2,619 research outputs found

    The Innovation Paradox: Concept Space Expansion with Diminishing Originality and the Promise of Creative AI

    Full text link
    Innovation, typically spurred by reusing, recombining, and synthesizing existing concepts, is expected to result in an exponential growth of the concept space over time. However, our statistical analysis of TechNet, which is a comprehensive technology semantic network encompassing over four million concepts derived from patent texts, reveals a linear rather than exponential expansion of the overall technological concept space. Moreover, there is a notable decline in the originality of newly created concepts. These trends can be attributed to the constraints of human cognitive abilities to innovate beyond an ever-growing space of prior art, among other factors. Integrating creative artificial intelligence into the innovation process holds the potential to overcome these limitations and alter the observed trends in the future.Comment: submitted to Design Scienc

    Examining the density and diversity of human activity in the built environment: The case of the pearl river delta, China

    Get PDF
    Rapid urbanization in China has been accompanied by spatial inefficiency in patterns of human activity, of which 'ghost towns' are the most visible result. In this study, we measure the density and diversity of human activity in the built environment and relate this to various explanatory factors. Using the Pearl River Delta (PRD) as an empirical case, our research demonstrates the distribution of human activity by multi-source data and then explores its dynamics within these areas. This empirical study is comprised of two parts. The first part explores location information regarding human activity in urbanized areas and shows density and diversity. Regression models are applied to explore how density and diversity are affected by urban scale, morphology and by a city's administrative level. Results indicate that: 1) cities with smaller populations are more likely to be faced with lower density and diversity, but they derive greater marginal benefits from improving land use efficiency; 2) the compactness of the layout of urban land, an index reflecting the plane shapes of the built environment, is highly correlated with density and diversity in built-up areas; and 3) the administrative importance of a city has a significant and positive impact on the density of human activity, but no obvious influence on its diversity

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    French Roadmap for complex Systems 2008-2009

    Get PDF
    This second issue of the French Complex Systems Roadmap is the outcome of the Entretiens de Cargese 2008, an interdisciplinary brainstorming session organized over one week in 2008, jointly by RNSC, ISC-PIF and IXXI. It capitalizes on the first roadmap and gathers contributions of more than 70 scientists from major French institutions. The aim of this roadmap is to foster the coordination of the complex systems community on focused topics and questions, as well as to present contributions and challenges in the complex systems sciences and complexity science to the public, political and industrial spheres

    Sustainability Assessment at the 21st century

    Get PDF
    The sustainability of the human society is endangered by the global human-ecological crisis, which consists of many global problems that are closely related to each other. In this phenomenon, the global population explosion has a central role, because more people have a larger ecological footprint, a larger consumption, more intensive pollution, and a larger emission of carbon dioxide through their activities.This book presents the current state of sustainability and intends to provide the reader with a critical perspective of how the 21st century societies must change their development model facing the new challenges (internet of things, industry 4.0, smart cities, circular economy, sustainable agriculture, etc.), in order to achieve a more liveable world

    Virtual Risk Management—Exploring Effects of Childhood Risk Experiences through Innovative Methods (ViRMa) for Primary School Children in Norway: Study Protocol for the ViRMa Project

    Get PDF
    Research indicates that risky play benefits children’s risk assessment and risk management skills and offers several positive health effects such as resilience, social skills, physical activity, well-being, and involvement. There are also indications that the lack of risky play and autonomy increases the likelihood of anxiety. Despite its well-documented importance, and the willingness of children to engage in risky play, this type of play is increasingly restricted. Assessing long-term effects of risky play has been problematic because of ethical issues with conducting studies designed to allow or encourage children to take physical risks with the potential of injury.Virtual Risk Management—Exploring Effects of Childhood Risk Experiences through Innovative Methods (ViRMa) for Primary School Children in Norway: Study Protocol for the ViRMa ProjectpublishedVersio

    Literariness Revisited: Deviation vs. Entrenched Ideas

    Get PDF
    ‘Literariness’ basically means foregrounding. In this study it means: presenting a view that deviates from entrenched opinions. A poem by Emily Dickinson was manipulated: apart from the original version we constructed two versions which changed to entrenched ideas. Readers rated their reactions on 6 aesthetic dimensions, each comprising 5 Likert scales. Finally, they compared the three versions

    Real-time quantum error correction beyond break-even

    Full text link
    The ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information. Previous experimental attempts to engineer such a process faced an excessive generation of errors that overwhelmed the error-correcting capability of the process itself. Whether it is practically possible to utilize QEC for extending quantum coherence thus remains an open question. We answer it by demonstrating a fully stabilized and error-corrected logical qubit whose quantum coherence is significantly longer than that of all the imperfect quantum components involved in the QEC process, beating the best of them with a coherence gain of G=2.27±0.07G = 2.27 \pm 0.07. We achieve this performance by combining innovations in several domains including the fabrication of superconducting quantum circuits and model-free reinforcement learning
    • 

    corecore