9 research outputs found

    Load Balancing in Heterogeneous Cloud Environments by Using PROMETHEE Method

    Get PDF
    Abstract: Efficient Scheduling of tasks in a cloud environment improves resources utilization thereby meeting users' requirements. One of the most important objectives of a scheduling algorithm in cloud environment is a balanced load distribution over various resources for enhancing the overall performance of the cloud. Such a scheduling is complex in nature due to the dynamicity of resources and incoming application specifications. In this paper, we employ PROMETHEE decision making model to design a scheduling algorithm, called PROMETHEE Load Balancing (PLB).This paper formulates the load balancing issue as a multi-criteria decision making problem and aims to achieve well-balanced load across virtual machines for maximizing the overall throughput of the cloud. Extensive simulation results in CloudSim environment show that the proposed algorithm outperforms existing algorithms in terms of load balancing index (LBI), VM load variation, makespan, average execution time and waiting time

    Robust processor allocation for independent tasks when dollar cost for processors is a constraint

    Get PDF
    Includes bibliographical references (pages 9-10).In a distributed heterogeneous computing system, the resources have different capabilities and tasks have different requirements. Different classes of machines used in such systems typically vary in dollar cost based on their computing efficiencies. Makespan (defined as the completion time for an entire set of tasks) is often the performance feature that is optimized. Resource allocation is often done based on estimates of the computation time of each task on each class of machines. Hence, it is important that makespan be robust against errors in computation time estimates. The dollar cost to purchase the machines for use can be a constraint such that only a subset of the machines available can be purchased. The goal of this study is to: (1) select a subset of all the machines available so that the cost constraint for the machines is satisfied, and (2) find a static mapping of tasks so that the robustness of the desired system feature, makespan, is maximized against the errors in task execution time estimates. Six heuristic techniques to this problem are presented and evaluated

    Dynamic resource allocation heuristics that manage tradeoff between makespan and robustness

    Get PDF
    Final draft post refereeing.Includes bibliographical references.Heterogeneous parallel and distributed computing systems may operate in an environment where certain system performance features degrade due to unpredictable circumstances. Robustness can be defined as the degree to which a system can function correctly in the presence of parameter values different from those assumed. This work develops a model for quantifying robustness in a dynamic heterogeneous computing environment where task execution time estimates are known to contain errors. This mathematical expression of robustness is then applied to two different problem environments. Several heuristic solutions to both problem variations are presented that utilize this expression of robustness to influence mapping decisions.This research was supported by the DARPA Information Exploitation Office under contract No. NBCHC030137, by the Colorado State University Center for Robustness in Computer Systems (funded by the Colorado Commission on Higher Education Technology Advancement Group through the Colorado Institute of Technology), and by the Colorado State University George T. Abell Endowment

    Characterizing Resource Allocation Heuristics For Heterogeneous Computing Systems

    No full text
    In many distributed computing environments, collections of applications need to be processed using a set of heterogeneous computing (HC) resources to maximize some performance goal. An important research problem in these environments is how to assign resources to applications (matching) and order the execution of the applications (scheduling) so as to maximize some performance criterion without violating any constraints. This process of matching and scheduling is called mapping. To make meaningful comparisons among mapping heuristics, a system designer needs to understand the assumptions made by the heuristics for (1) the model used for the application and communication tasks, (2) the model used for system platforms, and (3) the attributes of the mapping heuristics. This chapter presents a three-part classification scheme (3PCS) for HC systems. The 3PCS is useful for researchers who want to (a) understand a mapper given in the literature, (b) describe their design of a mapper more thoroughly by using a common standard, and (c) select a mapper to match a given real-world environment. Ā© 2005 Elsevier Inc. All rights reserved

    Characterizing resource allocation heuristics for heterogeneous computing systems

    Get PDF
    Includes bibliographical references (pages 122-128).In many distributed computing environments, collections of applications need to be processed using a set of heterogeneous computing (HC) resources to maximize some performance goal. An important research problem in these environments is how to assign resources to applications (matching) and order the execution of the applications (scheduling) so as to maximize some performance criterion without violating any constraints. This process of matching and scheduling is called mapping. To make meaningful comparisons among mapping heuristics, a system designer needs to understand the assumptions made by the heuristics for (1) the model used for the application and communication tasks, (2) the model used for system platforms, and (3) the attributes of the mapping heuristics. This chapter presents a three-part classification scheme (3PCS) for HC systems. The 3PCS is useful for researchers who want to (a) understand a mapper given in the literature, (b) describe their design of a mapper more thoroughly by using a common standard, and (c) select a mapper to match a given real-world environment

    Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems

    Get PDF
    Includes bibliographical references (pages 122-128).In many distributed computing environments, collections of applications need to be processed using a set of heterogeneous computing (HC) resources to maximize some performance goal. An important research problem in these environments is how to assign resources to applications (matching) and order the execution of the applications (scheduling) so as to maximize some performance criterion without violating any constraints. This process of matching and scheduling is called mapping. To make meaningful comparisons among mapping heuristics, a system designer needs to understand the assumptions made by the heuristics for (1) the model used for the application and communication tasks, (2) the model used for system platforms, and (3) the attributes of the mapping heuristics. This chapter presents a three-part classification scheme (3PCS) for HC systems. The 3PCS is useful for researchers who want to (a) understand a mapper given in the literature, (b) describe their design of a mapper more thoroughly by using a common standard, and (c) select a mapper to match a given real-world environment
    corecore