17,843 research outputs found

    Reducing Radiation Dose to the Female Breast during CT Coronary Angiography: A Simulation Study Comparing Breast Shielding, Angular Tube Current Modulation, Reduced kV, and Partial Angle Protocols Using an Unknown-location Signal-detectability Metric

    Get PDF
    Purpose: The authors compared the performance of five protocols intended to reduce dose to the breast during computed tomography (CT) coronary angiography scans using a model observer unknown-location signal-detectability metric. Methods: The authors simulated CT images of an anthropomorphic female thorax phantom for a 120 kV reference protocol and five “dose reduction” protocols intended to reduce dose to the breast: 120 kV partial angle (posteriorly centered), 120 kV tube-current modulated (TCM), 120 kV with shielded breasts, 80 kV, and 80 kV partial angle (posteriorly centered). Two image quality tasks were investigated: the detection and localization of 4-mm, 3.25 mg/ml and 1-mm, 6.0 mg/ml iodine contrast signals randomly located in the heart region. For each protocol, the authors plotted the signal detectability, as quantified by the area under the exponentially transformed free response characteristic curve estimator (AˆFE), as well as noise and contrast-to-noise ratio (CNR) versus breast and lung dose. In addition, the authors quantified each protocol\u27s dose performance as the percent difference in dose relative to the reference protocol achieved while maintaining equivalentAˆFE. Results: For the 4-mm signal-size task, the 80 kV full scan and 80 kV partial angle protocols decreased dose to the breast (80.5% and 85.3%, respectively) and lung (80.5% and 76.7%, respectively) withAˆFE= 0.96, but also resulted in an approximate three-fold increase in image noise. The 120 kV partial protocol reduced dose to the breast (17.6%) at the expense of increased lung dose (25.3%). The TCM algorithm decreased dose to the breast (6.0%) and lung (10.4%). Breast shielding increased breast dose (67.8%) and lung dose (103.4%). The 80 kV and 80 kV partial protocols demonstrated greater dose reductions for the 4-mm task than for the 1-mm task, and the shielded protocol showed a larger increase in dose for the 4-mm task than for the 1-mm task. In general, the CNR curves indicate a similar relative ranking of protocol performance as the correspondingAˆFEcurves, however, the CNR metric overestimated the performance of the shielded protocol for both tasks, leading to corresponding underestimates in the relative dose increases compared to those obtained when using theAˆFEmetric. Conclusions: The 80 kV and 80 kV partial angle protocols demonstrated the greatest reduction to breast and lung dose, however, the subsequent increase in image noise may be deemed clinically unacceptable. Tube output for these protocols can be adjusted to achieve a more desirable noise level with lesser breast dose savings. Breast shielding increased breast and lung dose when maintaining equivalentAˆFE. The results demonstrated that comparisons of dose performance depend on both the image quality metric and the specific task, and that CNR may not be a reliable metric of signal detectability

    THE DESIGN AND PRICING OF FIXED AND MOVING WINDOW CONTRACTS: AN APPLICATION OF ASIAN-BASKET OPTION PRICING METHODS TO THE HOG FINISHING SECTOR

    Get PDF
    Asian-Basket type moving window contracts are an increasingly used risk management tool in US hog sector. The moving window contract is decomposed into a portfolio of a long Asian-Basket put and a short Asian-Basket call option. A projected breakeven price is used to determine the floor price, and then Monte Carlo simulation methods are used to price both a moving and a fixed window contract. These methods provide unbiased pricing of fixed and moving window hog finishing contracts of one-year duration.Livestock Production/Industries,

    Characterizing Uncertainty in Air Pollution Damage Estimates

    Get PDF
    This study uses Monte Carlo methods to characterize the uncertainty associated with per-ton damage estimates for 100 power plants in the contiguous United States (U.S.) This analysis focuses on damage estimates produced by an Integrated Assessment Model (IAM) for emissions of two local air pollutants: sulfur dioxide (SO2) and .ne particulate matter (PM2:5). For each power plant, the Monte Carlo procedure yields an empirical distribution for the damage per ton of SO2 and PM2:5:For a power plant in New York, one ton of SO2 produces 5,160indamageswitha905,160 in damages with a 90% percentile interval between 1,000 and 14,090.AtonofPM2:5emittedfromthesamefacilitycauses14,090. A ton of PM2:5 emitted from the same facility causes 17,790 worth of damages with a 90% percentile interval of 3,780and3,780 and 47,930. Results for the sample of 100 fossil-fuel .red power plants shows a strong spatial pattern in the marginal damage distributions. The degree of variability increases by plant location from east to west. This result highlights the importance of capturing uncertainty in air quality modeling in the empirical marginal damage distributions. Further, by isolating uncertainty at each module in the IAM we .nd that uncertainty associated with the dose-response parameter, which captures the in.uence of exposure to PM2:5 on adult mortality rates, the mortality valuation parameter, and the air quality model exert the greatest in.uence on cumulative uncertainty. The paper also demonstrates how the marginal damage distributions may be used to guide regulators in the design of more efficient market-based air pollution policy in the U.S.Monte Carlo, Air Pollution, Market-based Pollution Policy

    Turbulent Formation of Interstellar Structures and the Connection Between Simulations and Observations

    Get PDF
    I review recent results derived from numerical simulations of the turbulent interstellar medium (ISM), in particular concerning the nature and formation of turbulent clouds, methods for comparing the structure in simulations and observations, and the effects of projection of three-dimensional structures onto two dimensions. Clouds formed as turbulent density fluctuations are probably not confined by thermal pressure, but rather their morphology may be determined by the large-scale velocity field. Also, they may have shorter lifetimes than normally believed, as the large-scale turbulent modes have larger associated velocities than the clouds' internal velocity dispersions. Structural characterization algorithms have started to distinguish the best fitting simulations to a particular observation, and have opened several new questions, such as the nature of the observed line width-size relation and of the relation between the structures seen in channel maps and the true spatial distribution of the density and velocity fields. The velocity field apparently dominates the morphology seen in intensity channel maps, at least in cases when the density field exhibits power spectra steep enough. Furthermore, the selection of scattered fluid parcels along the line of sight (LOS) by their LOS-velocity inherent to the construction of spectroscopic data may introduce spurious small-scale structure in high spectral resolution channel maps.Comment: 15 pages, no figures. To appear in the Proceedings of "The Chaotic Universe", Roma/Pescara, Italy, 1-5 Feb. 1999, eds. V. Gurzadyan and L. Bertone. Uses included .cls fil
    corecore