7 research outputs found

    Performance of Protein Disorder Prediction Programs on Amino Acid Substitutions

    Get PDF
    Many proteins contain intrinsically disordered regions, which may be crucial for function, but on the other hand be related to the pathogenicity of variants. Prediction programs have been developed to detect disordered regions from sequences and used to predict the consequences of variants, although their performance for this task has not been assessed. We tested the performance of protein disorder prediction programs in detecting changes to disorder caused by amino acid substitutions. We assessed the performance of 29 protein disorder predictors and versions with 101 amino acid substitutions, whose effects have been experimentally validated. Disorder predictors detected the true positives at most with 6% success rate and true negatives with 34% rate for variants. The corresponding rates for the wild-type forms are 7% and 90%, respectively. The analysis revealed that disorder programs cannot reliably predict the effects of substitutions; consequently, the tested methods, and possibly similar programs, cannot be recommended for variant analysis without other information indicating to the relevance of disorder. These results inspired us to develop a new method, PON-Diso (http://structure.bmc.lu.se/PON-Diso), for disorder-related amino acid substitutions. With 50% success rate for independent test set and 70.5% rate in cross-validation, it outperforms the evaluated methods

    Epigenetics of Neurodegeneration: Quantification of Histone Deacetylase Isoforms and Post-translational Modifications of Histones in Alzheimer’s Disease

    Get PDF
    Histone post-translational modifications have been implicated in many biological functions and diseases and serve an important role in epigenetic regulation of gene expression. Aberrant modulations in histone post-translational have been suggested to occur in the brain as part of Alzheimer’s disease (AD) pathology, consistent with the epigenetic blockade of neurodegeneration. This dissertation details the development and optimization of unique protein standards for quantification, called quantification concatamers, for the absolute quantification of histone deacetylase isoforms in human frontal cortex with AD, human neural retina with AD and age-related macular degeneration, and whole brain hemisphere of a 5XFAD mouse model of AD. Histone deacetylases are enzymes responsible for the deacetylation of histones, which can directly regulate transcription, and have been implicated in AD pathology. In addition to measuring isoforms of histone-modifying enzymes, measurements of post-translational modifications on histones were also obtained for whole hemispheres of brain from 5XFAD mice and frontal cortex from human donors affected with AD. For the changes in post-translational modifications observed, structural mechanisms were proposed to explain alterations in the DNA-histone affinity in the nucleosome, which can modulate gene expression. Measurements and structural mechanisms were consistent with the global decrease in gene expression observed in AD, which supports the data. This body of work aims to better elucidate the epigenetic pathology of AD and to aid in identification of histone-modifying enzymes involved in AD pathology for drug targets and treatment options. Currently, there are no treatments that prevent, delay, or ameliorate AD, stressing the crucial importance of AD pathology research and the promise of epigenetics as the solution

    Structural studies of putative general stress and related proteins from Deinococcus radiodurans

    Get PDF
    This study describes the cloning, expression, purification, biophysical characterisation and crystallisation of DR_1146; a putative general stress protein from the extremophilic bacterium Deinococcus radiodurans (R1). The extraordinary ability of D. radiodurans to resist mutation or apoptosis on exposure to high does of ionising radiation has formed the basis of a structural genomics project underway at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. The work presented in this study forms part of the ESRF’s D. radiodurans initiative, and was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the ESRF as an Industrial Cooperative Award in Science and Engineering (CASE) PhD studentship. A period of one-year was spent on secondment at the ESRF, working within the Macromolecular Crystallography Group. Several constructs of the dr_1146 gene have been successfully overexpressed in E. coli cells to give high yields of target protein. Purification by immobilised metal affinity chromatography (IMAC) was facilitated by the incorporation of a 6xHis tag and supplemented by a final gel filtration step. Although high purity levels were achieved, imaging by SDS-PAGE analysis identified that DR_1146 was susceptible to stringent proteolysis. It is thought that initial crystallisation trials were unsuccessful due to inhomogeneity of the sample caused by reported degradation of the target protein. Biophysical characterisation of DR_1146 by isothermal titration calorimetry (ITC) and fluorescence spectroscopy (FS) identified a moderate affinity of 4-11 μM for the flavin molecules, riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Differential scanning calorimetry (DSC) and circular dichroism (CD) experiments demonstrated an increase in chemical and thermal stability of the protein on binding to the flavin molecule, FMN. Analytical ultracentrifugation (AUC) and Nuclear magnetic resonance (NMR) spectroscopy were employed to investigate the solution behaviour of DR_1146 in the presence of FMN. AUC results uncovered a monomer-dimer equilibrium; with DR_1146 self-associating to form a dimer at a concentration of 7.67 μM. NMR spectroscopy depicted that global changes occur within the structure of DR_1146 on binding to FMN. The high quality of spectra obtained showed potential for 3-D structure determination by NMR if ordered crystals could not be obtained for X-ray diffraction. Interestingly, analysis of NMR spectra proved to be integral to identifying a homogenous sample for successful crystallisation of DR_1146. By monitoring chemical shifts it was possible to determine the time needed for degradation of DR_1146 to cease, and the amount of FMN needed to ensure saturation of binding sites. From this particular sample, a stable 28 kDa fragment was isolated by gel filtration. Automated sitting-drop vapour-diffusion experiments resulted in the growth of yellow DR_1146-FMN crystals for which, although poor in quality, X-ray diffraction was obtained. Overall this study reflects the importance and advantage of incorporating information gained from biophysical characterisation into the strategies employed for successful protein crystallisation. The characterisation of DR_1146 as a flavoprotein points towards a possible role in electron transfer due to the extensive redox capacity of flavin. This could implicate the protein in the production of damaging reactive oxygen species (ROS) as a result of irradiation, contributing to oxidative stress levels. Alternatively, if DR_1146 is identified as a FMN-binding pyridoxine 5'-phosphate oxidase (PNPOx) enzyme, as sequence homology suggests, it could play a role in detoxification and stress response through production of pyridoxal 5'-phosphate (PLP), a known scavenger of ROS. Only further characterisation and elucidation of a 3-D structure would confirm or dispel these functional hypotheses and ultimately provide a greater understanding of how D. radiodurans is able to deal with such oxidising conditions. Simultaneously, experiments were carried out on other soluble and membrane protein targets from D. radiodurans and their corresponding homologues from Streptococcus pneumoniae (TIGR4). The aim of comparable studies was to identify key structural or functional differences between the two Gram-positive bacterial strains. Identification of features unique to D. radiodurans, but unconserved in S. pneumoniae, could contribute to further understanding of bacterial radioresistance. SP_1651 is a thiol peroxidase which forms part of the Mn-ABC transport system in S. pneumonia. Its homologue from D. radiodurans, DR_2242 is a putative thiol-specific antioxidant protein, the structure of which has been solved by Dr. Dave Hall as part of the ESRF’s structural genomics project (unpublished). The aim of this part of the project was to elucidate the structure of SP_1651 so that a comparison with DR_2242 could be made. The sp_1651 gene (psaD) was successfully expressed and purified to homogeneity by IMAC and gel filtration. After the proteolytic removal of a 6xHis tag, the purified protein was crystallised by sitting-drop vapour-diffusion. Preliminary diffraction with a resolution limit of 3.2 Å was obtained, however data showed high mosaic spread. Unfortunately, attempts to reproduce initial crystals failed and hence, structural comparisons with DR_2242 could not be made. DR_0463 is a 108 kDa maltooligosyltrehalose synthase (MTSase) which has been shown to catalyse the breakdown of maltooligosaccharide (or starch) into the disaccharide, trehalose. The full length gene was expressed in BL21(DE3)pLysS cells, producing large yields of insoluble target protein. DR_0463 was solubilised with 8 M Urea and then purified by IMAC in the presence of the denaturant. The low affinity of DR_0463 for the Ni2+ matrix of the HisTrap column proved to be problematic when trying to obtain homogeneity. However, by sequentially repeating IMAC purification up to three times with the same protein sample, a large proportion of impurities were removed. SP_1648 (PsaB) is an ATP-binding protein that forms part of the Mn-ATP transport system in S. pneumoniae and its homologue from D. radiodurans, DR_2284 is predicted to share similar function. Purification of soluble SP_1648, expressed in B834(DE3) cells, was complicated by an inability to bind the protein to the column matrix for IMAC. In the case of DR_2284, expression trials yielded only a minute amount of insoluble protein in BL21-AI competent cells. The bottlenecks in early expression and purification stages provided valuable experience in dealing with problematic proteins. As an introduction to molecular cloning, two genes predicted to encode integral membrane proteins from D. radiodurans, were cloned for preliminary expression trials. This work was carried out at the ESRF and contributed to an extension of the structural genomics project, to incorporate membrane protein targets from D. radiodurans. Full length forms of the genes thought to encode an undecaprenyl diphosphatase (UDP) and a diacylglycerol kinase (DGKA) were successfully cloned in to pET-28b, with incorporation of separate N- and C- terminal 6xHis tags

    Structural and functional analysis of pneumococcal histidine triad D from Streptococcus pneumoniae

    Get PDF
    The pathogenic bacteria Streptococcus pneumoniae is one of the major causes of morbidity and mortality in humans in the world today. A Gram-positive facultative anaerobe, under natural conditions it exists as a commensal bacteria residing in the nasopharynx. Upon invasion of the body, S. pneumoniae can cause a number of diseases, which range in severity from acute otitis-media to pneumonia, septicaemia and meningitis. The main virulence factor of S. pneumoniae has been identified as the polysaccharide capsule, which coats the outside of the cell. S. pneumoniae can be categorised into 92 distinct serotypes based on capsular composition. Current available vaccines utilise a mixture of polysaccharides from the most prevalent capsular serotypes, or capsular polysaccharide conjugated to a carrier protein. Vaccine coverage is therefore serotype specific. Furthermore, vaccine efficiency is lower in those groups most at risk of infection; namely infants, the elderly and the immuno-compromised. As a result investigation is ongoing into a next generation of protein-based vaccine that can provide increased coverage and efficiency. A novel family of proteins termed Pneumococcal Histidine Triad (Pht) proteins were identified from a whole genome antigen-screen as potential candidates for inclusion in a novel protein-based pneumococcal vaccine. Animal models of infection have shown that immunisation with the Pht protein Pneumococcal Histidine Triad D (PhtD) confers protection against invasion of S. pneumoniae. PhtD was cloned, expressed, purified and subjected to crystallisation trials in an attempt to uncover the function of PhtD through determining the protein structure by macromolecular X-ray crystallography, which yielded some rudimentary crystallographic data. Biophysical analysis of PhtD using a variety of techniques including limited proteolysis and circular dichroism revealed that PhtD exclusively bound the divalent-cation Zn2+ and that Zn2+-binding induced a major conformational change in the protein structure, which proved to be a reversible process. A rationalised, targeted analysis of PhtD protein structure by limited proteolysis, Nuclear Magnetic Resonance (NMR), N-terminal sequencing and mass-spectrometry revealed localised, ordered regions of structure within the protein sequence that were highly stable. These identified protein fragments were subsequently cloned, expressed, purified and subjected to crystallisation trials. Due to their smaller and more ordered nature, it was postulated that these PhtD fragments may prove more readily crystallisable than the full-length molecule. Initial crystals have been obtained for these protein fragments and are being optimised to improve crystal size and quality. Evaluation of the PhtD proteolysis products by Western blotting with anti-PhtD antibody has revealed the dominant epitope for the PhtD protein, localised to a 15 kDa region in the C-terminal half of the PhtD protein sequence. This could be a major advancement in development of a protein based vaccine as only the 15 kDa epitope-containing region need be included in order to elicit an antibody reaction. Furthermore, the small size of the protein fragment is highly conducive to structural determination by a variety of methods. This 15 kDa epitope fragment has been cloned into an expression plasmid allowing recombinant protein expression in order to investigate further. Additionally, as training for handling of PhtD X-ray diffraction data, macromolecular X-ray crystallography was attempted with a variety of different proteins from Gram-positive bacteria. Two proteins -a novel cis-trans isomerase PpmA from S. pneumoniae, and the transketolase TktA from Lactobacillus salivarius- were successfully crystallised. Diffraction quality crystals of TktA were grown that produced X-ray diffraction to 2.3Ă… resolution. The structure of TktA was successfully determined using the molecular replacement method. Diffraction quality crystals of PpmA were grown that show X-ray diffraction to 2.5Ă… resolution, and optimisation of crystallisation conditions should yield better X-ray diffraction, allowing the structure of PpmA to be determined. The data pertaining to these proteins is also included as part of this thesis

    A bioinformatical approach for a reliable determination of short motifs for SUMO and Atg8 interaction in Saccharomyces cerevisiae

    Get PDF
    Regulatory processes are initiated by posttranslational modifications of proteins which alter their activity, stability, localization or their interaction with other proteins. Among many other processes, decoding the SUMOylation signal or the recognition of lipidated Atg8 represent starting points to effective downstream signalling pathways, initiated by SUMO interacting motifs (SIMs) and Atg8 interacting motifs (AIMs) in protein sequences. The low information contents of SIMs and AIMs prevent their detection from spurious sequences. This thesis is about a detection approach for so far unknown SIMs and AIMs with bioinformatical methods. The first part of this thesis describes the bioinformatical SIM detection method. The overall method is common for all SIM types, whereas the single SIM detection screens apply to the characteristics for SIMa, SIMb and SIMr. Two sets of phylogenetic distances from budding yeast in combination with information theoretical approaches and sliding averages serve as a conservation measure. A combination of bioinformatical tools is used for an estimation whether a protein segment is unstructured, non-globular or globular. The bioinformatical approach in this thesis uses these conservation and structural features for the evolution of a functionality scoring measure for unknown SIM instances. Experimental interaction studies show so far unknown SUMO interaction for Dbp10, Drs1, Rfc1, Rad18 and Tdp1 from the bioinformatical SIM detection screens. Dbp10 and Drs1 are involved in ribosomal biogenesis in the nucleolus. A SIM in this biological context has not yet been reported, whereas SUMOylation is involved in the release of pre-ribosomal particles into the nucleoplasm. Tdp1, Rfc1 and Rad18 are involved in DNA replication and damage repair, where SUMOylation is a crucial activity factor for other proteins. The motif in Rfc1 identified from the bioinformatical detection screen is shown responsible for SUMO interaction in mutation studies. This motif also causes observable growth phenotype under chemically induced DNA damage stress. The motif in Rad18 was meanwhile identified by Parker and Ulrich. The second part of this study describes the application of analogous methods for a bioinformatical AIM detection approach. The conservation characteristics of established AIM are found similar to those for SIMs, whereas the structural context is harder to be represented with bioinformatical methods
    corecore