2δd2 = 0.16.
For numerical reasons, Rj(τ)(j = 1,2) are calculated when ∣Nj(τ)∣ > 0.001 and ∣Nj(τ +
w)∣ > 0.001. The isolation logic (4.43) becomes

⎧⎪⎪⎨⎪⎪⎩
∣Rj(τ)∣ ≤ 2Θ, τ > τdet +w
∣H (τ)∣ ≤ Θ when ∣Nj(τ)∣ ≤ 0.001 Ô⇒ jth component is faulty

otherwise Ô⇒ jth component is fault-free. (4.56)

For the case when ∣Nj(τ)∣ ≤ 0.001 or ∣Nj(τ +w)∣ ≤ 0.001, Rj(τ) is set to be zero.
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4.8.6 Simulation results

For different kinds of faults, simulations of 400 seconds have been carried out. In all
simulations, the fault appears at t=200 seconds. In the figures, the solid line represents
the behavior of H (τ) or Rj(τ)(j = 1,2), and the dashed line represents the threshold Θ
and −Θ.
Fault-free case: Fig 4.2 shows the behavior of H (τ) in fault-free case. Due to

the unknown-input energy, H (τ) is not equal to zero. Since it is always fulfilled that∣H (τ)∣ ≤ Θ, there are no false alarms.
Fault in resistor: Fig 4.3 shows the simulation results, when the resistor is faulty.

Two abrupt faults which lead to changes of the resistance are considered. For the first
fault, the change of resistance is ∆Re = 5Ω, and for the second fault ∆Re = −2Ω. It can be
observed from the figures that, after the faults appear, it turns to be ∣H (τ)∣ > Θ, which
leads to a successful fault detection. On the other hand, in both situations, H (τ) crosses
only one of the thresholds, so based on the isolation logic (4.25), the dissipated-energy
change is successfully isolated.
Fault in capacitor: Fig 4.4 shows the simulation results, when the capacitor is faulty.

An abrupt fault which leads to the change ∆Ca = −0.1F of the capacitance is considered.
As shown in Fig 4.4a, it turns to be ∣H (τ)∣ > Θ after the fault appears which leads to a
successful fault detection. On the other hand, since H (τ) crosses both upper and lower
thresholds, the stored-energy change is isolated according to the isolation logic (4.25). In
order to further isolate the faulty energy-storing component, the behavior of R1(τ) and
R2(τ) are shown in Fig 4.4b and Fig 4.4c. For τ > τdet + w (τdet = 200.2s,w = 1s), only
R1(τ) stays between the thresholds (R1(τ) crosses the threshold only when τ < τdet +w),
since ∣H (τ)∣ ≤ Θ is fulfilled when ∣MQ1

(τ)∣ ≤ 0.001 as shown in Fig 4.4d, according to
isolation logic (4.56), a fault in capacitor is successfully isolated.
Fault in inductor: Fig 4.5 shows the results, when the inductor is faulty. An abrupt

fault which leads to the change ∆Ld = −5H of the inductance is considered. From Fig 4.5a
we can see that, H (τ) crosses both thresholds, so stored-energy change is isolated. It
can be observed from Fig 4.5b and Fig 4.5c that, only R2(τ) stays between the thresholds
for τ > τdet +w. Together with the behavior of ∣H (τ)∣ ≤ Θ when ∣MQ2

(τ)∣ ≤ 0.001 in Fig
4.5d, according to isolation logic (4.56), a fault in inductor is successfully isolated.
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Figure 4.2: Behavior of H (τ) in fault-free case
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(a) ∆Re = 5Ω
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Figure 4.3: Faults in resistor. Figure (a) shows the behavior of H (τ) when an abrupt
resistance change ∆Re = 5Ω occurs at t = 200 seconds. Figure (b) shows the result when the
abrupt resistance change is ∆Re = −2Ω.
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Figure 4.4: Fault in capacitor. An abrupt fault which leads to capacitance change ∆Ca =−0.1F occurs at t = 200 seconds. Figure (a) shows the behavior of H (τ). Figure (b),(c)
show the behavior of R1(τ) and R2(τ). Figure (d) shows the behavior of H (τ) when∣M1(τ)∣ ≤ 0.001.

50



4.8 RLC Example

0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1

time [s]
(a)

H

0 50 100 150 200 250 300 350 400
−1

0

1

2

time [s]
(b)

R
1

0 50 100 150 200 250 300 350 400
−0.5

0

0.5

time [s]
(c)

R
2

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

step
(d)

H

Figure 4.5: Fault in inductor. An abrupt fault which leads to inductance change ∆Ld = −5H
occurs at t = 200 seconds. Figure (a) shows the behavior of H (τ). Figure (b),(c) show the
behavior of R1(τ) and R2(τ). Figure (d) shows the behavior of H (τ) when ∣M2(τ)∣ ≤ 0.001.
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4.9 Summary

This chapter has proposed a complete energy-balance based FDI framework for nonlinear
passive systems. Based on passivity, an energy balance which includes stored, dissipated
and supplied energies has been established. Faults have been defined according to their
different influences on system energies. Fault detection has been achieved by checking
the validity of the energy balance. For fault isolation, a two-step approach has been
proposed, which firstly isolates the class of the fault and secondly isolates the faulty
component. The thresholds were designed based on the bound of unknown-input energy.
The effectiveness of the proposed FDI schemes has been illustrated by an RLC circuit
example.
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Chapter 5

Design of Energy-balance based FDI for two
classes of passive nonlinear systems

The objective of this chapter is to propose design procedures of energy-
balance based FDI schemes for two classes of passive nonlinear systems: (1)
Input-affine passive systems; (2) Lagrangian systems. The design procedures
consist of finding a storage function, establishing the energy balance and com-
putation of the threshold. The proposed design procedures are also applied to
linear passive systems, which can be considered as a special case of input-affine
passive systems.

5.1 Input-affine passive systems

5.1.1 Introduction

The class of input-affine systems is one of the most important nonlinear models that has
been intensivly studied since decades [22]. It has the following formulation:

ẋ = f(x) + g(x)u
y = h(x) (5.1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input and y ∈ Rm is the output
vector. In the passive theory, system (5.1) is also widely used since many results for linear
passive systems can be extended to this kind of nonlinear systems [76]. The passivity of
system (5.1) can be checked by the following Lemma.

Lemma 5.1.1. [71] System (5.1) is passive, if there exists a nonnegative function V (x),
with V (x(0)) = 0, such that

∂V

∂x
f(x) ≤ 0 (5.2)

∂V

∂x
g(x) = hT (x). (5.3)

Lemma 5.1.1 can be considered as an extention of the Kalman-Yakubovich-Popov
Lemma to the nonlinear case.

53



Chapter 5 Design of Energy-balance based FDI for two classes of passive nonlinear systems

5.1.2 Energy balance of input-affine passive systems

Suppose that we have already found the nonnegative function V which fulfills the con-
ditions (5.2) and (5.3) in Lemma 5.1.1, then V can be used as the storage function of
system (5.1). The derivative of V along the trajectory of the system (5.1) is

dV

dt
= ∂V

∂x
f(x) + ∂V

∂x
g(x)u. (5.4)

Integrating (5.4) from 0 to τ leads to

V (x(τ)) − V (x(0)) =
τ

∫
0

∂V

∂x
f(x)dt +

τ

∫
0

∂V

∂x
g(x)udt. (5.5)

According to (5.3) we have

τ

∫
0

∂V

∂x
g(x)udt =

τ

∫
0

hT (x)udt =
τ

∫
0

yTudt, (5.6)

and by substituting (5.6) into (5.5) we get

V (x(τ)) − V (x(0)) −
τ

∫
0

∂V

∂x
f(x)dt =

τ

∫
0

yTudt. (5.7)

(5.7) is an energy balance of passive nonlinear system (5.1). Based on (5.2), it holds that

−
τ

∫
0

∂V

∂x
f(x)dt ≥ 0 (5.8)

which represents the dissipated energy. The passivity of system (5.1) can be proved by
substituting (5.8) into (5.7), which leads to

V (x(τ)) − V (x(0)) ≤
τ

∫
0

yTudt.

Assuming the zero initial condition (i.e. V (x(0)) = 0), energy balance (5.7) can be
rewritten as

H = 0 (5.9)

where

H = Estor + Edis − Esup (5.10)
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Figure 5.1: Pendulum

and the stored, dissipated and supplied energies are as follows:

Estor = V (x(τ)) (5.11)

Edis = −
τ

∫
0

∂V

∂x
f(x)dt (5.12)

Esup =
τ

∫
0

yTudt. (5.13)

Based on energy balance (5.9), fault detection scheme can then be designed following
Chapter 4. The major task is to find the storage function V , which can be achieved by
solving nonlinear partial differential inequalities (5.2) and (5.3) [77, 78]. An alternative
way is to analyze the stored energy of the system physically. For fault isolation, energy
changes caused by the fault in different components need to be studied, which depend
on the structure of the considered system.

5.1.3 A design example

Consider a pendulum shown in Fig 5.1. The length of the rod is denoted as l and the
mass of the bob is denoted as m. The rod is assumed to be rigid and has zero mass. θ

55



Chapter 5 Design of Energy-balance based FDI for two classes of passive nonlinear systems

denotes the angle subtended by the rod and the vertical axis through the pivot point. The
pendulum is free to swing in the vertical plane and is driven by a torque Tq. The friction
force is assumed to be proportional to the speed of the bob with a friction coefficient k.
The state space model of the pendulum can be written as

ẋ = f(x) + q(x)u
y = h(x) (5.14)

with

x = [ θ̇ θ ]T , f(x) = [ −g

l
sinθ − k

m
θ̇ θ̇ ]T

q(x) = [ 1

ml2
0 ]T , u = Tq, h(x) = θ̇

and g is the acceleration due to gravity. The stored energy in the pendulum system
includes the kinetic energy Ek and the potential energy Ep of the bob,

Ek = 1

2
ml2θ̇2,

Ep = l(1 − cosθ)mg,

so a candidate for the storage function can be designed as

V = 1

2
ml2θ̇2 + l(1 − cosθ)mg.

As a result, we have

∂V

∂x
f(x) = ml2θ̇(−g

l
sinθ − k

m
θ̇) + lmgθ̇sinθ

= −kl2θ̇2
≤ 0,

∂V

∂x
g(x) = ml2θ̇

1

ml2= θ̇

= hT (x),
so that conditions (5.2) and (5.3) in Lemma 5.1.1 are fulfilled. According to (5.9), the
energy balance of the system (5.14) can be constructed as

H = Estor + Edis − Esup = 0 (5.15)
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where the stored, dissipated and supplied energies are as:

Estor = 1

2
ml2θ̇2 + l(1 − cosθ)mg (5.16)

Edis =
τ

∫
0

kl2θ̇2dt (5.17)

Esup =
τ

∫
0

Tqθ̇dt. (5.18)

Two kinds of faults are considered. The first kind of fault is the change of the friction
coefficient k, which will change the dissipated energy in (5.17). This energy change can
be written as

∆Efault1 =
τ

∫
0

∆kl2θ̇2dt (5.19)

with ∆k as the variation of the friction coefficient. The second kind of fault is the change
of the massm of the bob, which can be for example caused by an unknown object adhered
to the bob. This kind of fault will lead to the change of stored energy in (5.16) as

∆Efault2 = 1

2
∆ml2θ̇2 + l(1 − cosθ)∆mg (5.20)

with ∆m as the variation of the mass. Based on the energy balance (5.15) and energy
changes (5.19) and (5.20), the fault detection and isolation schemes can then be designed
following Chapter 4.

5.1.4 Application to linear passive systems

For linear passive systems, the energy balance and possible energy changes can be ob-
tained in a systematical way. The following linear system is considered:

ẋ = Ax +Bu

y = Cx (5.21)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector and y ∈ Rm is the output
vector. For this kind of system, the storage function can be designed as

V (x) = 1

2
xTPx, (5.22)
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where P is a real symmetric matrix which fulfills P > 0. (5.22) has been widely used
in Lyapunov stability analysis [79]. For system (5.21), based on storage function V (x),
passive conditions (5.2) and (5.3) becomes:

PA +ATP ≤ 0 (5.23)

PB = CT . (5.24)

(5.23) and (5.24) are linear inequalities, so P can be obtained by powerful LMI tools.
According to (5.9), the energy balance for system (5.21) is constructed as

H = Estor + Edis − Esup = 0 (5.25)

with

Estor = 1

2
xTPx (5.26)

Edis = −1
2

τ

∫
0

xT (PA +ATP )xdt (5.27)

Esup =
τ

∫
0

yTudt. (5.28)

Based on (5.25), fault detection scheme can be designed. For fault isolation purpose, the
possible energy changes are analyzed in the following.
First consider the stored energy changes. Since P is a real symmetric matrix, there

exists an orthogonal matrix Qs such that

QT
s PQs = Λs

with Λs as a diagonal matrix whose entries are the eigenvalues of P . If we define a state
transformation as x = Qsx̃, then based on the new states x̃, the stored energy Estor in
(5.26) becomes

Estor = 1

2
x̃TΛsx̃. (5.29)

Because Λs is a diagonal matrix, Estor can be rewritten as

Estor = n∑
j=1

Estorj (5.30)

where

Estorj = 1

2
ΛsjMsj(x̃), Msj(x̃) = x̃2

j
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and Λsj is the jth entry of Λs. (5.30) indicates that, the stored energy Estor can be
divided into n parts Estorj(j = 1..n), each of them can be considered as the energy stored
in one “component”. Here different energy-storing “components” means their relations
to system states (i.e. Msj(x̃)) are different. Λsj(j = 1..n) represents the energy storage
ability of different energy-storing components. Faults can lead to change of Λsj(j = 1..n)
which results in stored-energy change as

∆Efaultj = 1

2
∆ΛsjMsj(x̃), Msj(x) = x̃2

j , j = 1..n (5.31)

Secondly, consider the dissipated energy changes. Let

PA = −(PA +ATP ).
PA is also a real symmetric matrix, similarly there exists an orthogonal matrix Qd such
that

QT
dPAQd = Λd

with Λd as a diagonal matrix whose entries are the eigenvalues of PA. Defining a state
transformation as x = Qdx̄, then based on the new states x̄, the dissipated energy Edis in
(5.27) can be rewritten as

Edis = n∑
j=1

Edisj

where

Edisj = 1

2

τ

∫
0

ΛdjMdj(x̄)dt, Mdj(x̄) = x̄2

j

and Λdj is the j
th entry of Λd. Since PA may have eigenvalues equal to zero, some entries

Λdj could also be zero. Without loss of generality, suppose that, there are n̄ non-zero
entries Λdj(j = 1..n̄), then the dissipated energy Edis can be divided into n̄ parts, each
of them can be considered as the energy dissipated by one “component”. Λdj(j = 1..n̄)
represents the energy dissipation rate of different energy-dissipating components. Faults
can lead to change of Λdj(j = 1..n̄) which results in dissipated-energy change as

∆Efaultj = 1

2

τ

∫
0

∆ΛdjMdj(x̄)dt, Mdj(x) = x̄2

i , j = 1..n̄. (5.32)

Based on (5.31) and (5.32), faults in different energy-storing and energy-dissipating
components can then be isolated following Chapter 4.
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5.1.5 Input-affine passive systems with unknown inputs

When there are unknown inputs, system (5.1) becomes

ẋ = f(x) + g(x)u + d
y = h(x).

where d is the unknown input vector. It is assumed that

dTd ≤ δ2d. (5.33)

Following a similar way as in Section 5.1.2, we can get the new energy balance as

H = Eun (5.34)

with H as in (5.10) and the unknown-input energy is

Eun =
τ

∫
0

(∂V
∂x

d)dt.
Evaluated in the time window [τ, τ + η], (5.34) becomes

H (τ) = Eun(τ) (5.35)

where

H (τ) = Estor(τ) + Edis(τ) − Esup(τ) (5.36)

Estor(τ) = V (x(τ + η)) − V (x(τ))
Edis(τ) = −

τ+η

∫
τ

∂V

∂x
f(x)dt

Esup(τ) =
τ+η

∫
τ

yTudt

Eun(τ) =
τ+η

∫
τ

(∂V
∂x

d)dt.
Assume that

(∂V
∂x
)T ∂V

∂x
≤ δ2v ,

together with (5.33) we have

∣Eun(τ)∣ ≤ Θ, Θ = ηδdδv. (5.37)
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Based on the energy balance (5.35) and threshold Θ, the fault detection scheme is designed
as

⎧⎪⎪⎨⎪⎪⎩
∣H (τ)∣ > ΘÔ⇒ faulty

∣H (τ)∣ ≤ ΘÔ⇒ fault-free

with H (τ) as in (5.36).
The design procedure of the energy-balance based FDI for input-affine passive systems

is summarized as:

1. Finding the storage function V which fulfills (5.2) and (5.3).

2. Establishing the energy balance as in (5.35) and computing the threshold Θ as in
(5.37) to achieve the fault detection.

3. Analyzing the possible energy changes and designing the isolation logic following
Chapter 4.

5.2 Lagrangian systems

5.2.1 Introduction

Lagrangian systems arise from variational calculus and gave a first general definition of
physical dynamical systems in analytical mechanics [76, 80]. Compared with the classical
mechanics which is based on vector forces and velocities, analytical mechanics uses two
scalar properties i.e. the kinetic and potential energies to analyze the mechanical motion.
The application of Lagrangian systems is not only limited to mechanical systems, it can
also be used to describe the dynamics of various engineering systems as electrical circuits
or electro-mechanical systems. It is also widely used to derive different control laws by
taking into account the structure of the system dynamics derived from energy based
modeling [81]. Since Lagrangian systems relate closely to system energies, they have
great potential for the application of energy-balance based FDI schemes.

Definition 5.2.1. [76] The Lagrangian (La) of a dynamic system is a function that
summarizes the dynamics of the system.

Mathematically, consider a configuration manifold Q =Rn, the points on this manifold
are denoted by q ∈ Rn and are called generalized coordinates. Denote by TQ = R2n its
tangent bundle and its elements by (q, q̇) ∈ R2n where q̇ is called generalized velocity,
then the Lagrangian is defined by a real function La(q, q̇) [76]. If the Lagrangian of a
system is known, then the equations of the system dynamics can be obtained by a direct
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substitution of the expression for the Lagrangian into the Euler-Lagrange equation, which
is defined as

d

dt
(∂La

∂q̇
(q, q̇)) − ∂La

∂q
(q, q̇) = 0. (5.38)

The concept of Lagrangian was originally introduced in a reformulation of classical me-
chanics by Irish mathematician William Rowan Hamilton known as Lagrangian mechan-
ics. For mechanical systems, the Lagrangian is defined as the kinetic energy Ek of the
system minus its potential energy Ep. In symbols,

La = Ek − Ep.

Example: Let us consider a simple example of the linear mass-spring system consisting
of a mass (m) attached to a fixed frame through a spring. The position of the mass with
respect to the fixed frame is denoted as q and the elasticity coefficient of the spring is
denoted as re. The Lagrangian function is given by ([76])

La(q, q̇) = Ek − Ep, Ek = 1

2
mq̇2, Ep = 1

2
req

2 (5.39)

where Ek is the kinetic energy of the mass and Ep is the potential energy of the spring.
Subsituting the Lagrangian function (5.39) into Euler-Lagrange equation (5.38) we have

mq̈ + kq = 0
which is exactly the dynamics equation of the linear mass-spring system.

5.2.2 Lagrangian systems with external forces and dissipation

Defining u ∈Rn as the vector of generalized forces acting on the system, and considering
Rayleigh dissipation function R(q̇) which satisfies [76]

q̇T
∂R

∂q̇
(q̇) ≥ 0, (5.40)

then based on Euler-Lagrange equation (5.38), Lagrangian systems with external forces
(input) u and dissipation can be written as

d

dt
(∂La

∂q̇
(q, q̇)) − ∂La

∂q
(q, q̇) + ∂R

∂q̇
= u. (5.41)

For the linear mass-spring example, when friction is considered, the dissipation function
is as

R(q̇) = 1

2
kq̇2 (5.42)

62



5.2 Lagrangian systems

with k as the friction coefficient. Substituting (5.42) into (5.41), it turns out

mq̈ + req + kq̇ = u
which is the dynamics equation of the linear mass-spring system with external force and
dissipation.

5.2.3 Stored energy of Lagrangian systems

As discussed in Section 5.2.1, Lagrangian La relates closely to the energies stored in
the system. Based on La(q, q̇), the storage function V can be obtained by the Legendre
transformation with respect to the generalized velocity q̇ as [76]

V (q, q̇) = q̇Tp −La(q, q̇) (5.43)

where p is the vector of generalized momenta,

p = ∂La(q, q̇)
∂q̇

.

For the linear mass-spring system, based on the Lagrangian (5.39) we have

V (q, q̇) = q̇Tmq̇ − (1
2
mq̇2 − 1

2
req

2)
= 1

2
mq̇2 + 1

2
req

2

= Ek + Ep.

It can be seen that, the obtained storage function V (q, q̇) is exactly the sum of the stored
energies including kinetic and potential energies.

5.2.4 Passivity of Lagrangian systems

Lemma 5.2.1. Lagrangian system (5.41) with input u and output q̇ is passive with respect
to storage function (5.43).

Proof. The derivative of the storage function V (q, q̇) along the trajectory of system (5.41)
is

dV (q, q̇)
dt

= q̈T
∂La

∂q̇
+ q̇T d

dt
p − (q̈T ∂La

∂q̇
+ q̇T ∂La

∂q
)

= q̇T
d

dt
p − q̇T ∂La

∂q

= q̇T ( d
dt
(∂La

∂q̇
(q, q̇)) − ∂La

∂q
(q, q̇)). (5.44)
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Based on system equation (5.41) we have

d

dt
(∂La

∂q̇
(q, q̇)) − ∂La

∂q
(q, q̇) = u − ∂R

∂q̇
. (5.45)

Substituting (5.45) into (5.44) yields

dV (q, q̇)
dt

= q̇T (u − ∂R

∂q̇
)

= q̇Tu − q̇T ∂R
∂q̇

. (5.46)

Integrating (5.46) from 0 to τ leads to

V (τ) − V (0) =
τ

∫
0

q̇Tudt −
τ

∫
0

q̇T
∂R

∂q̇
dt (5.47)

which is the energy balance of system (5.41). According to (5.40), it holds
τ

∫
0

q̇T
∂R

∂q̇
dt ≥ 0,

so we have

V (τ) − V (0) ≤
τ

∫
0

q̇Tudt

which indicates that system (5.41) is passive.

5.2.5 Energy balance of Lagrangian systems

Assuming the zero initial condition (i.e. V (0) = 0), the energy balance (5.47) of system
(5.41) can be written as

H = 0 (5.48)

where

H = Estor + Edis − Esup (5.49)

and the stored, dissipated and supplied energies are respectively as follows:

Estor = V (τ) − V (0)
Edis =

τ

∫
0

q̇T
∂R

∂q̇
dt

Esup =
τ

∫
0

q̇Tudt. (5.50)

64



5.2 Lagrangian systems

5.2.6 Lagrangian systems with unknown inputs

When there are unknown inputs, Lagrangian system (5.41) becomes

d

dt
(∂La

∂q̇
(q, q̇)) − ∂La

∂q
(q, q̇) + ∂R

∂q̇
+ d = u. (5.51)

where d is the unknown input vector. It is assumed that

dTd ≤ δ2d. (5.52)

Following a similar procedure as in the proof of Lemma 5.2.1, we can get the energy
balance of system (5.51) as

H = Eun (5.53)

with H as in (5.49) and the unknown-input energy is

Eun = −
τ

∫
0

(q̇Td)dt. (5.54)

Evaluated in the time window [τ, τ + η], (5.53) becomes

H (τ) = Eun(τ) (5.55)

where

H (τ) = Estor(τ) + Edis(τ) − Esup(τ) (5.56)

Estor(τ) = V (τ + η) − V (τ)
Edis(τ) =

τ+η

∫
τ

∂R

∂q̇
dt

Esup(τ) =
τ+η

∫
τ

q̇Tudt

Eun(τ) = −
τ+η

∫
τ

(q̇Td)dt.
Assume that

q̇T q̇ ≤ δ2q̇ ,
together with (5.52) we have

∣Eun(τ)∣ ≤ Θ, Θ = ηδdδq̇. (5.57)
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Based on the energy balance (5.55) and threshold Θ, the fault detection scheme is designed
as

⎧⎪⎪⎨⎪⎪⎩
∣H (τ)∣ > ΘÔ⇒ faulty

∣H (τ)∣ ≤ ΘÔ⇒ fault-free

with H (τ) as in (5.56). For fault isolation purpose, since Lagrangian systems have very
clear physical meanings, the functions of possible energy changes can be obtained by
physically analyzing the systems.
The design procedure of energy-balance based FDI for Lagrangian systems is summa-

rized as:

1. Constructing the storage function by (5.43) based on the Lagrangian La(q, q̇) of
the system.

2. Establishing the energy balance as in (5.56) and computing the threshold Θ as in
(5.57) to achieve the fault detection.

3. Analyzing the possible energy changes and designing the isolation logic following
Chapter 4.

This design procedure will also be illustrated by a benchmark study in the next chapter.

5.3 Summary

In this chapter, the design procedures of energy-balance based FDI have been proposed
for input-affine passive systems and Lagrangian systems, which consist of finding a storage
function, establishing the energy balance and computation of the threshold. The proposed
design procedure has also been applied to linear passive systems, which can be considered
as a special case of input-affine passive systems.
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Chapter 6

Application to the robot manipulator
benchmark

The objective of this chapter is to apply the energy-balance based FDI
schemes to robot manipulator benchmark, which has strong nonlinearities and
is widely used in factory automation systems. Since in practice robot manip-
ulators are usually driven by DC motors, the dynamics of DC motors is also
included in the benchmark model. This electro-mechanical system can be mod-
eled as an interconnection of two Lagrangian systems, which is an excellent
benchmark for illustrating the usefulness of the proposed energy-balance based
FDI framework.

6.1 Introduction

The FDI problem of robot manipulator has received considerable attentions, since it
is widely used for factory automation systems and currently also employed in scenarios
requiring high degree of autonomy (e.g. space and underwater missions, rescue operations
etc.) [82]. Various approaches have been proposed. Due to the strong nonlinearities in
manipulators, simplified model has been used in [83]. The full nonlinear model has been
applied in [84, 85] for the observer-based methods and in [86] for the filtering methods, in
which the nonlinearities has been compensated using the full state measurement. High
gain observer and sliding mode observer based approaches have been developed in [87]
and [88]. The stability of these two kinds of observers have been proved in an attracting
region of system states. In this chapter, the proposed energy-balance based FDI schemes
are applied to robot manipulator. Compared with the existing methods, the required on-
line computation is much lower, and the difficulties in stabilizing the nonlinear observers
like in [87, 88] have also been released. On the other hand, robot manipulators are
usually driven by DC motors, and the effect of neglecting the dynamics of DC motors
may deteriorate the control and FDI system performances [89], so in the benchmark
study, an electro-mechanical system which includes both dynamics is considered.
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6.2 System model and description of faults

The dynamics of robot manipulator driven by armature-controlled DC motors can be con-
sidered as the interconnection of manipulator subsystem and DC motor subsystem. Both
of them can be modeled as Lagrangian systems [76]. For robot manipulator subsystem,
the Lagrangian function is given by

La(q, q̇) = T (q, q̇) −U(q) (6.1)

with q as the vector of link angles of manipulator and

T (q, q̇) = 1

2
q̇TM(q)q̇ (6.2)

is the kinetic energy of the manipulator. Matrix M(q) is positive definite and is called
the inertia matrix. U(q) is a real function which represents the potential energy of
the manipulator. The energy dissipation is caused by friction which has the following
dissipation function:

R(q̇) = 1

2
q̇TKq̇ (6.3)

where K is a diagonal matrix whose entries are friction rates of the links of manipulator.
The input u of the robot manipulator system is the mechanical torque generated by DC
motors,

u =Wtic (6.4)

where Wt is a diagonal matrix whose entries are the torque constants of DC motors, and
ic is the vector of armature currents. Recall the model of the Lagrangian system with
unknown inputs derived in Chapter 5:

d

dt
(∂La

∂q̇
(q, q̇)) − ∂La

∂q
(q, q̇) + ∂R

∂q̇
+ d = u. (6.5)

Substituting (6.1), (6.3) and (6.4) into (6.5) we have the model of manipulator subsystem
as

M(q)q̈ +C(q, q̇)q̇ + g(q) +Kq̇ + dm =Wtic (6.6)

with

g(q) = dU

dq
(q), C(q, q̇) = nm∑

k=1

Γijkq̇k.
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Γijk are called Christoffel’s symbols, its detailed description can be found in [90]. nm is

the number of the links of manipulator. C(q, q̇) has an important property that ˙M(q) −
2C(q, q̇) is skew-symmetric which leads to ([76])

q̇T (Ṁ(q) − 2C(q, q̇))q̇ = 0. (6.7)

dm is the unknown input vector of manipulator subsystem. It is assumed that

dTmdm ≤ δ2m. (6.8)

For DC motor subsystem, the Lagrangian function is given by

La(q̃, ˙̃q) = 1

2
˙̃qTQin

˙̃q, ˙̃q = ic. (6.9)

Here Qin is a diagonal matrix whose entries represent the inductances of DC motors.
The energy dissipation of DC motor subsystem is caused by resistance. The dissipation
function is as

R( ˙̃q) = 1

2
˙̃qTRe

˙̃q = 1

2
iTc Reic (6.10)

whereRe ∈Rnd×nd is a diagonal matrix whose entries are the resistances of DC motors, and
nd is the number of DC motors. There are two kinds of inputs in DC motor subsystem,
the first is the armature voltage uv, and the second is the voltage generated by the
rotating of the rotors as

ur = −Wtq̇,

so the total input for DC motor subsystem is

u = uv + ur = uv −Wtq̇. (6.11)

Substituting (6.9), (6.10) and (6.11) into (6.5) we have the model of DC motor subsystem
as

Qini̇c +Reic + dc = uv −Wtq̇ (6.12)

where dc is the unknown input vector of the DC motor subsystem with elements dcj(j =
1..nd). It is assumed that

dTc dc ≤ δ2c , d2cj ≤ δ2cj, j = 1..nd. (6.13)

Subsystems (6.6) and (6.12) are coupled with each other, the augmented system can be
constructed as

M(q)q̈ +C(q, q̇)q̇ + g(q) +Kq̇ + dm = Wtic

Qini̇c +Reic + dc +Wtq̇ = uv (6.14)

Two kinds of faults are considered in the benchmark study:
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• Dissipated-energy change. As discussed above, system energy will be dissipated
by friction in manipulator and resistance in DC motors. Typically, mechanical faults
in manipulator will lead to a lager friction rate, which will increase the dissipated
energy. In DC motors, faults could increase or decrease the resistance, which leads
to the corresponding change of dissipated energy.

• Stored-energy change. The stored energies in system are kinetic and potential
energy of manipulator, and the energy stored in the inductor of DC motors. The
stored energy of manipulator will be changed when the physical properties (weight,
inertia...) are changed by faults, which could be for example caused by an unex-
pected load on manipulator. The stored energy of DC motors will be changed when
the inductance is changed by faults.

6.3 Energy-based FDI system design

6.3.1 Energy balances construction

Recall the formulation of stored energy of Lagrangian system derived in Chapter 5:

V (q, q̇) = q̇T ∂La(q, q̇)
∂q̇

−La(q, q̇). (6.15)

Substituting the Lagrangian function (6.1) into (6.15) results in the stored energy of
manipulator subsystem

EMstor = 1

2
q̇TM(q)q̇ +U(q) = T (q, q̇) +U(q) (6.16)

which is the sum of the kinetic energy and the potential energy of the manipulator.
Similarly, substituting (6.3), (6.4) and unknown input dm into (5.50) and (5.54) we have
the dissipated, supplied and unknown-input energies of manipulator subsystem as

EMdis =
τ

∫
0

q̇TKq̇dt

EMsup =
τ

∫
0

q̇TWticdt

EMun = −
τ

∫
0

q̇Tdmdt. (6.17)

From a physical point of view, EMdis is the energy dissipated by the friction and EMsup

is the energy supplied by the DC motors. The energy balance of manipulator subsystem
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6.3 Energy-based FDI system design

can then be constructed as

HM = EMun (6.18)

with

HM = EMstor + EMdis − EMsup. (6.19)

Similarly, for DC motor subsystem, substituting the Lagrangian function (6.9) into
(6.15) we get the stored energy as

EDstor = 1

2
iTc Qinic (6.20)

which is the energy stored in the inductor of DC motors. The dissipated, supplied and
uncertain energy can be obtained by substituting (6.10), (6.11) and unknown input dc
into (5.50) and (5.54):

EDdis =
τ

∫
0

iTc Reicdt

EDsup =
τ

∫
0

(uv −Wtq̇)T icdt

EDun = −
τ

∫
0

iTc dcdt. (6.21)

From a physical point of view, EDdis is the energy dissipated by the resistance of DC
motors, and EDsup is the supplied energy from the electric power source minus the energy
flowing to the manipulator subsystem. The energy balance of DC motor subsystem is
then constructed as

HD = EDun (6.22)

with

HD = EDstor + EDdis − EDsup. (6.23)

Based on energy balances (6.18) and (6.22), fault detection can be designed sepa-
rately for two subsystems. An alternative approach is to construct an energy balance
for the augmented system (6.14) which contains both subsystems, in this way, the detec-
tion algorithm can be simplified. From a physical point of view, the stored (dissipated,
unknown-input) energy of the augmented system (6.14) should be the sum of the stored

71



Chapter 6 Application to the robot manipulator benchmark

(dissipated, unknown-input) energy of the two subsystems:

Estor = EMstor + EDstor = 1

2
q̇TM(q)q̇ +U(q) + 1

2
iTc Qinic

Edis = EMdis + EDdis =
τ

∫
0

q̇TKq̇dt +
τ

∫
0

iTc Reicdt

Eun = EMun + EDun = −
τ

∫
0

q̇Tdm −
τ

∫
0

iTc dcdt (6.24)

and the supplied energy of the augmented system is the energy from the electric power
source:

Esup =
τ

∫
0

uT
v icdt. (6.25)

Since ∫ τ

0
q̇TWticdt in (6.17) and − ∫ τ

0
q̇TWticdt in (6.21) are the energy exchange between

two subsystems, they do not exist in the supplied energy of the augmented system. The
energy balance of augmented system (6.14) is as

H = Eun (6.26)

with
H = Estor + Edis − Esup. (6.27)

Energy balance (6.26) has been established from a physical point of view, it is proved
mathematically in the following.
The stored energy function Estor of the augmented system has been obtained in (6.24),

the derivative of Estor along the trajectory of augmented system (6.14) is

Ėstor = q̇TM(q)q̈ + 1

2
q̇TṀ(q)q̇ + g(q)q̇ + iTc Qini̇c

= q̇T [Wtic −C(q, q̇)q̇ − g(q) −Kq̇ − dm] + 1

2
q̇TṀ(q)q̇ + g(q)q̇ + iTc Qini̇c

= q̇TWtic + 1

2
q̇T [Ṁ(q) − 2C(q, q̇)]q̇ − q̇TKq̇ − q̇Tdm + iTc Qini̇c.

With property (6.7), it turns out

Ėstor = q̇TWtic − q̇TKq̇ − q̇Tdm + iTc Lai̇c. (6.28)

According to system model (6.14) we have

Wtq̇ = uv −Reic −Qini̇c − dc,
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and because Wt, Re and Qin are diagonal matrices, it can be transformed to

q̇TWt = uT
v − iTc Re − i̇Tc Qin − dTc . (6.29)

Substituting (6.29) into (6.28) yields

Ėstor = [uT
v − iTc Re − i̇Tc La − dTc ]ic − q̇TKq̇ − q̇Tdm + iTc Lai̇c

= uT
v ic − iTc Reic − dTc ic − q̇TKq̇ − q̇Tdm. (6.30)

Integrating (6.30) from 0 to τ leads to energy balance (6.26).

6.3.2 Fault detection

The fault detection scheme for the whole benchmark system (6.14) is designed based on
the energy balance (6.26). Evaluated in a time window [τ, τ + η], the unknown-input
energy becomes

Eun(τ) = −
τ+η

∫
τ

(q̇Tdm + iTc dc)dt. (6.31)

Suppose in fault-free case q̇ and ic are bounded by

q̇T q̇ ≤ δ2q̇ , iTc ic ≤ δ2i , i2cj ≤ δ2ij, j = 1..nd (6.32)

where icj is the jth element of ic. Then together with the bounds of the unknown inputs
in (6.8) and (6.13) we have

∣Eun(τ)∣ ≤ Θ (6.33)

with

Θ = η(δq̇δm + δiδc). (6.34)

The fault detection logic is designed as

⎧⎪⎪⎨⎪⎪⎩
∣H (τ)∣ > ΘÔ⇒ faulty

∣H (τ)∣ ≤ ΘÔ⇒ fault-free
(6.35)
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where

H (τ) = Estor(τ) + Edis(τ) − Esup(τ)
Estor(τ) = 1

2
q̇(τ + η)TM(q(τ + η))q̇(τ + η) +Ug(q(τ + η)) + 1

2
ic(τ + η)TQinic(τ + η)

−[1
2
q̇(τ)TM(q(τ))q̇(τ) +Ug(q(τ)) + 1

2
ic(τ)TQinic(τ)]

Edis(τ) =
τ+η

∫
τ

q̇TKq̇dt +
τ+η

∫
τ

iTc Reicdt

Esup(τ) =
τ+η

∫
τ

uT
v icdt.

6.3.3 Fault isolation

Based on the energy balances (6.18) and (6.22), the faults can be first distinguished
between two subsystems. After that, following the schemes proposed in Chapter 4, the
faults in each subsystem can be further isolated.

Manipulator subsystem. Evaluated in the time window [τ, τ + η], the unknown-
input energy of the manipulator subsystem becomes

EMun(τ) = −
τ+η

∫
τ

q̇Tdmdt. (6.36)

According to (6.8) and (6.32) we have

∣EMun(τ)∣ ≤ ΘM (6.37)

with

ΘM = ηδq̇δm. (6.38)

The faults in the manipulator subsystem can be detected by

⎧⎪⎪⎨⎪⎪⎩
∣HM(τ)∣ > ΘM Ô⇒manipulator subsystem is faulty

∣HM(τ)∣ ≤ ΘM Ô⇒manipulator subsystem is fault-free
(6.39)
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where

HM(τ) = EMstor(τ) + EMdis(τ) − EMsup(τ)
EMstor(τ) = 1

2
q̇(τ + η)TM(q(τ + η))q̇(τ + η) +Ug(q(τ + η))
−[1

2
q̇(τ)TM(q(τ))q̇(τ) +Ug(q(τ))]

EMdis(τ) =
τ+η

∫
τ

q̇TKq̇dt

EMsup(τ) =
τ+η

∫
τ

q̇TWticdt.

The second step of fault isolation is to find out which kind of fault appears in ma-
nipulator subsystem, i.e. whether it is dissipated-energy change caused by the change
in friction rate or stored-energy change caused by the change in physical properties of
manipulator. These two kinds of energy change can be isolated following the proposed
scheme in Chapter 4 as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
HM(τ) ≥ −ΘM (τ ≥ τdet) or HM(τ) ≤ ΘM (τ ≥ τdet)
Ô⇒ dissipated-energy change in manipulator subsystem

otherwise Ô⇒ stored-energy change in manipulator subsystem

(6.40)

where τdet is the time window when the fault is detected by (6.35).
The last step is to isolate the faulty link of the manipulator subsystem. Since multi-

link manipulator (nm > 1) are considered, when dissipated-energy change is isolated, it is
necessary to find out in which link the friction rate is changed. According to (6.17), the
dissipated energy of manipulator subsystem in the time window [τ, τ + η] is

EMdis(τ) =
τ+η

∫
τ

q̇TKq̇dt,

and because K is a diagonal matrix, it can be rewritten as

EMdis(τ) = nm∑
j=1

Kj

τ+η

∫
τ

q̇2jdt (6.41)

with Kj(j = 1..nm) as entries of diagonal matrix K. Each of Kj(j = 1..nm) is the friction
rate of one link. The energy change caused by the change of friction rate is as

∆EMdis(τ) = nm∑
j=1

∆Kj

τ+η

∫
τ

q̇2jdt (6.42)
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where ∆Kj(j = 1..nm) are the changes of the friction rates. Following Chapter 4, con-
structing RMj(τ)(j = 1..nm) as

RMj(τ) = Nmjw(τ)(HM(τ +w)
Nj(τ +w) −

HM(τ)
Nj(τ) ), Nj(τ) =

τ+η

∫
τ

q̇2jdt

when Nj(τ) ≠ 0 and Nj(τ +w) ≠ 0, i = 1..nm (6.43)

with Mjw(τ) as the smaller value of Nj(τ) and Nj(τ +w),
Nmjw(τ) =min{∣Nj(τ)∣, ∣Nj(τ +w)∣}.

and w > 0 is a design parameter. For numerical reason, RMj(τ)(j = 1..nm) are calculated
when ∣Nj(τ)∣ > 0.001 and ∣Nj(τ +w)∣ > 0.001, and they are set to be zero when ∣Ni(τ)∣ ≤
0.001 or ∣Ni(τ +w)∣ ≤ 0.001. The faulty link can be isolated by

⎧⎪⎪⎨⎪⎪⎩
∣RMj(τ)∣ ≤ 2ΘM , τ > τdet +w
∣HM(τ)∣ ≤ ΘM , when ∣Ni(τ)∣ ≤ 0.001

Ô⇒ jth link of manipulator is faulty

otherwise Ô⇒ jth link of manipulator is fault-free (6.44)

where τdet is the time window when the fault is detected by (6.35).
DC motor subsystem. According to (6.13) and (6.32), the unknown-input energy

of the DC motor subsystem in time window [τ, τ + η] is bounded by

∣EDun(τ)∣ ≤ ΘD, ΘD = ηδiδc (6.45)

The faults in DC motor subsystem can be detected by

⎧⎪⎪⎨⎪⎪⎩
∣HD(τ)∣ > ΘD Ô⇒ DC motor subsystem is faulty

∣HD(τ)∣ ≤ ΘD Ô⇒ DC motor subsystem is fault-free
(6.46)

where

HD(τ) = EDstor(τ) + EDdis(τ) − EDsup(τ)
EDstor(τ) = 1

2
ic(τ + η)TQinic(τ + η)
−1
2
ic(τ)TQinic(τ)

EDdis(τ) =
τ+η

∫
τ

iTc Reicdt

EDsup(τ) =
τ+η

∫
τ

(uv −Wtq̇)T icdt.
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The second step of the fault isolation for DC motor subsystem is to find out which
motor is faulty. Since Qin, Re and Wt are diagonal matrice, the jth entry of them (Qinj,
Rej and Wtj) represents the inductance and resisitance of jth motor, and the jth element
icj of vector ic also represents the armature current in jth motor. So that, energy balance
(6.22) of DC motor subsystem can be divided to energy balances for each motor. Based
on it, faults in jth motor can be isolated by

⎧⎪⎪⎨⎪⎪⎩
∣HDj(τ)∣ > ΘDj Ô⇒ jth DC motor is faulty

∣HDj(τ)∣ ≤ ΘDj Ô⇒ jth DC motor is fault-free
(6.47)

where

HDj(τ) = EDstorj(τ) + EDdisj(τ) − EDsupj(τ)
EDstorj(τ) = 1

2
icj(τ + η)TQinjicj(τ + η)
−1
2
icj(τ)TQinjicj(τ)

EDdisj(τ) =
τ+η

∫
τ

iTcjRejicjdt

EDsupj(τ) =
τ+η

∫
τ

(uvj −Wtj q̇j)T icjdt
ΘDj = ηδijδcj.

The last step is to find out which kind of fault appears in the faulty DC motor, i.e.
whether it is dissipated-energy change caused by the change of resistance or stored-energy
change caused by the change of inductance. Suppose jth motor is faulty, following the
isolation logic (4.41) in Chapter 4, two different kinds of faults can be isolated by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
HDj(τ) ≥ −ΘDj (τ ≥ τdet) or HDj(τ) ≤ ΘDj (τ ≥ τdet)
Ô⇒ resistance change (dissipated-energy change) in jth motor

otherwise Ô⇒ inductance change (stored-energy change) in jth motor

(6.48)

with τdet as the time window when the fault is detected by (6.35). Since there is only
one energy-dissipating component (resistance) and one energy-storing component (induc-
tance) in each motor, so the fault isolation is achieved.
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Figure 6.1: Two-link manipulator driven by DC motors

6.4 Simulation

6.4.1 Parameter setting and thresholds computation

A two-link manipulator driven by DC motors as in Fig 6.1 is considered, the system
model is as (6.14) with the following parameters ([91]):

M(q) = [ 7.5 + 2.5cos(q2) 1.25 + 2.5cos(q2)
1.25 + 2.5cos(q2) 1.25

] ,
C(q, q̇) = [ −2.5sin(q2)q̇2 −2.5sin(q2)(q̇1 + q̇2)

2.5sin(q2)q̇1 0
] ,

g(q) = [ 98cos(q1) + 24.5cos(q1 + q2)
24.5cos(q1 + q2) ] ,

K = [ 6 0
0 5

] , Re = [ 1.2 0
0 1.2

] ,
Qin = [ 0.05 0

0 0.05
] , Wt = [ 0.8 0

0 0.8
]
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where q = [ q1 q2 ]T . The bounds of unknown inputs defined in (6.8) and (6.13) are

δm = 0.47, δc = 0.28, δc1 = 0.2, δc2 = 0.2,
and the armature voltage (input) is set as:

uv = [ 60(sin(2t) + cos(2t)) 40(sin(2t) + cos(2t)) ]T
Driven by the above input signal, the bounds of the system states defined in (6.32) are

δq̇ = 10.82, δi = 85, δi1 = 72.10, δi2 = 46.57.
The width of the evaluation moving time window and the isolation window are set as
η = 0.1s and w = 0.3s. Then according to (6.34), (6.38) and (6.45), we have the thresholds
as

Θ = 2.91, ΘM = 0.51, ΘD = 2.40, ΘD1 = 1.44, ΘD2 = 0.93.
6.4.2 Simulation results

For different kinds of faults, simulations of 400 seconds have been carried out. In all
simulations, the faults appear at t = 200 seconds. In figures, the solid line represents the
behavior of H (τ) or Ri(τ)(i = 1,2), and the dashed line represents the thresholds Θ
and −Θ.
Friction rate change of manipulator. Fig 6.2 to 6.5 show the simulation results,

when friction rate is faulty. Two abrupt faults are considered. For the first fault which
leads to the change of the friction rate of the second link ∆K2 = 3, the behavior of H (τ)
is as Fig 6.2a. We can see that, after the fault appears, it turns to be ∣H (τ)∣ > Θ,
which leads to a successful fault detection. HM(τ) and HD(τ) for subsystems are as
in Fig 6.2b and Fig 6.2c, since only HM(τ) crosses the threshold after the occurrence
of the fault, the fault in manipulator subsystem is successfully isolated. On the other
hand, as HM(τ) only crosses one of the thresholds, according to the isolation logic (6.40)
dissipated-energy change (friction rate change) is isolated. In order to further isolate in
which link friction rate is changed, the behavior of RM1(τ) and RM2(τ) are shown in Fig
6.3a and Fig 6.3b. We can see that, for τ > τdet +w (τdet = 209.1s,w = 0.3s), only RM2(τ)
stays under the thresholds (RM2(τ) crosses the threshold only when τ < τdet +w). Since
HM(τ) ≤ Θ is fulfilled when ∣MQ2

(τ)∣ ≤ 0.001 as shown in Fig 6.3c, according to isolation
logic (6.44), the fault which leads to friction change in the second link is successfully
isolated. For the second fault which leads to the change of the friction rate of the first
link ∆K1 = 6, the behavior of H (τ), HM(τ) and HD(τ) is as Fig 6.4, similarly friction
rate change in manipulator subsystem is isolated. RM1(τ), RM2(τ) and HM(τ) (when∣MQ1

(τ)∣ ≤ 0.001) are shown in Fig 6.5, according to (6.44), friction rate change in the
first link is successfully isolated.
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Unexpected load in manipulator. Fig 6.6 shows the results when there is an
unexpected load m = 3kg in the second link of manipulator. From the behavior of H (τ)
we can see that, the fault has been successfully detected after it appears at t = 200
seconds. And it can be observed from the behavior of HM(τ) and HD(τ) that, fault in
manipulator subsystem is isolated. Since HM(τ) crosses both thresholds, according to
the isolation logic (6.40), stored-energy change in manipulator subsystem is successfully
isolated.
Resistance change in DC motors. Fig 6.7 to Fig 6.8 show the results when there

is an abrupt fault which leads to a resistance change ∆Re2 = 0.3Ω in the second DC
motor. It can be observed from Fig 6.7 that, the fault has been successfully detected
by H (τ) and isolated as a fault in DC motor subsystem by HM(τ) and HD(τ). For
the isolation between two DC motors, HD1(τ) and HD2(τ) are shown in Fig 6.8, we
can see that, only HD2(τ) crosses the threshold, so fault in the second DC motor is
isolated. Since HD2(τ) only crosses one of the threshold, according to isolation logic
(6.48), finally dissipated-energy change (resistance change) in the second DC motor is
successfully isolated.
Inductance change in DC motors. Fig 6.9 to Fig 6.10 show the results when there

is an abrupt fault which leads to an inductance change ∆Qi1 = −0.02H in the first DC
motor. It can be observed from Fig 6.9 that, the fault is successfully detected by H (τ)
and also isolated as a fault in DC motor subsystem by HM(τ) and HD(τ). For the
isolation between two DC motors, HD1(τ) and HD2(τ) are shown in Fig 6.10, we can
see that, only HD1(τ) crosses the threshold, so fault in the first DC motor is isolated.
Since HD1(τ) crosses both thresholds, according to isolation logic (6.48), stored-energy
change (inductance change) in the first DC motor is successfully isolated.

6.5 Summary

In this chapter, the use of proposed energy-balance based FDI framework has been demon-
strated by robot manipulator benchmark study. The stored, dissipated and supplied en-
ergies of the benchmark system have been studied, and energy balances for the whole
system as well as for two subsystems have been established. Based on them, energy-
balance based fault detection and isolation schemes were designed. The complete FDI
system together with the benchmark system was implemented in MATLAB/SIMULINK.
The results show that, the proposed FDI schemes can effectively detect and isolate the
faults in robot manipulator benchmark.
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Figure 6.2: Friction rate change in the second link of manipulator. Figure (a), (b) and (c)
show the behavior of H (τ), HM(τ) and HD(τ), when when an abrupt friction rate change
∆K2 = 3 of the second link occurs at t = 200 seconds.

81



Chapter 6 Application to the robot manipulator benchmark

0 50 100 150 200 250 300 350 400
−15

−10

−5

0

5

10

15

time [s]
(a)

R
m

1

0 50 100 150 200 250 300 350 400
−2

−1

0

1

2

3

time [s]
(b)

R
m

2

0 20 40 60 80 100 120 140 160 180 200

−0.5

0

0.5

step
(c)

H
m

Figure 6.3: Friction rate change in the second link of manipulator. Figure (a) and (b) show
the behavior of RM1(τ) and RM2(τ) for the fault ∆K2 = 3 at t = 200 seconds. Figure (c)
shows the behavior of HM(τ) when ∣MQ2

(τ)∣ ≤ 0.001.
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Figure 6.4: Friction rate change in the first link of manipulator. Figure (a), (b) and (c) show
the behavior of H (τ), HM(τ) and HD(τ), when an abrupt friction rate change ∆K1 = 6
of the first link occurs at t = 200 seconds.
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Figure 6.5: Friction rate change in the first link of manipulator. Figure (a) and (b) show the
behavior of RM1(τ) and RM2(τ) for the fault ∆K1 = 6 at t = 200 seconds. Figure (c) shows
the behavior of HM(τ) when ∣MQ1

(τ)∣ ≤ 0.001.
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Figure 6.6: Unexpected load in manipulator. Figure (a), (b) and (c) show the behavior of
H (τ), HM(τ) and HD(τ), when there is an unexpected load m = 3kg appears in the second
link at t = 200 seconds.
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Figure 6.7: Resistance change in the second DC motor. Figure (a), (b) and (c) show the
behavior of H (τ), HM(τ) and HD(τ), when an abrupt resistance change ∆Re2 = 0.3Ω of
the second DC motor occurs at t = 200 seconds.
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Figure 6.8: Resistance change in the second DC motor. Figure (a) and (b) show the behavior
of HD1(τ) and HD2(τ) for the fault ∆Re2 = 0.3Ω at t = 200 seconds.
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Figure 6.9: Inductance change in the first DC motor. Figure (a), (b) and (c) show the
behavior of H (τ), HM(τ) and HD(τ), when an abrupt inductance change ∆Qi1 = −0.02H
of the first DC motor occurs at t = 200 seconds.
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Figure 6.10: Inductance change in the first DC motor. Figure (a) and (b) show the behavior
of HD1(τ) and HD2(τ) for the fault ∆Qi1 = −0.02H at t = 200 seconds.
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Chapter 7

Conclusions and future directions

This chapter summarizes the results obtained in this dissertation, and
presents the concluding remarks. Some directions for further developments
of the proposed approaches are also suggested.

7.1 Conclusions

The major focus of this thesis is on fault detection and isolation for nonlinear systems.
Two kinds of nonlinear systems are considered, which are Lipschitz nonlinear systems
and passive nonlinear systems. The performance of the proposed FDI schemes have been
illustrated by academical examples and benchmark studies.
The first objective of this thesis is to design an FD system for Lipschitz nonlinear

process which results in a trade-off between low false alarm rate and high fault detection
rate in the norm-based framework. To achieve this objective, residual generation and
evaluation have been designed in an integrated way, and the optimization problem was
formulated as: given FDR, minimizing the FAR. An iterative algorithm based on linear
matrix inequalities is proposed to solve the optimization problem. A design example was
provided to illustrate the proposed methodologies. From the discussions presented in
Chapter 3, it is concluded that:

• A better performance of the FD system for Lipschitz nonlinear processes can be
achieved by designing the residual generation and evaluation in an integrated way.

• The practical requirements of FDR and FAR can be used as indices in the in-
tegrated design approach, which makes the application of the FD system much
easier.

• The integrated design of FD system for Lipschitz nonlinear processes can be solved
iteratively based on linear matrix inequalities.

The second objective is to establish an energy-balance based FDI framework for passive
nonlinear systems. Passivity is an important system property which relates closely to
system energies. Based on it, energy balance for passive system has been constructed and
used for fault detection. Faults were defined based on their influences to system energies,
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and a two-step fault isolation scheme was proposed. The first step of the fault isolation is
to find out which kind of fault (energy change) appears in the system, and the second step
is to isolate the faulty component. The design procedure of the proposed energy-based
FDI framework for input-affine nonlinear systems and Lagrangian nonlinear systems have
been studied in Chapter 5. The application to robot manipulator benchmark shows the
effectiveness of the proposed energy-based FDI schemes. From the discussions presented
in these chapters, the following conclusions can be drawn:

• The fault detection and isolation of passive nonlinear systems can be achieved in an
energy-balance based framework, which has a simple design proceedure and requires
little on-line computation.

• An energy balance which contains stored, dissipated and supplied energies can be
constructed for passive nonlinear systems.

• Fault detection can be achieved by checking the validity of the energy balance.

• Faults can be defined according to their influences on system energies. Based on this
definition, faults in energy-dissipating components and energy-storing components
can be distinguished easily.

• Fault isolation can be carried out in a two-step form in the energy-balance based
framework, which can considerably reduce the complexity of the isolation scheme.

• For input-affine nonlinear systems and Lagrangian nonlinear systems, the energy-
balance based FDI schemes can be designed effectively.

• For complex systems, energy balances of subsystems can be used for fault isolation.

7.2 Future directions

The preceding section summarized the results obtained in this dissertation. The proposed
techniques and their application to improve the performance of FDI system of nonlinear
processes were briefly described. Besides the admired features of the proposed meth-
ods, there is a room for further improvements. In the following, some possible research
directions for further extension of the proposed FDI schemes are outlined.
Chapter 3 proposed the integrated design approach of observer-based FD for Lipschitz

nonlinear systems, which results in a trade-off between low false alarm rate and high
fault detection rate in the norm-based framework. Since there are model uncertainties,
system input u will also influence the residual signal which could lead to false alarms. In
the proposed approach, input u has been summed up with disturbance d into one vector

d0 = [ u

d
], and the influence of d0 to the residual signal is minimized to achieve a lower

91



Chapter 7 Conclusions and future directions

false alarm rate. In this way, u has been treated as an unknown input, which could lead
to conservative results. Since u is online available, a possible future direction to extend
the proposed approach is to make use of the information of input u in the FD system
design, for instance, adaptive threshold etc. Another future direction is to extend the
integrated FD system design approach to more general nonlinear processes.
Chapter 4 proposed the energy-balance based FDI framework for passive nonlinear

systems, and the design procedure of the proposed FDI framework has been studied for
two classes of nonlinear systems in Chapter 5 and 6. In the proposed FDI schemes, the
construction of the energy balance is based on an input-output system model, which may
not be available for some complex processes like in chemical industry. In [19], assuming
the process is in the steady-state, a so-called signals energy balance is constructed by
identifying the parameters using the fault-free data. A possible future direction is to
extend the proposed FDI schemes based on the identified energy balance in [19]. In [20],
besides energy balance, the mass balance of the process has also been established and
used for fault detection purpose. Since for many chemical processes, mass balance is
a very important property, another future direction is to extend the proposed energy-
balance based FDI framework to a more general form which could also include the mass
balance.
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