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Abstract

Characterizing Uncertainty in Air Pollution Damage Estimates.

This study uses Monte Carlo methods to characterize the uncertainty associated with per-ton

damage estimates for 100 power plants in the contiguous United States (U.S.) This analysis focuses

on damage estimates produced by an Integrated Assessment Model (IAM) for emissions of two

local air pollutants: sulfur dioxide (SO2) and �ne particulate matter (PM2:5). For each power

plant, the Monte Carlo procedure yields an empirical distribution for the damage per ton of SO2

and PM2:5:For a power plant in New York, one ton of SO2 produces $5,160 in damages with a

90% percentile interval between $1,000 and $14,090. A ton of PM2:5 emitted from the same facility

causes $17,790 worth of damages with a 90% percentile interval of $3,780 and $47,930. Results

for the sample of 100 fossil-fuel �red power plants shows a strong spatial pattern in the marginal

damage distributions. The degree of variability increases by plant location from east to west. This

result highlights the importance of capturing uncertainty in air quality modeling in the empirical

marginal damage distributions. Further, by isolating uncertainty at each module in the IAM we

�nd that uncertainty associated with the dose-response parameter, which captures the in�uence of

exposure to PM2:5 on adult mortality rates, the mortality valuation parameter, and the air quality

model exert the greatest in�uence on cumulative uncertainty. The paper also demonstrates how

the marginal damage distributions may be used to guide regulators in the design of more e¢ cient

market-based air pollution policy in the U.S.

Keywords: Monte Carlo, Air Pollution, Market-based Pollution Policy,
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1 Introduction

This study uses Monte Carlo methods to characterize the uncertainty associated with per-ton dam-

age estimates for air pollution emissions from 100 power plants in the contiguous United States

(U.S.). This analysis focuses on damage estimates produced by an Integrated Assessment Model

(IAM) for emissions of two local air pollutants: sulfur dioxide (SO2) and �ne particulate matter

(PM2:5). The emphasis is on IAM-generated damage estimates because IAMs are commonly used

to determine the e¤ects of local air pollutants (Mendelsohn, 1980; Burtraw et al., 1998; Tong et al.,

2006; Muller, Mendelsohn, 2007; 2009). Further, IAMs are often applied to evaluate public policies

governing air pollution. As a result, characterizing model uncertainty has an important link to

the development and evaluation of environmental policy (U.S. Environmental Protection Agency

(USEPA), 1999). Such models are appealing in the context of air pollution because of their ability to

connect emissions to concentrations and concentrations to their e¤ects on society, typically through

six elements: emissions, air quality modeling, concentrations, exposures, concentration-response

relationships, and valuation. Parameters in each of these components of the IAM are derived from

peer-reviewed literature in di¤erent scienti�c disciplines. The most common approach in applying

IAM�s is to employ the mean parameter values for the six elements listed above. However, this ap-

proach e¤ectively ignores the in�uence of uncertainty in any one parameter and possible interactions

across the input parameters. Since the process connecting emissions to damages is multiplicative

(Rabl, Spadaro, 1999) cumulative uncertainty across the input parameters is especially important;

this leads to log-normally distributed damage estimates which impacts inferential techniques. In

this study we develop a stochastic IAM by drawing estimates of the uncertainty associated with

emissions, air quality modeling, populations, dose-response, and valuation from the peer-reviewed

literature. The stochastic IAM is then applied to model damages per ton for emissions of SO2

and PM2:5 at 100 power plants in the U.S. Although prior research has comprehensively modeled

uncertainty in an IAM, this is the �rst study to apply a stochastic IAM to a large sample of power

plants.

This paper uses the Air Pollution Emission Experiments and Policy analysis model (APEEP),
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an IAM, which in prior applications, was used to produce deterministic estimates of the marginal

damage of emissions for six pollutants1 at nearly 10,000 sources in the contiguous U.S. (Muller,

Mendelsohn, 2007; 2009). The simulation design in this study employs the algorithm to com-

pute marginal damages described in Muller and Mendelsohn (2007). Brie�y, this entails running

the APEEP model using the U.S. Environmental Protection Agency�s (USEPA) reported baseline

emissions for the year 2002 and subsequently computing ambient concentrations, exposures, mor-

talities, and the value of premature mortalities (monetary damages) corresponding to the USEPA�s

emission data (USEPA, 2006). Next, one ton of one pollutant is added to a speci�c source and the

APEEP model is run again computing exposures, mortalities, and damages. Since the only change

between the two runs is the addition of one ton of pollution, the change in damages is the marginal

($/ton) damage of the chosen pollutant emitted from the chosen source.

In contrast to the prior applications of APEEP, this study employs Monte Carlo analysis to

estimate the empirical distribution for the per-ton damage estimates for speci�c power plants. When

modeling SO2 damages the Monte Carlo algorithm involves the following steps. First, distributions

with 10,000 observations are constructed for the input parameters. Next, one realization is randomly

drawn from each of the input distributions and APEEP then computes baseline national damages.

Following the computation of baseline damages, one ton of SO2 is added to baseline emissions at a

speci�c source, and the APEEP model is re-run using the same realizations drawn from each input

distribution. Note that each iteration of the Monte Carlo simulation consists of both a baseline

emission run and an �add-one-ton� run; each of these two runs uses the same set of randomly

drawn values from the constructed distributions. This simulation design isolates the e¤ect of the

additional ton of SO2 added to baseline emissions conditional on the random draws from the

input distributions. This procedure is repeated 10,000 times for the selected source: once for each

observation in the constructed distributions. The result of this procedure is a set of 10,000 estimates

of the marginal damage of SO2 emissions for the selected source. The algorithm is then repeated

separately for other individual sources and for PM2:5.

The paper focuses on damages per ton, or marginal damages. Estimating marginal damages,
1The pollutants include: �ne particulate matter (PM2:5), coarse particulate matter (PM10� PM2:5), nitrogen

oxides (NOx), sulfur dioxide (SO2), volatile organic compounds (VOC), and ammonia (NH3).
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rather than aggregate damages, is of particular importance for environmental policy since economic

theory suggests e¢ cient policy must equate marginal damages to marginal abatement costs �by

source and by pollutant (see Baumol and Oates, 1988). The current regulatory climate for air

pollution is increasingly moving towards market-based policy instruments; cap and trade schemes

have gained widespread usage in the U.S., while both cap-and-trade as well as emission taxes are

employed in the European Union (Goulder, Parry, 2008). The design of e¢ cient market-based

policies requires knowledge of the marginal damage of emissions. Speci�cally, the optimal tax rate

for a speci�c source (similarly, the optimal permit price for cap-and-trade policies) is equal to the

marginal damage of emissions caused by the source (Baumol, Oates, 1988). Because of the critical

role that marginal damages potentially play in market-based policy design, information regarding

the precision of the marginal damage estimates is clearly important for practitioners. Also, from

an academic standpoint, characterizing and quantifying uncertainty and which parameters in the

model contribute most to cumulative uncertainty will help to guide future research priorities, with

the eventual goal of producing more precise marginal damage estimates.

As mentioned above, the Monte Carlo algorithm is applied to a sample of 100 power plants in the

coterminous U.S. This produces empirical distributions for the damages per ton caused by emissions

of both SO2 and PM2:5 emitted by each of the facilities. We embark on this process to explore how

the revelations regarding the precision of the marginal damages might a¤ect the design of pollution

policy. Speci�cally, one way regulators could use the damage estimates is to just employ the mean

damage by source. Then, if regulators pursue an e¢ cient market-based policy, such as an emission

tax, each facility with a distinct (mean) marginal damage would face a distinct tax rate - equal to

its marginal damage. However, this tack disregards the degree of precision in the damage estimates.

Another strategy regulators might use to design e¢ cient market-based policy is to statistically test

whether the marginal damages for the individual facilities are distinguishable from one another.

This approach, which relies on having an empirical distribution for the marginal damages, has two

advantages over just employing the means. First, by testing the equivalence of means for each

pair of sources it builds the precision of the damage estimates into policy design. Second, the

deterministic approach is problematic politically since applying a multiplicity of emission tax rates
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to regulated �rms is likely to be quite complicated and to generate considerable objections from

�rms. As a result, the second advantage of comparing the marginal damages statistically is that

this will likely reduce the complexity of an e¢ cient program by reducing number of emission tax

rates. That is, any pair of sources whose mean damages are equivalent statistically are then subject

to the same emission tax rate. This analysis takes the �rst step toward this approach to policy

design by reporting the 90% percentile intervals for the marginal damages at 100 power plants in

the U.S. The task of applying this method to the complete set of plants in the U.S. is left for future

research.

With random draws from the constructed distributions at each stage of the model, the Monte

Carlo algorithm provides an assessment of the cumulative impact of uncertainty in all stages of

the APEEP model on source and pollutant speci�c marginal damage estimates. However, it is also

of interest to determine the relative importance to total uncertainty of variability at each stage

of the model. This is explored by setting one parameter equal to its mean value while all other

parameters are modeled stochastically. The Monte Carlo procedure is then executed, producing

10,000 estimates of the source-speci�c, pollutant-speci�c marginal damage. With this estimated

distribution, we compute the coe¢ cient of variation and percentile intervals. We then compare the

coe¢ cient of variation (and the intervals) resulting from a particular parameter being held to its

mean value with the coe¢ cient of variation and the percentile intervals when all parameters are

modeled stochastically. A large di¤erence between the two coe¢ cients of variation suggests that

a certain parameter contributes a large share of cumulative model uncertainty. A small di¤erence

implies that the parameter has a limited in�uence on cumulative uncertainty. The thrust of these

experiments is to help focus future research; by determining which parameters contribute most to

cumulative uncertainty, these results may guide future research with the goal of providing more

precise parameter estimates which will result in more precise marginal damage estimates.

This is not the �rst paper to explore statistical uncertainty in air pollution damage estimates.

Speci�cally, Burtraw et al., (1998) report mean values and 90% con�dence intervals associated

with aggregate bene�ts of mandated emission reductions under Title IV of the Clean Air Act

marginal damage estimates for nitrogen oxides and sulfur dioxide. However, these damage estimates
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were constructed using state-average damages not source-speci�c damages (Burtraw et al., 1998).

Further, the con�dence intervals re�ect uncertainty in the valuation and dose-response parameters;

they do not encompass emissions, populations, and air quality modeling.

Rabl and Spadaro, (1999) explore variability in marginal damage estimates for sulfur dioxide and

nitrogen dioxide, and the uncertainty in several input parameters in an IAM. The contribution by

the current analysis relative to the work of Rabl and Spadaro (1999) is two-fold. First, the current

analysis characterizes uncertainty over a large sample of power plants throughout the coterminous

U.S. whereas Rabl and Spadaro (1999) focus on general results not derived from a particular source

or set of sources. The present paper therefore permits an assessment of how location and local land-

use can a¤ect the marginal damage distribution. Second, the work of Rabl and Spadaro (1999) is

now over ten years old. Hence, the current study explores a more modern IAM and updated �ndings

related to the input parameters in the IAM.

For the 100 power plants covered in this paper, we �nd that the empirical source-speci�c marginal

damage estimates are quite variable with arithmetic coe¢ cients of variation that range between

0.90 and 3.50. For a power plant in New York, one ton of SO2 produces $5,160 in damages with

a 90% percentile interval between $1,000 and $14,090. A ton of PM2:5 emitted from the same

facility causes $17,790 worth of damages with a 90% percentile interval of $3,780 and $47,930.

At a power plant in Delaware, the SO2 damage is estimated to be $7,660 per ton, and the 90%

interval reaches from $1,550 to $20,990. Further, the empirical marginal damages distributions

appear to be well approximated by the lognormal distribution and the shape of the distributions

are robust to whether the input parameters are distributed normally or lognormally. For both SO2

and PM2:5, the variability in the marginal damage estimates is driven by three input parameters:

the transfer coe¢ cients in the air quality models, the adult mortality dose-response coe¢ cient,

and the valuation parameter. The impact of the transfer coe¢ cients is signi�cantly greater for

rural, western source locations than for urban, eastern sources. Variability in the infant mortality,

emissions, and population parameters do not contribute appreciably to the cumulative uncertainty

in the empirical marginal damage estimates. This analysis also shows that, for the full sample of

100 power plants, the marginal damage distributions follow a distinct spatial pattern; the degree
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of variation observed in the distributions increases from east to west in the U.S. This implies that

per-ton damage estimates for rural, western facilities are generally more uncertain than eastern,

urban plants. This �nding highlights the importance of capturing uncertainty due to air quality

modeling.

Section 2. presents the theoretical model while section 3 describes the modi�cations to APEEP

that capture uncertainty. A full description of the deterministic version of APEEP is available in

Muller and Mendelsohn (2007). Section 4 presents our results and section 5 discusses the implica-

tions of the results both in terms of further research and pollution policy.

2 Theoretical Model

The empirical application of the IAM connects emissions from fossil fuel-�red power plants of

pollutants to concentrations, exposures, physical e¤ects, and dollar damages. The parsimonious

theoretical model depicted in equations (1) through (5) describes the IAM in a series of �ve linear

equations. This representation is adopted from Muller, Nordhaus, and Mendelsohn (2009). Equa-

tion (1) denotes emissions (E) of pollution species (s), emitted by a source in location (j), at time (t)

as being a pollutant-speci�c function (	s) of fuel type (F), abatement technology (A), and volume

of output (Q)2 .

Es;j;t = 	s(Fj;t; Qj;t; As;j;t) (1)

Equation (2) describes the ground-level concentration (C) of pollutant species (s), in receptor

location (r) that is due to emissions from a source in location (j), at time (t). The relationship

between emissions and concentrations is a function of the distance between source location and the

concentration location as well as meteorological factors and chemical processes in the atmosphere.

The di¤erent factors are captured in (2) by the function (fs;j), which is dependent both on the

pollution species (s) and source location (j).
2The assumption in (1) is that emissions are a product only of fuel combustion and the level of output at a given

emission source. This re�ects the empirical context that focuses on fossil-fuel-�red power plants.
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Cs;r;j;t = fs;j(Es;j;t) (2)

The model computes exposures (X) to species (s) in receptor location (r), due to emissions by

a source in location (j), at time (t), by multiplying the population of age-cohort (i) in location (r)

at time (t), (Pr;i;t) times concentrations.

Xs;r;j;t = Pr;i;tCs;r;j;t (3)

The response (R) to exposures (X) are determined by the coe¢ cient (�sk), which is distinct for

pollutant species (s), due to varying levels of toxicity, and for di¤erent health outcomes (k), such

as premature mortality and acute illness.

Rk;s;r;j;t = �
s
kXs;r;j;t (4)

The monetary damage (V) due to the emissions of (s) from a source in location (j) in time (t) is

shown equation (5). This is the sum, across receptor locations (r), and health outcomes (k), of the

response (R) to exposures times the valuation coe¢ cient (�k;t) , which translates physical e¤ects

into dollar values.

Vs;j;t =
X
r

X
k

�k;tRk;s;j;t (5)

The marginal damage of an emission of pollutant species (s) from source (j) at time (t) is shown

in (6).

MDs;j;t =

�
@Vs;j;t
@Es;j;t

�
(6)
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In equations (1) through (6), each of the input parameters in the model are treated deterministi-

cally. This in turn leads to a single, deterministic value for the marginal damage of emissions shown

in equation (6). In fact, the parent studies that report the values of the input parameters produce a

mean and variance for these parameters3 . When viewed from this perspective equations (1) through

(5) are the product of a series of random variables. We denote these variables (f̂ ; 	̂; P̂ ; �̂; �̂).

Hence, Vs;j;t and
�
@Vs;j;t
@Es;j;t

�
are no longer deterministic entities. Instead, Vs;j;t and

�
@Vs;j;t
@Es;j;t

�
are

now modeled as random variables resulting from the multiplicative process described in equations

(1) through (5). Equation (7) expresses (V̂s;j;t) as a multiplicative function of the parameters shown

above, with each parameter treated as a random variable.

V̂s;j;t =
X
r

X
k

�̂k;t�̂
s

kP̂r;t(f̂s;j(	̂s(Ft; Qt; As;t))): (7)

In this context, the APEEP model randomly selects a value from the distributions of the �ve

random variables (f̂ ; 	̂; P̂ ; �̂; �̂). The APEEP model then computes V̂s;j;t;g and
�
@V̂s;j;t;g

@Ês;j;t;g

�
where

(g) denotes the gth draw from the empirical distributions for (f̂ ; 	̂; P̂ ; �̂; �̂).

V̂s;j;t and
�
@V̂s;j;t

@Ês;j;t

�
are likely well-approximated by the lognormal distribution due to the mul-

tiplicative nature of the process described in equations (1) through (5). That is, the central limit

theorem implies that the log-normal distribution is a good approximation for the distribution of

a variable resulting from a multiplicative process (Slob, 1994; Rabl, Spadaro, 1999). As a result,

con�dence intervals based on normal distribution theory are problematic in this setting. The inter-

vals reported in this paper are percentile intervals (Efron, Tibshirani, 1993). Speci�cally, the (1-�)

percentile intervals corresponding to the mean marginal damage of a for source (j), pollutant (s),

at time (t) are computed using the formula shown in (8):

 
@V̂s;j;t

@Ês;j;t

!�
;

 
@V̂s;j;t

@Ês;j;t

!1��
: (8)

3For the function governing air quality modeling (fn), estimates of associated variability are not readily available
in the literature. As a result, a regression analysis-based estimate of such variability is produced in this paper. This
procedure is discussed in section 3.
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For a 90% interval, � = 0:05; and
�
@V̂s;j;t

@Ês;j;t

��
corresponds to the (N x �) observation from

the ordered distribution for
�
@V̂s;j;t

@Ês;j;t

�
: Similarly,

�
@V̂s;j;t

@Ês;j;t

�1��
corresponds to the (N x (1 � �))

observation from the ordered distribution. The ordered distribution ranks the (G) observations of�
@V̂s;j;t

@Ês;j;t

�
in ascending fashion. With G = 10,000,

�
@V̂s;j;t

@Ês;j;t

��
re�ects the 500th observation while�

@V̂s;j;t

@Ês;j;t

�1��
corresponds to the 9,500th observation in the ranked vector of

�
@V̂s;j;t

@Ês;j;t

�
:

The following section describes how the APEEP model is used to estimate
�
@V̂s;j;t

@Ês;j;t

�
.

3 Empirical Model.

The empirical component of this study relies on the Air Pollution Emission Experiments and Policy

Analysis model (APEEP): (Muller, Mendelsohn 2007). The structure of APEEP is shown in �gure

1. For a complete, detailed description of APEEP see Muller and Mendelsohn (2007). The modi�ca-

tions to the version of the model in prior applications (Muller and Mendelsohn, 2007; 2009; Muller,

Nordhaus, Mendelsohn, 2009) consists of explicitly modeling the uncertainty associated with each

stage of the model. Hence, the new stochastic version of APEEP creates distributions around the

input parameters, with the measures of dispersion taken from the peer-reviewed studies that report

the input parameters that are used in APEEP (Pope et al., 2002; USEPA, 1999; Kuykendal, et al.,

2006; Stoto, 1983; Woodru¤ et al., 2006). An additional modi�cation to prior versions of APEEP

involves the marginal damage algorithm which is described in the following section.

3.1 The Marginal Damage Algorithm with Uncertainty

To model the impact of uncertainty at each stage of APEEP and its combined in�uence on the

marginal damage estimates, we use the algorithm for computing marginal damages developed in

Muller, Mendelsohn (2007). This entails running the APEEP model using the USEPA�s reported

baseline emissions for the year 2002 and computing exposures, mortalities, and monetary damages

corresponding to the USEPA�s emission data (USEPA, 2006). Next, one ton of one pollutant is

added to a speci�c source and the APEEP model is re-run computing exposures, mortalities, and

damages. Since the only change between the two runs is the addition of one ton of pollution, the
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change in damages is the marginal damage, expressed in terms of dollars per ton, of the chosen

pollutant emitted from the chosen source.

The Monte Carlo analysis features the construction of distributions for the emissions, air quality

modeling, exposure, dose-response, and valuation modules. These are based on the values reported

in table 1 in the appendix. Each iteration of the Monte Carlo procedure consists of the following

six steps.

1) Take gth random draw from input distributions.

2) APEEP computes gth realization for emissions, concentrations, exposures, physical e¤ects,

and damages.

3) APEEP adds one ton of pollutant species (s), to source (j).

4) APEEP recomputes (using for gth realization) concentrations, exposures, physical e¤ects,

and damages given +1 ton of pollutant species (s) at (j).

5) APEEP computes the di¤erence between damages in step (4) and in step (2).

6) Repeat steps (1) through (5) 9,999 times.

Following from above, the �rst step in the Monte Carlo algorithm is a random draw from

each of the input distributions. Next, the model computes concentrations, exposures, physical

e¤ects, and damages given the random draw on emissions. Then one ton of a speci�c pollutant

(s) is added to the emissions for a speci�c source (j). APEEP then recomputes concentrations,

exposures, physical e¤ects, and damages given the random draw on emissions plus the additional

ton. Since the damages after the addition of one ton are computed with the same draws from the

distributions, the di¤erence in damages between steps (2) and (4) is strictly attributable to adding

the experimental ton to the selected source. And the di¤erence in damages - computed in step (5)

- between the two runs is the marginal damage of emissions for the speci�c pollutant added to the

particular source conditional on the gth draw from the input parameter distributions. As shown in

step (6) this procedure is repeated 10,000 times for a single source and pollutant. The end result

is that for the chosen source, 10,000 di¤erent values are obtained for the marginal damages, which

e¤ectively provides an empirical distribution for the marginal damage. These distributions are used
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to derive 95% con�dence intervals for the mean marginal damages for the 100 power plants covered

in this paper. The following sections brie�y describe the methods used to construct distributions

for emissions, air quality models, populations, dose-response and valuation. For the measures of

dispersion used to construct the input distributions, see the appendix.

The adaptation of APEEP from its deterministic version that was used in prior research (Muller,

Mendelsohn, 2007;2009) to the stochastic version begins by constructing a distribution around the

mean emission estimates provided in USEPA�s emission inventory for the year 2002 (USEPA, 2006).

This study focuses on modeling emissions from fossil fuel-�red power plants. Emissions from these

sources are measured using the USEPA�s Continuous Emission Monitoring System (CEMS). Al-

though discharges from such sources are measured, the potential for uncertainty due to measure-

ment error exists (Frey, Zheng, 2002; Frey, Li, 2003; Abdel-Aziz, Frey, 2004; Kuykendal, et al.,

2006). The estimated ranges of variability in Kuykendal, et al., (2006) are used herein (see table

5).

The air quality model in APEEP relies on a source-receptor matrix framework (Muller, Mendel-

sohn, 2007). Each transfer coe¢ cient in the matrix is denoted (Tj;s;r); these represent the change

in annual average concentration of pollutant species (s), in receptor location (r), due to emissions

in source location (j) (Latimer, 1996; Muller and Mendelsohn, 2007). The air quality modeling

literature that focuses on Gaussian models (Turner, 1994) suggests that the variability in transfer

coe¢ cients is typically an increasing function of the distance between (j) and (r). As a result, we

estimate the variation in Tj;s;r in a manner that re�ects the relationship between distance and

variation in the (Ts;j;r). Speci�cally, the transfer coe¢ cients are split into four di¤erent categories

of distances (d) between (j) and (r): 0 to 100 miles, 100 to 500 miles, 500 to 1000 miles, and 1000

to 3,000 miles. To model the variability in the (Tj;s;r;d)4 a regression model is estimated which

describes the (Tj;s;r;d) as a linear function of the distance between the source (j) and receptors (r)

as shown in (8),

Ts;j;r;d = �0s;d + �1s;dDj;r + "s;j;r;d (9)

4Note the addition of the subscript (d) which denotes distance category.
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where Dj;r is the distance from the source (j) to the receptor (r), the f�g are OLS parameter

estimates for pollutant species (s) and distance category (d), and "s;j;r;d is a stochastic term.

Within each distance category, the model in (8) is estimated using the set of Tj;s;r;d from the

source-receptor matrix (there are distinct matrices for SO2 and for PM2:5) and the corresponding

distances for each (j,r) pair. For each of the distance categories, a unique standard error estimate

for the transfer coe¢ cients is obtained, using a bootstrap procedure as follows (Efron, Tibshirani,

1993). This involves drawing samples of the Tj;s;r;d (with replacement) from one of the four distance

categories speci�ed above. For each of these samples, the model in (8) is estimated, from which a set

of predicted values, denoted (�Tj;s;r;d) are obtained. For each bootstrap sample, APEEP computes

the mean and the standard deviation of the predicted surface (the �Tj;s;r;d). After drawing 10,000

bootstrap samples, we obtain a sample of 10,000 mean values for from which the standard error

is estimated. Using this technique for each of the distance categories (separately), we obtain four

values for the uncertainty in the transfer-coe¢ cients, one for each distance category. This procedure

is executed separately for SO2 and PM2:5.

Exposures are computed as population times concentrations. Concentrations vary with each

iteration of the Monte Carlo procedure due to the di¤erent draws from the distributions around

the mean emission estimates and the transfer coe¢ cients. Uncertainty in human populations is

modeled using estimates of the error in the U.S. Census Bureau�s population projections (Stoto,

1983).

The dose-response module translates exposures to pollution into physical e¤ects. In this study,

we concentrate on the uncertainty associated with estimates of the impact that exposures to PM2:5

have on mortality risk for both adults and infants. Such uncertainty is associated with, �si;k , the

parameter that relates changes in ambient pollution into changes in age-speci�c mortality rates

shown in equation (4). We derive distributions for �si;k using the standard errors reported in

Woodru¤, Parker, and Schoendorf (2006), for infant mortalities, and Pope, et al., (2002) for adult

mortalities.

In the valuation module, APEEP a¢ xes a dollar value to the physical e¤ects estimated in the

dose-response module. This study focuses on mortality e¤ects, hence we focus here on modeling
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uncertainty associated with the valuation of small changes to mortality risks. The uncertainty

associated with the valuation parameter, (�k;t) in equation (5), for premature mortality is derived

from a meta-analysis of roughly 30 studies (USEPA, 1999). This parameter has a mean of roughly

$6 million (year-2000 U.S. dollars).

In addition to modeling cumulative uncertainty, APEEP is used to explore the in�uence of

uncertainty on each input parameter on cumulative uncertainty. The procedure models each input

parameter in the model stochastically except one; this parameter is set to its mean value. Then,

with this particular parameter �xed at its mean value the Monte Carlo procedure is executed

10,000 times to generate an empirical distribution of the marginal damages. For a speci�c source

and pollutant, this is repeated for each parameter in APEEP. Using this estimated distribution, we

estimate the arithmetic coe¢ cient of variation, CVj;s;m = (�� ), for source (j) and pollutant (s), and

the (mth) parameter.

4 Results

Table 1 reports the mean and the 90% percentile intervals for the empirical distribution of the

marginal damage estimates for both sulfur dioxide (SO2) and �ne particulate matter (PM2:5) cor-

responding to four fossil fuel-�red power plants; the facilities are located in Indiana (IN), New York

(NY), Texas (TX) and Delaware (DE). The sites were chosen from the sample of 100 power plants

as test cases. The input distributions are log-normal5 . The results in table 1 indicate that one ton

of SO2 emitted from the power plant in New York produces $5,160 in mortality damages. The 5th

percentile is $1,000 while the 95th percentile is $14,090. A ton of PM2:5 emitted from the same

facility causes $17,790 worth of damages with 5th, and 95th percentiles of $3,780 and $47,930. A

similar interpretation holds for the other facilities listed in table 1. Note that all power plants have

empirical marginal damages that are characterized by a long right tail; the di¤erence between the

mean and the 95th percentile is greater than the di¤erence between the mean and the 5th percentile.

5Table 3 and �gures 1 - 2 in the appendix show that the damage distributions are robust to whether the input
parameters are normally or lognormally distributed.
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This is the �rst evidence that the marginal damages are distributed log-normally.

Focusing on the mean values for PM2:5 reported in table 1, the greatest damages per ton

are associated with emissions from the facility in New York with damages becoming smaller for

emissions from Delaware, Indiana, and Texas. Since the damages modeled by APEEP focus on

mortalities this is an intuitive result given the relative population densities proximal to each plant.

Looking at the mean damages for SO2; the pattern is slightly di¤erent than that for PM2:5. The

facility in Delaware generates the greatest damage per ton, with damages then descending for New

York, Indiana, and Texas. This result occurs because when SO2 is emitted it takes some time

(and therefore distance if the wind is blowing) before it turns into PM2:5. With prevailing westerly

winds, the emissions in Delaware blow into the New York metropolitan area after the SO2 has been

converted into PM2:5. In contrast, the SO2 emissions in New York are transported by prevailing

winds out of the metropolitan area before they turn into PM2:5. An additional pattern in table 1

is that the damages due to emissions of PM2:5 are uniformly more harmful than emissions of SO2.

This occurs because only a fraction of emitted SO2 transforms into constituents of PM2:5 and,

therefore, a¤ects mortality rates.

Table 1 also reports the mean marginal damages when all input parameters are modeled deter-

ministically. Each of the deterministic marginal damages for SO2 are smaller in magnitude than

the stochastic mean marginal damages. The di¤erence between the stochastic marginal damages

and the mean marginal damage ranges between 0.5% for the Texas power plant and 3% for the

facilities in Delaware and Indiana. For PM2:5, the deterministic marginal damages are also smaller

than the stochastic means for each of the facilities except for the plant in Texas. The facilities in

Indiana, Delaware, and New York have deterministic marginal damages that are between 1% and

3% smaller than the corresponding stochastic means. The deterministic marginal damage is 10%

greater than the stochastic mean marginal damage at the Texas facility.

Figure 2 displays box plots corresponding to the SO2 marginal damage estimates for four fossil

fuel-�red power plants drawn from the full sample of 100 plants covered in this study. These are

the facilities shown in table 1. The box plots reveal that the empirical marginal damage estimates

appear to be highly right-skewed. The median line is below the center of each box. Further, the
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distributions each contain a long right tail6 . As reported in prior research (Rabl, Spadaro, 1999) the

multiplicative nature of the process drives the right-skewed quality of the damage distributions. The

right-skewed nature of the distributions is robust to whether we assume that the input distributions

are either lognormally or normally distributed. This is the second piece of evidence suggesting that

the distributions are log-normal.

Additionally, the facility in Delaware has the largest median marginal damage, and the greatest

interquartile range. The facility in Texas has both the smallest median damage and the smallest

interquartile range. Figure 3 displays the box plots corresponding to PM2:5 damages for the same

four power plants. The similarity between �gure 2 and �gure 3 is striking; all power plants exhibit

right-skewed distributions in their damage distributions, and the ranking of both the medians and

the degree of dispersion in the damage distributions is nearly the same as was observed in �gure

2. The di¤erence is that, for PM2:5, the New York facility has the largest median damage and the

largest spread.

The left-hand side of table 2 reports the mean SO2 damage per ton, 90% percentile intervals,

and the arithmetic coe¢ cient of variation (as de�ned in section 2) for 10 of the facilities from

the full sample of 100 power plants. These 10 plants were selected because they have the largest

coe¢ cients of variation for SO2 damages. All of the facilities in table 2 are located west of the

Mississippi River. Figure 4 maps the coe¢ cient of variation associated with the distribution of

SO2 damages per ton for all of the 100 power plants across the U.S. This �gure reveals the pattern

that table 2 suggests; the coe¢ cient of variation is larger for power plants located in the western

U.S. This occurs because, in the west, emitted SO2 has to travel long distances before it encounters

population centers. Hence, the long-range dispersion aspect of the air quality model in the IAM is

dictating most of the exposures from such emissions. And, as stated above the variability of the

transfer coe¢ cients in the air quality models is generally an increasing function of distance between

the emission source and receptor locations (see table 2 in the appendix). In contrast, emissions from

power plants located east of the Mississippi River do not have to travel great distances before they

a¤ect large urban areas. As a result, for such facilities the transfer coe¢ cients in the stochastic

6Note that the values beyond the whiskers are not shown in �gure 1.
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air quality model that govern the majority of eventual exposure are much less variable and the

empirical distributions for the associated marginal damages are also less variable (as revealed by

their smaller coe¢ cients of variation)7 .

The right-hand side of table 2 displays the mean PM2:5 marginal damage, the corresponding

90% percentile intervals, and the coe¢ cient of variation for the 10 plants with the largest coe¢ cient

of variation for PM2:5. Much like the results for SO2 the spatial pattern is striking in that, of

the 100 power plants in the sample, the 10 with the greatest degree of variability in the PM2:5

damages are all located in the western half of the U.S. As with SO2, this pattern occurs because,

for power plants located in the west, emissions must be transported great distances before they

impact population centers. The relationship between emissions from rural sites and exposure are

governed by the long-range dispersion parameters in the air quality model which are more variable

than short range coe¢ cients (which govern emissions from facilities close to cities). Figure 5 maps

the coe¢ cient of variation associated with the distribution of PM2:5 marginal damages for the 100

power plants across the U.S. Like �gure 4, this map shows the gradient in the coe¢ cient of variation

from east to west.

An interesting application of the �ndings reported in table 2 is to use the percentile intervals

to draw inferences regarding distinctions between the mean damages per ton. That is, by testing

whether the 90% percentile intervals for each pair of sources overlap, we can determine if the

marginal damages are statistically di¤erent from one another. Recall that economics suggests that

an e¢ cient regulatory program (such as an emission tax) sets emission tax rates equal to the

marginal damage of emissions, on a source-speci�c basis. For � = 0:10; any two sources in table 2

that have overlapping percentile intervals would be subject to the same emission tax rate. For the

twenty power plants listed in table 2, if a regulator employed the mean marginal damage to calibrate

emission taxes, they would set twenty distinct tax rates: one rate corresponding to the marginal

damage caused by each facility�s emissions of each pollutant. This is a deterministic approach to

the design of an emission tax policy.

7The one notable exception to the observed east-west gradient is a power plant located in Maine (the farthest to
the northeast on �gure 4). Although the estimated coe¢ cient of variation for this facility is larger than other eastern
plants, the logic behind the results in �gure 4 still hold because, this facility is located some distance from the major
eastern cities (especially given prevailing westerly winds).
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However, the percentile intervals reported in table 2 indicate that such a design is overly nuanced

because the 90% con�dence intervals for all of these sources overlap. Beginning with SO2, the �rst

two sources (located in Texas and Missouri) have statistically equivalent marginal damages at

� = 0:10: Therefore, these two sources would have their emissions of SO2 taxed at an equivalent

rate8 . Proceeding down through the left-hand side of table 2, it is clear that all the sources have

overlapping con�dence intervals at � = 0:10:

The same analysis applied to the right-hand side of table 2, which focuses on PM2:5, suggests

that one tax rate would e¢ ciently govern the 10 power plants listed therein. This implies that if

the regulator intends to design an e¢ cient emission tax regime for the power plants listed in table

2, this approach to the design of market-based air pollution policy reduces the complexity of the

emergent policy - the number of tax rates decreases signi�cantly. As such, this approach builds the

precision of the damages estimates directly into the regulatory program. This application of the

results in table 2 has powerful implications for the design of air pollution policy since it is likely to

dramatically simplify an e¢ cient program.

This application of table 2 does not imply that all power plants in the U.S. have statistically

equivalent marginal damages. The power plants shown in table 2 are those with the most variable

marginal damage distributions; so one would expect a high degree of overlap among them. Looking

back at the full sample of 100 facilities, one can test for equivalent damages among plants located

in di¤erent regions, where one might suspect signi�cant di¤erences in damages per ton of emissions.

For instance, by comparing plants in large urban areas in the eastern U.S. with the rural western

facilities. Indeed, for PM2:5 four facilities located in, and upwind from, New York City generate

marginal damages that are distinct (at � = 0:10) from the damages caused by SO2 emissions from

a facility in rural Texas.

Table 3 explores the in�uence that uncertainty in each input parameter has on the total vari-

ation in the empirical marginal damage distributions. Table 3 reports the coe¢ cient of variation

corresponding to six scenarios for each pollutant and each of the four facilities modeled in table

1. Each scenario features one of the input parameters set to its deterministic value with all other

8The e¢ cient tax rate would be the mean marginal damage of either source since they are equivalent at � = 0:05:
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parameters modeled stochastically. Note the top row of the table reports the coe¢ cient of varia-

tion when all parameters are stochastic. Table 3 is interpreted as follows; values of the coe¢ cient

of variation that di¤er substantially from the "all uncertain" run indicate that the deterministic

parameter has a strong in�uence on total uncertainty. Alternatively stated, when the uncertainty

associated with an input parameter is removed by setting the parameter to its deterministic value,

if the variation in the joint distribution is considerably less than the original joint distribution

(with all input parameters modeled stochastically) then one may conclude that the deterministic

parameter has a strong impact on the uncertainty in the joint distribution.

For SO2, results from all four facilities indicate that mortality valuation, the adult mortality

dose-response coe¢ cient, and air quality modeling have the strongest e¤ect on cumulative uncer-

tainty. Conversely, emissions, population, and infant dose-response have a limited e¤ect. Also,

the coe¢ cient of variation is greater for the facilities in Indiana and Texas than for the plants in

New York and Delaware. This supports table 2 and �gure 4 in that the degree of variability in

the empirical distributions increases from east to west. For PM2:5 the results are similar to those

for SO2 in that, air quality modeling, mortality valuation, and the adult mortality dose-response

coe¢ cient contribute the most to cumulative uncertainty in the marginal damage estimates. Fur-

ther, the coe¢ cient of variation for the four power plants covered in table 3 for PM2:5 displays the

same pattern as for SO2 and this pattern supports the results in table 2. Namely, the coe¢ cient of

variation increases for facilities located in the western U.S. Speci�cally, the coe¢ cient of variation

for the facility in Texas is 3.10 with all parameters modeled stochastically, 1.79 for the plant in

Indiana, 0.95 for the facility in Delaware, and 0.91 for the power plant in New York. Like SO2,

source location has a strong impact on the variation in per ton damage estimates for PM2:5:

Table 4 reports the 90% intervals corresponding to the simulations in which one input parameter

in modeled deterministically. These results translate the changes in the coe¢ cient of variation in

table 3 into changes in the span of the percentile intervals. Several results are worth noting. First,

for SO2 emissions from the rural facilities in Indiana and Texas, the impact of uncertainty in air

quality modeling is evident. The 95th percentile for the Indiana facility decreases from $12,660 to

$8,860 when the deterministic air quality model is employed. This is a reduction of 30%. The 5th
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percentile increases by 2.6 times. For the Texas plant, the 95th percentile decreases by 23% from

$8,250 to $6,370. The 5th percentile increase by a factor of three. Table 4 shows that the change

in the percentile intervals for the facilities in Delaware and New York are signi�cantly smaller.

Table 4 also indicates that treating the mortality valuation parameter deterministically has a

dramatic impact on the width of the percentile intervals. While the narrowing of the intervals occurs

for all facilities, the impact of the mortality valuation parameter is most acute for the Delaware

and New York plants. The 95th percentile declines by 26% for SO2 and 23% emitted at Delaware,

respectively. Similarly, the 95th percentile decreases by 23% for SO2 and 26% emitted at New York,

respectively.

Table 5 explores the impact that emission height has on the marginal damage distributions.

Ground level emissions are produced by both mobile sources (cars, trucks, marine vessels, and

trains) and stationary sources (households, and commercial facilities without a tall smokestack).

This set of experiments explores the in�uence of emission height on the statistical distribution of

marginal damages by comparing the distributions for power plants with the distribution for ground

sources in the same physical location, we are able to isolate the impact of emission height on the

emergent distributions.

The left side of table 5 displays the coe¢ cients of variation for the distribution of marginal

damages corresponding to emissions from a ground-level source in New York. The right-hand

side of table 5 includes data from table 3 corresponding to the power plant in New York. The

�rst important result shown in table 5 is that the coe¢ cients of variation for the ground source

distribution are considerably larger than for the power plant distribution; this implies that the

marginal damage estimates are signi�cantly more variable for the ground-level source than for the

power plant. An additional interesting result shown in table 5 are the similarities in magnitudes

of the coe¢ cients of variation across the input parameters. That is, for SO2 emissions from the

power plant, mortality valuation, adult mortality dose-response, and air quality modeling have the

greatest impact on cumulative uncertainty. For the ground source, air quality modeling, dose-

response, and mortality valuation have an appreciable impact on cumulative uncertainty. For

PM2:5 emissions from the power plant, mortality valuation and adult mortality dose-response have
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the largest e¤ect on cumulative uncertainty. For PM2:5 emitted from the ground source, air quality

modeling, adult mortality dose-response, and mortality valuation have an appreciable impact on

cumulative uncertainty.

Table 6 reports the 90% percentile intervals for both the ground source and the power plant in

New York. The magnitudes both of the mean marginal damage and of the width of the percentile

intervals for the ground source are signi�cantly larger than the power plant. With all parameters

uncertain, the interval for PM2:5 ranges from $36,000 to $611,000. For SO2; the interval stretches

from $6,900 to $129,000. The width of the percentile intervals explains the considerably larger co-

e¢ cients of variation reported in table 5. Further, uncertainty in both the mortality dose-response

parameter and the mortality valuation parameter have signi�cant impacts on the empirical distrib-

ution for the ground source marginal damages. Modeling the valuation parameter deterministically

reduces the 95th percentile by approximately 20% for PM2:5; and SO2: Treating the dose-response

parameter as uncertain decreases the upper bound the percentile intervals by roughly 15% for both

pollutants.

Figures 6, 7, and 8 map the health damages due to an emission of SO2 from the fossil fuel-�red

power plant in Indiana. Figure 5 displays the health damages, by county of occurrence, when the

marginal damage estimate corresponds to the mean of the distribution of possible marginal damage

values; table 1 indicates that the median value is approximately $2,780 for emissions of SO2 from

this facility. Figure 5 indicates that the counties with relatively large damages due to emissions

from this plant encompass large midwestern cities: Chicago, Indianapolis, Detroit, and Cincinnati

are labeled on the map. In addition, emissions from this facility also impact counties along the east

coast cities. However, �gure 3 indicates that these e¤ects are quite small; most counties along the

east coast incur health damages that are less than $10/ton. Figure 6 displays the spatial distribution

of damages when the marginal damage is in the 1st percentile of the distribution. The di¤erence in

the spatial distribution of damages between the 1st percentile case and the mean case is dramatic;

only the midwestern cities show up on the map, with no other counties incurring detectable damages

due to emissions from the facility in Indiana. In this extreme case, emissions have no discernible

impact on the east coast cities. At the other end of the distribution is the 99th percentile case
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shown in �gure 7. In this case, emissions have a strong impact over a broad range of counties from

the midwest to the east coast cities. These �nal experiments show the di¤erences in magnitude

and in the spatial pattern in damages due to emissions of an additional ton of SO2 for di¤erent

realizations from the input parameter distributions.

5 Conclusions

This study explores the nature of statistical uncertainty associated with per-ton damage estimates

for SO2 and PM2:5 generated by an integrated assessment model (APEEP), (Muller, Mendelsohn,

2007;2009). The analysis �nds that the marginal damage estimates are log-normally distributed

due to the multiplicative process that produces the marginal damage estimates in the APEEP

model. Further, for a sample of 100 power plants the PM2:5 and SO2 marginal damages are highly

variable; the coe¢ cients of variation for the estimated distributions range between 0.90 and 3.50.

This analysis also shows that, for both PM2:5 and SO2, the marginal damage distributions follow

a distinct spatial pattern; the degree of variation observed in the distributions increases from east

to west in the U.S. This occurs because, for western power plants, emissions have to travel longer

distances before they encounter cities. The variability of the transfer coe¢ cients in the air quality

models is typically an increasing function of distance between the emission source and receptor

locations. In contrast, emissions from eastern power plants a¤ect large urban areas that are nearby.

For such plants the transfer coe¢ cients in the stochastic air quality model that govern exposure are

much less variable; so are the resulting empirical distributions for the associated marginal damages.

This implies that for PM2:5 and SO2 per-ton damage estimates for rural, western facilities are

generally more uncertain than eastern, urban plants. This �nding highlights the importance of

capturing uncertainty due to air quality modeling.

The degree of variation found in this study may have important implications for the design

of regulations intended to govern these pollutants. Speci�cally, damage estimates are used by

regulators in two primary ways. First, regulators such as the USEPA are required to conduct

cost-bene�t analyses of major regulations such as the Clean Air Act. To do so USEPA employs
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IAMs that are similar in form to APEEP. The results from this study are likely to assist regulators

in calculating and reporting con�dence intervals on the avoided damages due to environmental

regulations. While USEPA and others have reported such con�dence intervals in the past, they

have either not included uncertainty at each stage of the integrated assessment model or the models

used were antiquated relative to APEEP. Second, regulators intending to design and implement

market-based policies such as cap-and-trade and emission taxes can use marginal damage estimates

produced by IAMs to calibrate tax rates and aggregate caps. The results in this study may help

regulators to gain a better sense of the degree of precision of these estimates which is critical in

such an application of IAM-generated damage estimates.

An important contribution of this study is the decomposition of cumulative uncertainty into its

component parts. This is achieved by executing a Monte Carlo analysis with all input parameters

modeled stochastically and comparing the marginal damage distributions to those computed when

individual input parameters are treated deterministically. This approach isolates the in�uence of

speci�c input parameters on cumulative uncertainty. Pursuing this strategy, we �nd that for air

quality model parameters, mortality valuation, and adult mortality dose-response parameters have

the greatest impact on cumulative uncertainty. However, we also determine that the impact of

uncertainty in the air quality modeling parameters is much more pronounced for sources in rural

areas than for sources in urban areas.
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Table 1:
Empirical Distributions of Marginal Damages.

Facility Stochastic Deterministic

SO2 PM2:5 SO2 PM2:5

NY 5,160
(1,000,
14,090)

17,790
(3,780,
47,930)

5,060 17,360

TX 2,400
(180,
8,250)

2,400
(180,
8,250)

2,390 2,650

IN 4,300
(650,
12660)

4,810
(620,
15,080)

4,180 4,770

DE 7,660
(1,550,
20,990)

10,250
(2,030,
28,160)

7,460 10,040

Mean values expressed in $/ton/year.
5%, 95% Percentiles in parenthesis (Lower:Upper)
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Table 2:
Uncertainty in SO2 and PM2:5 Marginal Damage Estimates:

Ten Most Variable Distributions.
Pollutant SO2 PM2:5

Facility Location Mean
(5%,95%)

CV Facility Location Mean
(5%,95%)

CV

Texas 1,360
(80:4,720)

2.86 Arizona 2,200
(120:7,370)

3.47

Nevada 1,330
(110:4,350)

2.85 Texas 2,070
(140:6,780)

3.23

Utah 1,370
(140:4,300)

2.60 North Dakota 2,540
(140:8,530)

3.18

Missouri 1,300
(90:4,400)

2.49 Colorado 2,350
(210:7,170)

3.15

Arizona 2,190
(160:7,570)

2.48 North Dakota 2,580
(150:8,650)

3.13

Iowa 1,500
(110:5,110)

2.34 New Mexico 2,190
(180:6,900)

3.11

Kansas 1,350
(110:4,500)

2.33 Texas 2,680
(200:8,640)

3.10

Texas 2,400
(180:8,250)

2.29 Colorado 2,450
(230:7,500)

3.04

Colorado 2,180
(200:7,190)

2.28 Utah 1,660
(220:4,600)

3.00

Nebraska 1,530
(120:5,170)

2.27 Nevada 1,640
(160:5,210)

2.97

Mean values expressed in $/ton/year.
5%, 95% Percentiles in parenthesis

CV =Arithmetic Coe¢ cient of Variation
�
�
�

�
.
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Table 3:
The In�uence of Input Parameters on Cumulative Uncertainty

Facility IN DE NY TX
Deterministic Parameter SO2 PM2:5 SO2 PM2:5 SO2 PM2:5 SO2 PM2:5

All Uncertain 1.31 1.79 0.93 0.95 1.00 0.91 2.29 3.10
Emissions 1.31 1.77 0.93 0.95 1.00 0.91 2.29 3.10
Air Quality Model 0.86 0.86 0.87 0.87 0.86 0.87 0.85 0.85
Population 1.31 1.73 0.93 0.94 1.00 0.90 2.29 3.06
Adult-Mortality Dose-Response 1.15 1.61 0.74 0.77 0.83 0.72 2.00 3.04
Infant Mortality Dose-Response 1.29 1.79 0.93 0.94 1.00 0.90 2.29 3.07
Mortality Valuation 1.05 1.35 0.60 0.62 0.70 0.55 1.94 2.97

(Input parameter distributions are lognormal)

Arithmetic Coe¢ cient of Variation
�
�
�

�
.
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Table 4:
Percentile Intervals with Selected Parameters Modeled Deterministically.

Facility IN DE NY TX
Deterministic
Parameter

SO2 PM2:5 SO2 PM2:5 SO2 PM2:5 SO2 PM2:5

All Uncertain 4,300
(650,
12660)

4,810
(620,
15,080)

7,660
(1,550,
20,990)

10,250
(2,030,
28,160)

5,160
(1,000,
14,090)

17,790
(3,780,
47,930)

2,400
(184,
8,250)

2,680
(200,
8,640)

Air Quality
Model

4,210
(1,690,
8,860)

4,870
(1,080,
12,800)

7,650
(1,660,
20,260)

10,330
(2,250,
27,320)

5,160
(1,140,
13,630)

17,820
(3,890,
47,090)

2,430
(540,
6,370)

2,700
(600,
7,040)

Adult-Mortality
Dose-Response

4,260
(870,
11,540)

4,770
(800,
13,700)

7,550
(2,180,
17,860)

10,120
(2,790,
24,390)

5,100
(1,400,
12,280)

17,570
(5,180,
40,920)

2,380
(230,
7,810)

2,680
(250,
8,480)

Mortality
Valuation

4,290
(1,160,
10,720)

4,800
(1,090,
12,620)

7,630
(3,010,
15,590)

10,230
(3,840,
21,760)

5,140
(1,950,
10,790)

17,690
(7,300,
35,320)

2,370
(300,
7,700)

2,690
(330,
8,170)

(Input parameter distributions are lognormal)
Mean Damage ($/ton/year)
(5%, 95% Percentiles)
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Table 5:
The In�uence of Emission Height on the

Marginal Damage Distributions.
Facility Ground Source Power Plant
Deterministic Parameter SO2 PM2:5 SO2 PM2:5

All Uncertain 2.45 1.26 1.00 0.91
Emissions 2.44 1.26 1.00 0.91
Air Quality Model 0.91 0.92 0.86 0.87
Population 2.44 1.23 1.00 0.90
Adult-Mortality Dose-Response 2.06 1.06 0.83 0.72
Infant Mortality Dose-Response 2.44 1.25 1.00 0.90
Mortality Valuation 1.37 0.99 0.70 0.55

(Input parameter distributions are lognormal)

Arithmetic Coe¢ cient of Variation
�
�
�

�
.
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Table 6:
Percentile Intervals with Selected

Parameters Modeled Deterministically:
Ground-level Source and a Power Plant in New York.

Facility Ground
Source

Power
Plant

Deterministic
Parameter

SO2 PM2:5 SO2 PM2:5

All Uncertain 44,060
(6,940,
128,890)

212,080
(35,956,
611,017)

5,160
(1,000,
14,090)

17,790
(3,780,
47,930)

Air Quality
Model

43,170
(9,036,
115,790)

212,000
(44,224,
568,192)

5,160
(1,140,
13,630)

17,820
(3,890,
47,090)

Adult-Mortality
Dose-Response

42,830
(9,623,
112,820)

206,560
(50,490,
519,840)

5,100
(1,400,
12,280)

17,570
(5,180,
40,920)

Mortality
Valuation

43,460
(12,820,
106,140)

211,650
(66,670,
494,880)

5,140
(1,950,
10,790)

17,690
(7,300,
35,320)

(Input parameter distributions are lognormal)
Mean Damage ($/ton/year)
(5%, 95% Percentiles)
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Figure 1: Integrated Assessment Model Structure.
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Figure 2: Distribution of SO2 Marginal Damages at Four Power Plants

0
5,

00
0

10
,0

00
15

,0
00

20
,0

00
($

/to
n)

excludes outside values

NY
TX

IN

DE

30



Figure 3: Distributions for PM2:5 Marginal Damages at Four Power Plants
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Figure 4: Variability in Marginal Damage Estimates for SO2:
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Figure 5: Variability in Marginal Damage Estimates for PM2:5:
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Figure 6: Health Damages from SO2 Emission: Mean Realization.
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Figure 7: Health Damages from SO2 Emission: 1st Percentile Realization.
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Figure 8: Health Damages from SO2 Emission: 99th Percentile Realization.
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1 Appendix

This appendix includes more detailed descriptions of the methods used to con-
struct the distributions for the input parameters. The APEEP model constructs
both normal and lognormal distributions around the �ve input parameters in
the model. The distributions each consist of 10,000 observations with the mean
and the standard deviations for each input parameter obtained from the peer-
reviewed literature (see table 1 below). The model then executes a Monte Carlo
procedure that entails taking a random draw from these distributions at each
stage of the model, and using APEEP to calculate damages conditional on the
random draws. The following sections discuss the procedures used to construct
the input parameter distributions.

1.1 Emissions

APEEP employs 95% con�dence intervals of � 5% of the mean for SO2 and
PM2:5 emissions. This value, taken from Kuykendal, et al. (2006), is slightly
larger than the value reported in Abdel-Aziz and Frey (2004) who report a range
for the precision of emission estimates to be � 3%: The USEPA�s reported emis-
sions are taken as the mean value, and APEEP creates a distribution for each of
the power plants in the model according to its reported mean and estimated nu-
merical standard deviation. Further, when modeling uncertainty in emissions,
we assume that the uncertainty applies to all fossil fuel power plants, rather than
assuming only the power plant whose marginal damage is being calculated is un-
certain. This approach is chosen because the uncertainty in emissions estimates
stems from a method of measurement of emissions, rather than idiosyncratic
errors in measurement at one source. This would apply to all sources whose
emissions are measured using this method.

1.2 AQM

The empirically estimated standard errors for the Ts;j;r estimated using the
regression-based procedure discussed in section 2. are incorporated into APEEP
in the following manner. The estimated standard errors are used to construct
both normal and lognormal distributions around the mean Tj;s;r;d (in the deter-
ministic source-receptor matrices in APEEP) using a similar approach to that
used in the emissions module; we create a distribution of 10,000 values for each
deterministic transfer coe¢ cient based on the estimated standard error corre-
sponding to the distance (d) between (j) and (r), and the pollutant species.
The APEEP model determines which distance category each of the transfer co-
e¢ cients in the source-receptor matrix belongs to and applies the appropriate
distribution derived from the appropriate standard error estimate. For each
iteration of the Monte Carlo procedure, one value from the distribution of each
Tj;s;r is drawn. The estimated standard errors resulting from the bootstrap and
regression procedures are shown in table 2 below.
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1.3 Population

We use the estimated uncertainty in population projections from Stoto (1983)
to create unique distributions, consisting of 10,000 observations, for each age
group in each receptor county. This is done by �rst deriving the coe¢ cient
of variation corresponding to the Stoto study, which is then used to solve for
the numerical standard deviations for the population distributions of each age
group in each receptor county. The county and age-speci�c population estimates
reported by the U.S. Census are treated as the means for the new distributions.
Both normal and lognormal distributions are created. Stoto (1983) reports a
coe¢ cient of variation of 0.10.

1.4 Dose-Response

The dose-response relationship assumes the following functional form for pre-
mature mortalities among both adults and infants:

Rs;i;t;k =
X
r

Pr;i;t �MRi;r � (exp(�
s
i;kPM2:5r)�1): (1)

where Rs;i;t;k represents the response in terms of health state (k = mortal-
ity) due to exposure to pollutant (s) among age cohort (i) at time (t), Pr;i;t is
the population of age-cohort (i) in county (r) at time (t), MRi;r is the base-
line mortality rate for age cohort (i) in county (r), PM2:5r denotes the ambient
PM2:5 levels in receptor county (r)1 , and �

s
i;k represents dose-response coe¢ -

cient estimated in epidemiological study for pollutants (s) and age group (i)
for health state (k) which in this case corresponds to mortality rate impacts.
The uncertainty in the dose-response module is associated with �si;k , the pa-
rameter that relates changes in ambient pollution into changes in age-speci�c
mortality rates. The public health studies that report estimates of (�si;k ) also
report the estimated standard error associated with (�si;k ). We derive distribu-
tions around using the reported standard errors reported in Woodru¤, Parker,
and Schoendorf (2006), for infant mortalities, and Pope, et al., (2002) for adult
mortalities.

1.5 Valuation

The valuation parameter for premature mortality and its associated uncertainty
is derived directly from a meta-analysis of roughly 30 studies reported by the
USEPA (USEPA, 1999). We use the reported mean and standard error for the
valuation parameter to construct both a normal and a lognormal distribution
of 10,000 observations around the reported mean estimate.

1Recall that APEEP tracks the impact of emissions of both SO2 and PM2:5 on ambient
PM2:5 levels.
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Table 1:
Empirical Estimates of Uncertainty for Input Parameters

Input Parameter Author, Date Model Uncertainty

Emission Kuykendahl, 2006 95% CI = �5% mean
AQM See table A2
Population Stoto, 1983 Coe¢ cient of Var. = 0.10
Dose-Response Pope et al., 2002 Std. dev. = 0.004
Valuation USEPA, 1999 Std dev. = $3.2 million
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Table 2:
Air Quality Model Bootstrap Procedure Results:

Ts;j;r;d, bootstrap se�s in parenthesis.
Source Type Distance Category SO2 PM2:5 SO2 (�=�) PM2:5

(�=�)

Ground Source 0-100 4.37 e -06
(1.121 e -05)

6.64 e -05
(2.005 e -04)

0.3 3.0

Power Plant 1.13 e -07
(1.698 e -07)

5.20 e -07
(1.180 e -06)

1.5 2.3

Ground Source 100-500 2.17 e -07
(1.827 e -07)

1.05 e -06
(1.245 e -06)

0.8 1.2

Power Plant 1.23 e -07
(1.708 e -07)

5.62 e - 07
(1.400 e -06)

1.4 2.5

Ground Source 500-1000 7.20 e -08
(6.278 e -08)

2.25 e -07
(2.093 e -07)

0.9 0.9

Power Plant 1.02 e -07
(1.582 e -07)

5.05 e -07
(1.390 e -06)

1.6 2.8

Ground Source 1000-3000 2.09 e -08
(2.960 e -08)

5.98 e -08
(8.343 e -08)

1.4 1.4

Power Plant 8.60 e -08
(1.634 e -07)

3.96 e -07
(1.240 e -06)

1.9 3.1
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Table 3:
Empirical Distributions of Marginal Damages.

Facility Location IN DE
Input Parameter Distribution SO2 PM2:5 SO2 PM2:5

Log-Normal 4,300
(650,
12,660)

4,810
(620,
15,080)

7,660
(1,550,
20990)

10,250
(2,030,
28,160)

Normal 4,350
(-220,
13,330)

4,910
(-320,
12,700)

7,710
(-470,
21,100)

10,400
(-650,
27,110)

Values expressed in $/ton/year.
5th; 95th percentiles in parenthesis.
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Figure 1: Empirical Distribution of SO2 Marginal Damage, Indiana power Plant.
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Figure 2: Empirical Distribution of SO2 Marginal Damage, Indiana Power Plant
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