140 research outputs found

    Cloud Computing Trace Characterization and Synthetic Workload Generation

    Get PDF
    This thesis researches cloud computing workload characteristics and synthetic workload generation. A heuristic presented in the work guides the process of workload trace characterization and synthetic workload generation. Analysis of a cloud trace provides insight into client request behaviors and statistical parameters. A versatile workload generation tool creates client connections, controls request rates, defines number of jobs, produces tasks within each job, and manages task durations. The test system consists of multiple clients creating workloads and a server receiving request, all contained within a virtual machine environment. Statistical analysis verifies the synthetic workload experimental results are consistent with real workload behaviors and characteristics

    Optimal Co-Design of Microgrids and Electric Vehicles: Synergies, Simplifications and the Effects of Uncertainty.

    Full text link
    The burgeoning electrification of automobiles is causing convergence of the transportation and electrical power systems. This is visible in localized micropower systems, or microgrids, that supply plug-in vehicles. Though each system is designed by a separate industry, the need to reduce petroleum use and greenhouse gas emissions directs us to study the interface between these systems and develop methods to design both systems simultaneously. A method is presented for optimal co-design of a microgrid and electric vehicles using a nested optimal dispatch problem to solve for the operation of the microgrid and vehicles. This nested structure is implemented within a sequential optimization and reliability analysis loop to solve for the desired system reliability given uncertainties in the power load and solar power supply. The method is demonstrated for the case of co-designing a military microgrid and its all-electric tactical vehicles. The co-design approach results in a combined system design that minimizes capital investment and operating costs while meeting the reliability and performance requirements of both systems. The electric vehicles are shown to increase system reliability by providing energy storage without compromising their driving performance, and this support is shown to be robust to changes in the vehicle plug-in scheduling. The resulting optimal designs are highly-dependent on the input parameters, such as fuel cost and cost of capital equipment. For scenarios with high fuel costs and low battery prices, the co-design systems diverges significantly from separately-designed systems, resulting in improved performance and lower total costs.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91403/1/johnjohn_1.pd

    Maximum likelihood implementation of an isolation-with-migration model for three species

    Get PDF
    We develop a maximum likelihood (ML) method for estimating migration rates between species using genomic sequence data. A species tree is used to accommodate the phylogenetic relationships among three species, allowing for migration between the two sister species, while the third species is used as an outgroup. A Markov chain characterization of the genealogical process of coalescence and migration is used to integrate out the migration histories at each locus analytically, while Gaussian quadrature is used to integrate over the coalescent times on each genealogical tree numerically. This is an extension of our early implementation of the symmetrical isolation-with-migration model for three species to accommodate arbitrary loci with two or three sequences per locus and to allow asymmetrical migration rates. Our implementation can accommodate tens of thousands of loci, making it feasible to analyze genome-scale datasets to test for gene flow. We calculate the posterior probabilities of gene trees at individual loci to identify genomic regions that are likely to have been transferred between species due to gene flow. We conduct a simulation study to examine the statistical properties of the likelihood ratio test for gene flow between the two ingroup species and of the maximum likelihood estimates of model parameters such as the migration rate. Inclusion of data from a third outgroup species is found to increase dramatically the power of the test and the precision of parameter estimation. We compiled and analyzed several genomic datasets from the Drosophila fruit flies. Our analyses suggest no migration from D. melanogaster to D. simulans, and a significant amount of gene flow from D. simulans to D. melanogaster, at the rate of ~0.02 migrant individuals per generation. We discuss the utility of the multispecies coalescent model for species tree estimation, accounting for incomplete lineage sorting and migration

    Role of Interference and Computational Complexity in Modern Wireless Networks: Analysis, Optimization, and Design

    Get PDF
    Owing to the popularity of smartphones, the recent widespread adoption of wireless broadband has resulted in a tremendous growth in the volume of mobile data traffic, and this growth is projected to continue unabated. In order to meet the needs of future systems, several novel technologies have been proposed, including cooperative communications, cloud radio access networks (RANs) and very densely deployed small-cell networks. For these novel networks, both interference and the limited availability of computational resources play a very important role. Therefore, the accurate modeling and analysis of interference and computation is essential to the understanding of these networks, and an enabler for more efficient design.;This dissertation focuses on four aspects of modern wireless networks: (1) Modeling and analysis of interference in single-hop wireless networks, (2) Characterizing the tradeoffs between the communication performance of wireless transmission and the computational load on the systems used to process such transmissions, (3) The optimization of wireless multiple-access networks when using cost functions that are based on the analytical findings in this dissertation, and (4) The analysis and optimization of multi-hop networks, which may optionally employ forms of cooperative communication.;The study of interference in single-hop wireless networks proceeds by assuming that the random locations of the interferers are drawn from a point process and possibly constrained to a finite area. Both the information-bearing and interfering signals propagate over channels that are subject to path loss, shadowing, and fading. A flexible model for fading, based on the Nakagami distribution, is used, though specific examples are provided for Rayleigh fading. The analysis is broken down into multiple steps, involving subsequent averaging of the performance metrics over the fading, the shadowing, and the location of the interferers with the aim to distinguish the effect of these mechanisms that operate over different time scales. The analysis is extended to accommodate diversity reception, which is important for the understanding of cooperative systems that combine transmissions that originate from different locations. Furthermore, the role of spatial correlation is considered, which provides insight into how the performance in one location is related to the performance in another location.;While it is now generally understood how to communicate close to the fundamental limits implied by information theory, operating close to the fundamental performance bounds is costly in terms of the computational complexity required to receive the signal. This dissertation provides a framework for understanding the tradeoffs between communication performance and the imposed complexity based on how close a system operates to the performance bounds, and it allows to accurately estimate the required data processing resources of a network under a given performance constraint. The framework is applied to Cloud-RAN, which is a new cellular architecture that moves the bulk of the signal processing away from the base stations (BSs) and towards a centralized computing cloud. The analysis developed in this part of the dissertation helps to illuminate the benefits of pooling computing assets when decoding multiple uplink signals in the cloud. Building upon these results, new approaches for wireless resource allocation are proposed, which unlike previous approaches, are aware of the computing limitations of the network.;By leveraging the accurate expressions that characterize performance in the presence of interference and fading, a methodology is described for optimizing wireless multiple-access networks. The focus is on frequency hopping (FH) systems, which are already widely used in military systems, and are becoming more common in commercial systems. The optimization determines the best combination of modulation parameters (such as the modulation index for continuous-phase frequency-shift keying), number of hopping channels, and code rate. In addition, it accounts for the adjacent-channel interference (ACI) and determines how much of the signal spectrum should lie within the operating band of each channel, and how much can be allowed to splatter into adjacent channels.;The last part of this dissertation contemplates networks that involve multi-hop communications. Building on the analytical framework developed in early parts of this dissertation, the performance of such networks is analyzed in the presence of interference and fading, and it is introduced a novel paradigm for a rapid performance assessment of routing protocols. Such networks may involve cooperative communications, and the particular cooperative protocol studied here allows the same packet to be transmitted simultaneously by multiple transmitters and diversity combined at the receiver. The dynamics of how the cooperative protocol evolves over time is described through an absorbing Markov chain, and the analysis is able to efficiently capture the interference that arises as packets are periodically injected into the network by a common source, the temporal correlation among these packets and their interdependence

    Semiannual report

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1994 - 31 Mar. 1995

    Energy-Economical Heuristically Based Control of Compass Gait Walking on Stochastically Varying Terrain

    Get PDF
    Investigation uses simulation to explore the inherent tradeoffs ofcontrolling high-speed and highly robust walking robots while minimizing energy consumption. Using a novel controller which optimizes robustness, energy economy, and speed of a simulated robot on rough terrain, the user can adjust their priorities between these three outcome measures and systematically generate a performance curveassessing the tradeoffs associated with these metrics

    Energy-Economical Heuristically Based Control of Compass Gait Walking on Stochastically Varying Terrain

    Get PDF
    Investigation uses simulation to explore the inherent tradeoffs ofcontrolling high-speed and highly robust walking robots while minimizing energy consumption. Using a novel controller which optimizes robustness, energy economy, and speed of a simulated robot on rough terrain, the user can adjust their priorities between these three outcome measures and systematically generate a performance curveassessing the tradeoffs associated with these metrics

    Development of a Framework for CPS Open Standards and Platforms

    Get PDF
    This technical report describes a Framework we have developed through our research and investigations in this project, with the goal to facilitate creation of Open Standards and Platforms for CPS; a task that addresses a critical mission for NIST. The rapid development of information technology (in terms of processing power, embedded hardware and software systems, comprehensive IT management systems, networking and Internet growth, system design environments) is producing an increasing number of applications and opening new doors. In addition over the last decade we entered a new era where systems complexity has increased dramatically. Complexity is increased both by the number of components that are included in each system as well as by the dependencies between those components. Increasingly, systems tend to be more software dependent and that is a major challenge that engineers involved in the development of such systems face. The challenge is even greater when a safety critical system is considered, like an airplane or a passenger car. Software-intensive systems and devices have become everyday consumables. There is a need for development of software that is provably error-free. Thanks to their multifaceted support for networking and inclusion of data and services from global networks, systems are evolving to form integrated, overarching solutions that are increasingly penetrating all areas of life and work. When software dependent systems interact with the physical environment then we have the class of cyber-physical systems (CPS) [1, 2]. The challenge in CPS is to incorporate the inputs (and their characteristics and constraints) from the physical components in the logic of the cyber components (hardware and software). CPS are engineered systems constructed as networked interactions of physical and computational (cyber) components. In CPS, computations and communication are deeply embedded in and interacting with physical processes, and add new capabilities to physical systems. Competitive pressure and societal needs drive industry to design and deploy airplanes and cars that are more energy efficient and safe, medical devices and systems that are more dependable, defense systems that are more autonomous and secure. Whole industrial sectors are transformed by new product lines that are CPS-based. Modern CPSs are not simply the connection of two different kinds of components engineered by means of distinct design technology, but rather, a new system category that is both physical and computational [1, 2]. Current industrial experience tells us that, in fact, we have reached the limits of our knowledge of how to combine computers and physical systems. The shortcomings range from technical limitations in the foundations of cyber-physical systems to the way we organize our industries and educate engineers and scientists that support cyber-physical system design. If we continue to build systems using our very limited methods and tools but lack the science and technology foundations, we will create significant risks, produce failures and lead to loss of market. Nowadays, with increasing frequency we observe systems that cooperate to achieve a common goal, even though there were not built for that reason. These are called systems of systems. For example, the Global Positioning System (GPS) is a system by itself. However, it needs to cooperate with other systems when the air traffic control system of systems is under 3 consideration. The analysis and development of such systems should be done carefully because of the emergent behavior that systems exhibit when they are coupled with other systems. However, apart from the increasing complexity and the other technical challenges, there is a need to decrease time-to-market for new systems as well as the associated costs. This specific trend and associated requirements, which are an outcome of global competitiveness, are expected to continue and become even more stringent. If a successful contribution is to be made in shaping this change, the revolutionary potential of CPS must be recognized and incorporated into internal development processes at an early stage. For that Interoperability and Integratability of CPS is critical. In this Task we have developed a Framework to facilitate interoperability and integratability of CPS via Open Standards and Platforms. The purpose of this technical report is to introduce this Framework and its critical components, to provide various instantiations of it, and to describe initial successful applications of it in various important classes of CPS. An additional goal of publishing this technical report is to solicit feedback on the proposed Framework, and to catalyze discussions and interactions in the broader CPS technical community towards improving and strengthening this Framework. CPS integrate data and services from different systems which were developed independently and with disparate objectives, thereby enabling new functionalities and benefits. Currently there is a lack of well-defined interfaces that on the one hand define the standards for the form and content of the data being exchanged, but on the other hand take account of non-functional aspects of this data, such as differing levels of data quality or reliability. A similar situation exists with respect to tools and synthesis environments, although some work has been initiated in the latter. The technological prerequisite for the design of the aforementioned various functions and value added services of CPS is the interoperability and integratability of these systems as well as their capability to be adapted flexibly and application-specifically as well as extended at the different levels of abstraction. Dependent on the objective and scope of the application, it may be necessary to integrate component functions (Embedded Systems (ES), System of Systems (SoS), CPS), to establish communication and interfaces, and to ensure the required level of quality of interaction and also of the overall system behavior. This requires cross-domain concepts for architecture, communication and compatibility at all levels. The effects of these factors on existing or yet undeveloped systems and architectures represent a major challenge. Investigation into these factors is the objective of current national and international studies and research projects. CPS create core technological challenges for traditional system architectures, especially because of their high degree of connectivity. This is because CPS are not constructed for one specific purpose or function, but rather are open for many different services and processes, and must therefore be adaptable. In view of their evolutionary nature, they are only controllable to a limited extent. This creates new demands for greater interoperability and communication within CPS that cannot be met by current closed systems. In particular, the differences in the characteristics of embedded systems in relation to IT systems and services and data in networks lead to outstanding questions in relation to the form of architectures, the definition of system and communication interfaces and requirements for underlying CPS platforms with basic services and parallel architectures at different levels of abstraction. 4 The technological developments underlying CPS evolution require the development of standards in the individual application domains, as well as basic infrastructure investments that cannot be borne by individual companies alone. This is particularly significant for SMEs. The development and operation of uniform platforms to migrate individual services and products will therefore be as much of a challenge as joint specification standards. The creation of such quasi standards, less in the traditional mold of classic industry norms and standards and more in the sense of de facto standards that become established on the basis of technological and market dominance, will become an essential part of technological and market leadership. To summarize and emphasize, the complexity of the subject in terms of the required technologies and capabilities of CPS, as well as the capabilities and competences required to develop, control and design/ create innovative, usable CPS applications, demand fundamentally integrated action, interdisciplinarity (research and development, economy and society) and vertical and horizontal efforts in: The creation of open, cross-domain platforms with fundamental services (communication, networking, interoperability) and architectures (including domainspecific architectures); The complementary expansion and integration of application fields and environments with vertical experimentation platforms and correspondingly integrated interdisciplinary efforts; The systematic enhancement with respect to methods and technologies across all involved disciplines to create innovative CPS. The aim of our research and investigations under this Task of the project, was precisely to clarify these objectives and systematically develop detailed recommendations for action. Our research and investigations have identified the following essential and fundamental challenges for the modeling, design, synthesis and manufacturing of CPS: (i) The creation and demonstration of a framework for developing cross-domain integrated modeling hubs for CPS. (ii) The creation and demonstration of a framework for linking the integrated CPS modeling hub of (i) with powerful and diverse tradeoff analysis methods and tools for design exploration for CPS. (iii) The creation of a framework of linking the integrated CPS synthesis environment of (i) and (ii) with databases of modular component and process (manufacturing) models, backwards compatible with earlier legacy systems; (iv)The creation of a framework for translating textual requirements to mathematical representations as constraints, rules and metrics involving both logical and numerical variables and the automatic (at least to 75%) allocation of the resulting specifications to components of the CPS and of processes, in a way that allows traceability. 5 These challenges have been listed here in the order of increasing difficulty both conceptually and in terms of arriving at implementable solutions. The order also reflects the extent to which the current state of affairs has made progress towards developing at least some initial instantiations of the desired frameworks. In this context, it is useful to compare with the advanced state of development of similar frameworks and their instantiations for synthesis and manufacturing of complex microelectronic VLSI chips including distributed ones, which have been available as integrated tools by several vendors for at least a decade. Regarding challenge (i) we have performed extensive work and research in this project towards developing model-based systems engineering (MBSE) procedures for the design, integration, testing and operational management of cyber-physical systems, that is, physical systems with cyber potentially embedded in every physical component. Thus in the Framework, described in this report, for standards for integrated modeling hubs for CPS, MBSE methods and tools are prominent. Regarding the search for a framework for standards for CPS this selection has the additional advantage that it is also emerging as an accepted framework for systems engineering by all industry sectors with substantial interest in CPS [3, 7]. Regarding challenge (ii) we have performed extensive work and research in this project towards developing the foundations for such an integration, and we have developed and demonstrated the first ever integration of a powerful tradeoff analysis tool (and methodology) with our SysMLIntegrated system modeling environments for CPS synthesis [3, 7]. Primary applications of interest that we have instantiated this framework are: microgrids and power grids, wireless sensor networks (WSN) and applications to Smart Grid, energy efficient buildings, microrobotics and collaborative robotics, and the overarching (for all these applications) security and trust issues including our pioneering and innovative work on compositional security systems. A key concept here is the integration of multi-criteria, multi constraint optimization with constrained based reasoning. Regarding challenge (iii) we have only developed the conceptual Framework, as any required instantiations will require substantial commercial grade software development beyond the scope of this project. It is clear however that object-relational databases and database mediators (for both data and semantics) will have to be employed. Regarding challenge (iv) we have developed a Framework for checking and validating specifications, after they have been translated to their mathematical representations as constraints and metrics with logical and numerical variables. Various multi-criteria optimization, constrained based reasoning, model checking and automatic theorem proving tools will have to be combined. The automatic annotation of the system blocks with requirements and parameter specifications remains an open challenge.Research supported in part by Cooperative Agreement, NIST 70NANB11H148, to the University of Maryland College Park

    Supplier Ranking System and Its Effect on the Reliability of the Supply Chain

    Get PDF
    Today, due to the growing use of social media and an increase in the number of A HITS with a solution in PageRank (Massimo, 2011) sharing their opinions globally, customers can review products and services in many novel ways. However, since most reviewers lack in-depth technical knowledge, the true picture concerning product quality remains unclear. Furthermore, although product defects may come from the supplier side, making it responsible for repair cost, it is ultimately the manufacturer whose name is damaged when such defects are revealed. In this context, we need to revisit the cost vs. quality equations. Observations of customer behavior towards brand name and reputation suggest that, contrary to the currently dominant model in production where manufacturers are expected to control only Tier 1 supplier and make it responsible for all higher tiers, manufacturers should also have a better hold on the entire supply chain. Said differently, while the current system considers all parts in Tier 1 as equally important, it underestimates the importance of the impact of each piece on the final product. Another flaw of the current system is that, by commonizing the pieces in several different products, such as different care models of the same manufacturer to reduce the cost, only the supplier of the most common parts will be considered essential and thus get the most attention during quality control. To address the aforementioned concerns, in the present study, we created a parts/supplier ranking algorithm and implemented it into our supply chain system. Upon ranking all suppliers and parts, we calculated the minimum number of the elements, from Tier 1 to Tier 4, that have to be checked in our supply chain. In doing so, we prioritized keeping the cost as low as possible with most inferior possible defects
    • …
    corecore