
Robust Processor Allocation for Independent Tasks
When Dollar Cost for Processors is a Constraint

Prasanna Sugavanam1, H. J. Siegel1,2, Anthony A. Maciejewski1, Junxing Zhang3,
Vladimir Shestak1, Michael Raskey4, Alan Pippin5, Ron Pichel5, Mohana Oltikar1,

Ashish Mehta1, Panho Lee1, Yogish Krishnamurthy1, Aaron Horiuchi5, Kumara
Guru1, Mahir Aydin1, Mohammad Al-Otaibi1, and Syed Ali1

Colorado State University

1Department of Electrical & Computer Engineering
2Department of Computer Science

Fort Collins, CO 80523-1373
{prasanna, hj, aam, shestak, mohana, ammehta, leepanho, yogi,

higuru, mahir, motaibi, sdamjad}@colostate.edu

3University of Utah
School of Computing

Salt Lake City, UT 84112
junxing@cs.utah.edu

Hewlett-Packard Company
4Linux & Open Source Lab

5Systems & VLSI Technology Division
Fort Collins, CO 80528

{akh, rgp, ajp}@fc.hp.com
michael.raskey@hp.com

Abstract

In a distributed heterogeneous computing system,

the resources have different capabilities and tasks have
different requirements. Different classes of machines
used in such systems typically vary in dollar cost based
on their computing efficiencies. Makespan (defined as
the completion time for an entire set of tasks) is often
the performance feature that is optimized. Resource
allocation is often done based on estimates of the
computation time of each task on each class of
machines. Hence, it is important that makespan be
robust against errors in computation time estimates.
The dollar cost to purchase the machines for use can be
a constraint such that only a subset of the machines
available can be purchased. The goal of this study is to:
(1) select a subset of all the machines available so that
the cost constraint for the machines is satisfied, and (2)
find a static mapping of tasks so that the robustness of
the desired system feature, makespan, is maximized
against the errors in task execution time estimates. Six
heuristic techniques to this problem are presented and
evaluated.

This research was supported by the Colorado State University Center
for Robustness in Computer Systems (funded by the Colorado
Commission on Higher Education Technology Advancement Group
through the Colorado Institute of Technology), and by the Colorado
State University George T. Abell Endowment.

1. Introduction and Problem Statement

Heterogeneous computing (HC) systems utilize
various resources with different capabilities to satisfy
the requirements of diverse task mixtures and to
maximize the system performance (e.g., [10, 18]). Such
systems often operate in an environment where certain
desired performance features degrade due to
unpredictable circumstances, such as higher than
expected work load or inaccuracies in the estimation of
system parameters (e.g., [3, 4, 9, 24, 25, 34]). Thus, it is
necessary to allocate resources to tasks to maximize the
robustness of the allocation.

The act of assigning (matching) each task to a
machine and ordering (scheduling) the execution of the
tasks on each machine is known as mapping, resource
allocation, or resource management. An important
research problem is how to determine a mapping so as
to maximize the robustness of desired system features
against perturbations in system parameters [4]. The
general problem of optimally mapping tasks to
machines in an HC environment has been shown to be
NP-complete (e.g., [12, 19, 21]). Thus, the development
of heuristic techniques to find near-optimal solutions
for the mapping problem is an active area of research
(e.g., [1, 2, 7, 8, 11, 18, 20, 29, 36, 37, 41]).

For this research, a metatask composed of a
number of independent tasks (i.e., no communication

 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Mountain Scholar (Digital Collections of Colorado and Wyoming)

https://core.ac.uk/display/354467309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

between tasks are needed) is considered. Makespan is
defined as the completion time for the entire metatask.
It is often the performance feature that is optimized.
Resource allocation is often done based on estimates of
the computation time of each task on each class of
machines. A mapping is defined to be robust with
respect to specified system performance features
against perturbations in specified system parameters if
degradation in these features is limited when certain
perturbations occur [4]. In this system, it is required
that the makespan be robust against errors in task
execution time estimates. Specifically, the system is
considered robust if the actual makespan under the
perturbed conditions does not exceed the required time
constraint, τ.

The problem studied here is how to select
(purchase) a fixed set of machines, within a given dollar
cost constraint, to use to comprise an HC system. It is
assumed that this fixed HC system will be used to
regularly execute metatasks in a production
environment, where the metatasks are from a known
problem domain with known estimated computational
characteristics. The machines to be purchased for the
HC suite are to be selected from different classes of
machines, where each class consists of machines of the
same type. The machines of different classes differ in
dollar costs depending upon their task execution speed.
The dollar cost of machines within a class is the same.
To be able to use a machine for executing tasks, a one
time dollar cost is incurred (i.e., to purchase the
machines).

The goal of this study is to: (1) select a subset of all
the machines available so that the cost constraint for the
machines is satisfied, and (2) find a static mapping of
all tasks to the subset so that the robustness of the
mapping is maximized. Maximizing the robustness here
means maximizing the collective allowable error in
execution time estimation for the tasks that can occur
without the makespan exceeding the constraint.

A set of T tasks in the metatask is required to be
allocated to a chosen set of machines, M. The cost
constraint for the machines is given by δ. The estimated
time to compute (ETC) value for each task on each
class of machines is assumed to be known a priori. This
assumption is commonly made (e.g., [23]). Approaches
for doing this estimation are discussed in [30]. Assume
that unknown inaccuracies in the ETC values are
expected (e.g., a task’s actual exact execution time may
be data dependent). Hence, it is required that the
mapping µ must be robust against them.

Let Cest be the vector of estimated computation
times for the T tasks on the machine where they are
allocated. Let C be the vector of actual computation
times (Cest plus the estimation error for each task). The
finishing time of a given machine j, Fj, depends only on
the actual computation times of the tasks mapped to

that machine. The performance feature (φ) that should
be limited in variation to ensure that the makespan is
robust is the finishing times of the machines. That is, φ
= {Fj | 1 ≤ j ≤ |M|}. The FePIA procedure from [4] is
applied to determine the robustness metric for this
problem.

The robustness radius [4] of Fj against C for
mapping µ, (,),µ jr F C is defined as the largest

Euclidean distance that C can change from the assumed
value of Cest without the finishing time of machine j
exceeding the tolerable variation. Mathematically,

2(,) = min .
: () =

est
µ j

j
r F C C C

C F C τ
 −

 (1)

That is, if the Euclidean distance between any
vector of actual computation times and the vector of
estimated computation times is no larger than rµ(Fj, C),
then the finishing time of the machine j will be at most
the makespan constraint τ. As described in [4], equation
(1) can be interpreted as the perpendicular distance
from Cest to the hyperplane described by the equation τ
– Fj(Cest) = 0. Hence, equation (1) can be rewritten as
[35]

()()
(,) = .

number of tasks mapped to machine

est
j

µ j

τ F C
r F C

j

 −
 (2)

The robustness metric, ρµ(φ, C), for the mapping is
simply the minimum of all robustness radii over all
machines [4]. If the Euclidean distance between any
vector of the actual execution times and the vector of
the estimated execution times is no larger than ρµ(φ, C),
then the actual makespan will be at most the constraint
τ. Mathematically,

=(,) min (,)µ jµ
j

.ρ C r F
F

 ∈

φ
φ

C (3)

The performance metric that is used to evaluate the
mapping is ρµ(φ, C). It is obvious that the larger the
robustness metric, the better the mapping.

The goal for this study is to determine the set of
machines such that: (1) the makespan is within τ, (2)
the cost for the chosen set of machines is within δ, and
(3) the robustness metric for actual makespan against
ETC errors is maximized. Six static mapping schemes
are studied in this research: Negative Impact Greedy
Iterative Maximization, Parition/Merge Greedy
Iterative Maximization, Sum Iterative Maximization,
GENITOR, Memetic Algorithm, and Hereboy
Evolutionary Algorithm. The emphasis of this paper is
on selecting the set of machines to accomplish the
above stated goal. All of the heuristics in the current
paper use as a component machine assignment
heuristics from our earlier work in [39], which assumed
a given, fixed set of machines (the earlier work did not
involve selecting a set of machines for purchasing
which is the focus of the current paper). Simulations are

 2

used to evaluate and compare the six static heuristics
studied in this research.

The next section describes the simulation setup
used for this research. Section 3 provides literature
related to this work. In Section 4, the heuristics studied
in this research and an upper bound are presented.
Section 5 discusses the results, and the last section
gives a brief summary of this research work.

2. Simulation Setup

An HC system with five different classes of
machines, eight machines in each class, and T = 1024
independent tasks is simulated. This large number of
machines and tasks are chosen to present a significant
mapping challenge for the heuristics.

The estimated execution times of all tasks taking
heterogeneity into consideration are generated using the
gamma distribution method described in [5]. The ETCs
used in this research are of the high task and low
machine (across various classes) heterogeneity (high-
low). In this study, the ETCs are of the type consistent
[5] across different classes of machines; i.e., if a class i
machine is faster than a class j machine for one task, it
is faster for all tasks. All the machines in a given class
are homogeneous (the execution time of any given task
on all the machines is the same). These assumptions are
made to represent a realistic environment. The
machines with higher (dollar) cost typically are
equipped with faster processor(s), bigger memory etc.,
and in general, executes tasks faster than the low-end
cheaper machines. The estimated execution time of task
i on machine j is given by ETC(i, j). For this study,
heuristics are run for a total of 100 scenarios, where
each scenario corresponds to a different ETC matrix.

A task mean and coefficient of variation (COV) are
used to generate the ETC matrices. A mean task
execution time of 180 seconds and COV of 0.9 (task
heterogeneity) is used to calculate the values for all the
elements in a task vector (where the number of
elements is equal to the number of tasks). Then using
the ith element of the vector as the mean and a COV of
0.3 (machine heterogeneity), the ETC values for task i
on all the different classes of machines are calculated.
The ETC values are then sorted in ascending order to
obtain the consistent heterogeneity. Class 1 is the
fastest machine, Class 2 is the second fastest, and so on.
The cost values are in accordance with their execution
speeds, with Class 1 being the most expensive and
Class 5 the cheapest. The cost values of different
classes of machines are shown in Table 1. These values
are based on specific configurations of DELL desktop,
workstation, and server products. It is assumed that all
machines in a class use the same software environment.

Class 1 2 3 4 5
Cost (dollars) 1800 1500 1200 800 500

Table 1: The cost values for different classes
of machines.

The cost constraint δ is chosen so that not all
machines in the suite can be used, and the actual
makespan constraint τ is chosen so that it adds
significant mapping challenge to the problem.
Experiments with simple greedy heuristics were used to
decide the value of the cost constraint to be 34,800
dollars and the time constraint to be 12,000 seconds.
Choosing different values for any of the above
parameters will not affect the general approach of the
heuristics used in this research. Because the tasks are
independent, there is no communication between tasks.
The time and resources required for loading the task
executable file is simply assumed to be the same on all
the machines. Hence, the network characteristics will
not affect the solution of the problem and so it is
ignored. The performance of each heuristic is studied
across all 100 different ETCs. In this study, the wall
clock time for the mapper itself to execute is arbitrarily
required to be less than or equal to 60 minutes for any
scenario on a typical unloaded 3GHz Intel Pentium 4
machine.

3. Related Work

The current work is an extension of our earlier

work in [39], where robust static mapping heuristics
against errors in ETCs were derived. The tasks were
mapped to a given, fixed set of machines in [39] and
dollar cost was not a constraint in that environment.
The research environment here differs from [39] with
the addition of the cost constraint for the machines and
choosing a subset of all the available machines to be
used. Moreover, in this study, the machines are divided
into classes and the machines are of consistent
heterogeneity across the different classes. In [39], the
machines were of inconsistent heterogeneity (i.e., the
consistency property did not hold). The robustness
metric used in the current work and in [39] is derived
using the four step FePIA procedure detailed in [4]. All
of the heuristics in the current paper use as a component
machine assignment heuristics from our earlier work in
[39].

A number of papers have studied the issue of
robustness in distributed systems (e.g., [9, 13, 14, 17,
25, 28, 38]). Robust decision making formulations
presented in [13, 24, 25] motivate building a robust
suboptimal solution over a better performing solution
that is less robust. A detailed discussion of how the
assignment portion of the current work differs from the
examples above is given in [39].

 3

The literature was examined to select a set of
heuristics appropriate for the HC environment
considered here. The Iterative Maximization (IM)
techniques are a variation of the iterative deepening and
random search techniques used in [16]. The
partition/merge methods used in [26] are adapted to our
environment to find the set of machines to be used for
the Greedy Iterative Maximization heuristic. The
GENITOR-style genetic algorithm used here is an
adaptation of [40]. GENITOR is a steady-state genetic
algorithm (GA) that has been shown to work well for
several problem domains, including resource allocation
and job shop scheduling, and hence was chosen for this
problem. The research works in [15, 33] have used
variations of GA for the synthesis of heterogeneous
multiprocessors in embedded systems. Memetic
Algorithm (MA) [6, 31, 32], also called the hybrid GA,
applies a separate local search process (hill-climbing) to
refine individuals. Combining global and local search is
a strategy used by many successful global optimization
approaches [6]. In this study, the MA heuristic is
applied to maximize robustness using a specific set of
machines. The HereBoy Evolutionary Algorithm used
here is a combination of GA and Simulated Annealing
(SA) and is an adaptation of [27] that was applied to the
evolvable hardware problem. This fast evolutionary
algorithm is shown to be well suited for exploring large
spaces and can be applied to a wide range of
optimization problems. The HereBoy is used for
maximizing robustness with a specific set of machines
that is determined using a search similar to
partition/merge method [26].

4. Heuristics Descriptions

4.1. Overview

Five of the six heuristics studied for this problem,
Negative Impact Greedy Iterative Maximization,
Partition/Merge Greedy Iterative Maximization,
GENITOR, Memetic Algorithm, and Hereboy
Evolutionary Algorithm, involve two phases. In phase
1, a subset of machines is selected using specific
heuristic techniques to meet the cost and makespan
constraints, and to maximize robustness. In phase 2,
tasks are mapped to the set of machines found in phase
1 to further maximize the robustness metric for the
mapping. Recall from Section 1 that all of the heuristics
in the current paper use as a component machine
assignment heuristics from our earlier work in [39],
which assumed a given, fixed set of machines. The Sum
Iterative Maximization heuristic involves only one
phase where a robustness maximization criterion is
used to select machines such that the cost constraint is
always satisfied. Throughout the description of the

heuristics, Class 1 of machines is referred to as the
highest class and Class 5 of machines is referred to as
the lowest class.

4.2. Negative Impact Greedy Iterative

Maximization

The Negative Impact Greedy Iterative
Maximization (NI-GIM) heuristic used here is a
modification of GIM described in [39]. The NI-GIM
heuristic performs a Min-Min [21] mapping (procedure
described in Figure 1) based on the completion times
assuming all machines to be available, irrespective of
the cost constraint.

1. A task list is generated that includes all
unmapped tasks.

2. Find the completion time of each
unmapped task on each machine (ignoring
other unmapped tasks).

3. Find the machine that gives the minimum
completion time for each task.

4. Among all the task/machine pairs found in
3, find the pair that gives the minimum
completion time.

5. Remove the above task from the task list
and map it to the chosen machine.

6. Update the available time of the machine
on which the task is mapped.

7. Repeat steps 2-6 until all the tasks have
been mapped.

Figure 1: Pseudo-code for the Min-Min
heuristic.

The robustness radius of all the available machines
is calculated for the Min-Min mapping. The negative
impact of removing machine j is determined in the
following way. Each of the tasks mapped onto machine
j is evaluated for reassignment to all the other machines.
The decrease in the robustness radius of each available
machine i if a task t is reassigned from machine j is
calculated; call this , .i t∆ Define average decrease in

the robustness radii across all the available machines
due to reassignment of task t to be

1

,
0

 number of available machines.
M

t i t
i

α
−

=

= ∆∑ The

negative impact of removing machine j, jNI , is

 tasks on
 .j t
t j

NI α
∈

= ∑

The ratio of negative impact to cost is obtained by
simply dividing the negative impact by the cost of the
machine j. The machine that has the least value of the

 4

negative impact to cost ratio is then removed. The
procedure of performing the Min-Min mapping with
only the available machines and the ratio calculation to
remove another machine is repeated until the cost
constraint is satisfied.

For the set of machines determined above that
meets the cost constraint, the GIM heuristic (please
refer to [39]) is run to determine a mapping that
maximizes robustness for the given machine set.

4.3. Partition/Merge Greedy Iterative

Maximization

The phase 1 of Partition/Merge Greedy Iterative
Maximization (P/M-GIM) starts with a random number
of machines chosen from each class. The tasks are then
mapped to the selected machines using the Min-Min
heuristic. The makespan for the Min-Min mapping is
calculated. It was observed that makespan constraint in
this study is such that if the cost constraint is violated,
the makespan constraint is always satisfied using Min-
Min. Hence, either both of the constraints are satisfied
or only one of the two constraints is violated using Min-
Min. If the cost constraint is violated, then the task-
merge (machine removal) [26] technique is executed.
Otherwise, the task-partition (machine addition) [26]
technique is executed to improve the makespan.
Partitioning is stopped if addition of another machine
will violate the cost constraint and merging is stopped
once the cost constraint is satisfied.

Five different methods for partitioning and
merging are implemented: (a) cheap, (b) expensive, (c)
even distribution, (d) most common, and (e) random. In
the cheap variation, the partition step added the
cheapest available machine, or the merge step removed
a machine in the most expensive class. The expensive
variation did exactly the opposite (removed a cheapest
machine or added the most expensive). Even
distribution attempted to merge or partition so that a
similar number of machines from each class would be
available (ties are broken arbitrarily). The most
common approach attempted to add machines to the
class that already had the most machines or to remove
from the class that had the least number of machines
(ties are broken arbitrarily). The random variation
simply involved partitioning or merging an available
machine from a randomly selected class.

After generating a valid mapping that satisfies the
cost and makespan constraints using one of the above
techniques, reassignment and swapping of the GIM
heuristic [39] are executed in an attempt to improve the
robustness metric of the mapping. This constitutes
phase 2. The reassignment and swapping of the GIM
heuristic is executed for 20 unique machine
combinations (found using phase 1) and the best
solution is output.

4.4. Sum Iterative Maximization

The Sum Iterative Maximization (SIM) heuristic

starts with a cost lower bound (CLB) mapping where
all the tasks are mapped onto a single lowest cost
machine. There cannot be a mapping that has a lower
cost than the cost lower bound mapping. However,
because this mapping is not guaranteed to have a
makespan less than τ, reassignment of some tasks to
other machines may be necessary before continuing on
to the next step of improving the robustness metric. It is
assumed that all the machines are available for the
reassignment of tasks. When a machine is used for the
first time, the cost for using the machine is paid and the
total cost of all the machines used in the suite must be
less than δ. After the reassignment procedure, a task
swapping procedure is executed. For this heuristic, the
task-execution improvement, defined as the decrease in
the sum of the completion times of the machines after
reassignment or swapping, and the robustness
improvement, defined as the increase in the sum of the
robustness radius of the machines after reassignment or
swapping, are maximized. The worst robustness
machine is defined as the machine with the least
robustness radius. The general procedure of the SIM
heuristic used here is similar to that used in [39]. The
SIM procedure can be summarized as follows:
1. Begin with the CLB mapping.
2. Find the makespan machine (the machine that

finishes last) for the current mapping.
a. For each task on the makespan machine,

consider relocating it to a different machine. If
the relocation will not reduce the makespan
and keep the cost ≤ δ, it is ignored. Otherwise,
the task-execution improvement of the
particular relocation is recorded in a list H.

b. Select the relocation in H that has the
maximum improvement.

c. Relocate the task, and empty the list H.
3. Repeat step 2 until makespan ≤ τ or no task can be

relocated.
4. If makespan ≤ τ, go to step 7, otherwise go to step

5.
5. Find the makespan machine for the current

mapping.
a. For each task on the makespan machine,

consider swapping it with a task on a different
machine. If the swap will not reduce the
makespan, it is ignored. Otherwise, the task-
execution improvement of the relocation is
recorded in the list H.

b. Select the relocation in H that has the
maximum improvement.

c. Relocate the task, and empty the list H.

 5

6. Repeat step 5 until makespan ≤ τ. If this is not
possible, the mapping procedure fails (for our
study, this never happened).

7. Find the worst robustness machine for the current
mapping.
a. For each task on the worst robustness machine,

consider relocating it to a different machine. If
the relocation will not increase the robustness
and keep the cost ≤ δ, it is ignored. Otherwise,
the robustness improvement of the relocation
is recorded in a list H.

b. Select the relocation in H that has the
maximum improvement.

c. Relocate the task, and empty the list H.
8. Repeat step 7 until no task can be relocated.
9. Find the worst robustness machine for the current

mapping.
a. For each task on the worst robustness machine,

consider swapping it with a task on another
machine. If the swap will not increase the
robustness, it is ignored. Otherwise, the
robustness improvement of the relocation is
recorded in a list H.

b. Select the relocation in H that has the
maximum improvement.

c. Relocate the task, and empty the list H.
10. Repeat step 9 until no task can be swapped.

A variation of this heuristic uses a predetermined
set of minimum cost machines such that adding another
machine will violate the cost constraint. For this set of
lowest cost machines chosen that meets the cost
constraint, relocations are made based on the task-
execution or robustness improvement as before. For
another variation, define cost performance index (CPI)
of machine j as the product of the cost of machine j and
the average ETC of all tasks on machine j. The
machines with the lowest CPI are selected until the cost
is less than or equal to δ for mapping tasks. For this
machine set, the relocation and swapping are done as
explained above.

4.5. GENITOR

GENITOR is a general optimization technique that
is a variation of the genetic algorithm approach. It
manipulates a set of possible solutions. For phase 1, a
chromosome is a vector of length five, where ith
element is the number of machines in ith class. The
phase 1 of GENITOR operates on a fixed population of
100 chromosomes. The entire population is generated
randomly such that the cost constraint is met. The
chromosomes are evaluated using the robustness metric
based on a machine assignment using the Max-Max
mapping from [39]. The entire population is sorted in
descending order based on the robustness metric of the
Max-Max heuristic.

The special function for selecting parent
chromosomes is a linear bias function, used to provide a
specific selective pressure [40]. The linear bias value of
1.5 was used to select chromosomes for crossover and
mutation. A bias of 1.5 implies that the top ranked
chromosome in the population is 1.5 times more likely
to be selected for a crossover or mutation than the
median chromosome. Elitism, the property of
guaranteeing the best solution remains in the population,
is implicitly implemented by always maintaining the
ranked list.

In the crossover step, for the pair of the selected
parent chromosomes, a random cut-off point is
generated that divides the chromosomes into top and
bottom parts. A new chromosome is formed using the
top of one and bottom of another. An offspring is
inserted in the population after evaluation only if the
cost constraint is satisfied (the worst chromosomes of
the population are discarded to maintain a population of
only 100). Otherwise, it is discarded.

After each crossover, the linear bias function is
applied again to select a chromosome for mutation. A
mutation operator generates a single offspring by
perturbing the original chromosome. Two random
classes are chosen for the chromosome and the
mutation operator increases the number of machines of
the first chosen class by one and decreases the number
of machines of the other by one. If the chromosome is
infeasible, that is, if it violates the cost constraint or the
possible number of machines in each class, it is
discarded. Otherwise, the resultant offspring is
considered for inclusion in the population in the same
fashion as for an offspring generated by crossover.

This completes one iteration of phase 1 of
GENITOR. The heuristic stops when the criterion of
500 total iterations is met. The machine combination
found from phase 1 is used in phase 2, which derives a
mapping using this combination of machines to
maximize robustness based on the GENITOR
implementation in [39] (a total of 100,000 iterations is
used here to stop the phase 2 of GENITOR).

4.6. Memetic Algorithm

The Memetic Algorithm (MA) metaheuristic [31]
combines population-based global search with local
search made by each of the individuals. In phase 1, 100
random combinations of machines from each class are
chosen such that the cost constraint is satisfied. Each of
the 100 combinations is evaluated using the Max-Max
heuristic [39] and the machine combination that has the
highest robustness metric is selected. In phase 2, for the
best machine combination found in phase 1, the MA
heuristic identical to that described in [39] is executed,
the only difference being the stopping criterion. That is,

 6

a total of 40,000 iterations is used here to stop the phase
2 of MA.

4.7. HereBoy Evolutionary Algorithm

HereBoy is a fast evolutionary algorithm that
combines the features of GA and SA [27]. Phase 1 of
HereBoy starts with adding one machine in each class
(starting from the lowest class) in a round robin fashion
until the cost constraint is violated. The current
machine combination is evaluated using the robustness
metric based on a machine assignment made by the
Max-Max mapping [39].

Now, starting from the highest class, a new
machine is considered to be included in the existing
machine set in a round robin fashion (unless no more
machines from a particular class can be added). Adding
another machine will violate the cost constraint. Hence,
to be able to accommodate the inclusion of a machine,
one or more machines from other classes should be
removed. Machines are considered to be removed from
a single class or from two different classes (this is
sufficient to add a machine of any class). All such
combinations are considered and if removing a
particular combination of machines allows adding
another machine of a lower class (after adding the
higher class machine under consideration), then a
machine is added. For each combination of machines
that is removed, and replaced by other machines, a new
set of working machines is formed. All machine sets are
evaluated using the mapping produced by Max-Max
and the set that gives the highest robustness metric is
stored as the best. For the current best machine set, the
above described procedure is repeated until addition of
a machine from any class will not improve the
robustness metric.

For the best combination of phase 1 procedure,
HereBoy Evolutionary Algorithm [39] is executed as
phase 2 to determine the task to machine mapping for
that combination of machines.

4.8. Upper Bound

The upper bound on the robustness metric for this
study is similar to that for [39]. It assumes a
homogeneous MET system in which the execution time
for each task on all machines is the same and equal to
the minimum time that the task would take to execute
across the original set of machines. The minimum
execution time of task i, METi, is given by the
following equation.

METi = over all j. min (,)ETC i j
The upper bound for the robustness metric of the

homogeneous MET system is equal to or better than the
upper bound for the robustness metric of the original

system because of the impact of the MET values in
equation (2).

For this problem, there cannot be more than 33
machines in the system for the given cost constraint.
This includes the 33 machines of the lowest class
possible in the entire HC suite. Following equation (2)
and our assumption of the homogeneous MET system,
having more machines in the suite gives a better
robustness metric than having fewer machines in the
suite (due to the impact of number of tasks on each
machine).

The tasks in the MET system are now arranged in
ascending order of their execution times. Then, the
robustness upper bound is calculated as follows. Let N
= ⎣|T|/|M|⎦ . Here, |M| = 33. The first N tasks in the
sorted order are stored in a list S. For the purposes of
this mathematical upper bound derivation, the same N
tasks in S are assumed to be on all the machines so that
Fj = Fi, 1 ≤ i,j ≤ |M|. Thus, a very loose upper bound
for robustness is given by the following equation.

1

=0UB =
S(i)

i

N

τ MET

Ν −⎛ ⎞
 −⎜ ⎟⎜ ⎟

⎝
∑

⎠

The proof of this upper bound is identical to that
given in [39].

5. Experimental Results

The simulation results are shown in Figures 2 and 3.

All the heuristics are run for 100 different scenarios and
the average values and 95% confidence intervals [22]
are plotted. The running times of the heuristics
averaged over 100 trials, mapping 1024 tasks in each
trial, are shown in Table 2.

The GENITOR and “cheap” variation of the P/M-
GIM heuristic are the best among all the heuristics
studied for this problem (the cheap variation is shown
in the figures). Both of these heuristics, on average, had
all of the available machines from Class 4 and Class 5.
The “cheap” variation of P/M-GIM heuristic always
removed machines from Class 1 if the cost constraint
was violated. But GENITOR explored the search space
better and on average used more machines in Class 1
than in Class 2. The “most common” and “random”
variations of P/M-GIM heuristic were within 10% of
the “cheap” variation. The “expensive” variation
performed the worst among all the variations of P/M-
GIM and “even distribution” was slightly better than
the “expensive” variation. These two variations did not
have as many machines in the suite as compared to the
other variations. For this problem, having a good
balance between the execution speed of machines and
the number of machines in the HC suite proved to be

 7

important for maximizing the robustness of the
mapping.

The NI-GIM heuristic performed comparably to
P/M-GIM and GENITOR. The negative impact
calculation always forced removal of machines from
either Class 2 or 3. All machines from Class 1, 4, and 5
(i.e., the fastest class and the two cheapest classes of
machines) were used in more than 90% of the scenarios.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

N
I-G

IM

P/
M

-G
IM

C
PI

-S
IM

G
EN

IT
O

R M
A

H
er

eB
oy

ro
bu

st
ne

ss

Figure 2: The simulation results for robustness.
The average UB value is 2019.3.

The SIM heuristic by itself did not perform well
(an average of 252 for the robustness metric across 100
scenarios). The poor performance is because it always
selected machines for relocation that will maximize
task-execution or robustness improvement. Therefore,
SIM typically picked machines in the order of the
highest class to the lowest. The SIM heuristic does not
consider replacing a fast machine with multiple slower
machines. The cost performance index variation of SIM
(CPI-SIM) performed within 12% of GENITOR. The
lowest cost variation also performed similarly and is
within 2% of the CPI-SIM variation. The lowest cost
variation always picked machines in the order of Class
5, 4, 3, 2, and 1. The CPI variation always picked
machines in the order of Class 5, 4, 3, 1, and 2. No
machines from Class 2 are included in the CPI variation
of SIM because of the cost constraint.

HereBoy Evolutionary Algorithm is the fastest
among all the algorithms and its performance is within
12% of GENITOR. The search technique used for

selecting the machines for HereBoy used all of the
machines of Class 1, 4, and 5.

The MA heuristic that made use of the random
search approach to find the set of machines in phase 1
performed the worst among all the heuristics. The MA
optimization heuristic has proved to work well for a
similar environment in [39]. However, the machine
selection by the random approach proved to be
ineffective for this kind of an environment.

0

1200

2400

3600

4800

6000

7200

8400

9600

N
I-G

IM

P/
M

-G
IM

C
PI

-S
IM

G
EN

IT
O

R M
A

H
er

eB
oy

m
ak

es
pa

n

Figure 3: The simulation results for makespan
(τ = 12,000).

The phase 2 of all the heuristics discussed in this
research is similar to the heuristics studied in [39]. The
SIM heuristic performed well for the problem in [39],
where inconsistent heterogeneity between machines is
considered. However, due to consistent heterogeneity
considered in this study, the sum of the task-execution
or robustness improvement of machines did not help to
find a good solution. The GIM heuristic performed well
here because it focused on maximizing the robustness
metric itself unlike SIM. The discussion on the
performance of phase 2 of GENITOR, MA, and
HereBoy are similar to those discussed in [39].

Comparing the robustness metric and makespan
results of CPI-SIM and HereBoy, it can be easily
noticed that for a similar robustness metric, the
makespan results vary about 3% on average for the
scenarios studied. Similar differences in robustness
metric and makespan results were also shown in [39].

 8

These results prove that minimizing makespan is not
the same as maximizing robustness and vice versa.

heuristic

average execution
times (seconds)

NI-GIM 3600
P/M-GIM 3600
CPI-SIM 780
GENITOR 3420
Memetic Algorithm 3000
HereBoy 26

Table 2: The average execution times of the
heuristics averaged over 100 trials (using a
typical unloaded 3 GHz Intel Pentium 4
machine).

6. Summary

This study presents six static heuristics for

selecting a set of machines, under a given dollar cost
constraint, that will maximize the robustness of a
mapping against errors in the ETC. A collection of
independent tasks is mapped onto a set of
heterogeneous classes of machines using the heuristics
described in this research.

The best robustness metric is obtained by using the
GENITOR heuristic. The Partition/Merge Greedy
Iterative Maximization heuristic performed comparably
with its robustness metric within 2% of GENITOR. The
execution times for both of the heuristics themselves
are also comparable. Thus, both GENITOR and
Partition/Merge Greedy Iterative Maximization are a
good choice for the given problem.

In this study, a suite of at most 33 machines from
five classes were used to execute 1024 tasks. Future
work could include examining bigger scenarios, where
all of the above parameters are larger.

Acknowledgments: The authors thank Shoukat Ali and
Jay Smith for their valuable comments.

References

[1] S. Ali, T. D. Braun, H. J. Siegel, A. A.Maciejewski, N.

Beck, L. Boloni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, and B. Yao, “Characterizing
resource allocation heuristics for heterogeneous
computing systems,” Computer Architecture, A. R.
Hurson, ed., a volume of Advances in Computers,
Elsevier, New York, NY, to appear in 2005.

[2] S. Ali, J.-K. Kim, H. J. Siegel, A. A. Maciejewski, Y.
Yu, S. B. Gundala, S. Gertphol, and V. Prasanna,
“Greedy heuristics for resource allocation in dynamic
distributed real-time heterogeneous computing
systems,” 2002 International Conference on Parallel

and Distributed Processing Techniques and
Applications (PDPTA 2002), June 2002, pp. 519–530.

[3] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,
“Robust resource allocation for sensor-actuator
distributed computing systems,” The 2004
International Conference on Parallel Processing
(ICPP 2004), Aug. 2004, pp. 174–185.

[4] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,
“Measuring the robustness of a resource allocation,”
IEEE Transactions on Parallel and Distributed
Systems, Vol. 15, No. 7, July 2004, pp. 630–641.

[5] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and
S. Ali, “Representing task and machine
heterogeneities for heterogeneous computing
systems,” Tamkang Journal of Science and
Engineering, Special 50th Anniversary Issue, Vol. 3,
No. 3, Nov. 2000, pp. 195–207 (invited).

[6] S. Areibi, M. Moussa, and H. Abdullah, “A
comparison of genetic/memetic algorithms and
heuristic searching,” International Conference on
Artificial Intelligence (IC-AI 2001), June 2001.

[7] H. Barada, S. M. Sait, and N. Baig, “Task matching
and scheduling in heterogeneous systems using
simulated evolution,” 10th IEEE Heterogeneous
Computing Workshop (HCW 2001), Apr. 2001.

[8] I. Banicescu and V. Velusamy, “Performance of
scheduling scientific applications with adaptive
weighted factoring,” 10th IEEE Heterogeneous
Computing Workshop (HCW 2001), Apr. 2001.

[9] L. Bölöni and D. C. Marinescu, “Robust scheduling of
metaprograms,” Journal of Scheduling, Vol. 5, No. 5,
Sep. 2002, pp. 395–412.

[10] T. D. Braun, H. J. Siegel, and A. A. Maciejewski,
“Heterogeneous computing: Goals, methods, and open
problems,” 2001 International Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA 2001), June 2001, pp. 1–12
(invited keynote paper).

[11] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F.
Freund, D. Hensgen, M. Maheswaran, A. I. Reuther, J.
P. Robertson, M. D. Theys, and Bin Yao, “A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous
distributed computing systems,” Journal of Parallel
and Distributed Computing, Vol. 61, No. 6, June 2001,
pp. 810–837.

[12] E. G. Coffman, Jr. ed., Computer and Job-Shop
Scheduling Theory, John Wiley & Sons, New York,
NY, 1976.

[13] R. L. Daniels and J. E. Carrilo, “β-Robust scheduling
for single-machine systems with uncertain processing
times,” IIE Transactions, Vol. 29, No. 11, Nov. 1997,
pp. 977–985.

[14] A. J. Davenport, C. Gefflot, and J. C. Beck, “Slack-
based techniques for robust schedules,” 6th European
Conference on Planning, Sep. 2001, pp. 7–18.

[15] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective
genetic algrithm for the co-synthesis of hardware-
software embedded systems,” IEEE Transactions on
Computer-Aided Design, Vol. 17, No. 10, Oct. 1998,
pp. 920-935.

 9

[16] J. Dorn, M. Girsch, G. Skele, and W. Slany,
“Comparison of iterative improvement techniques for
schedule optimization,” European Journal on
Operations Research, Vol. 94, No. 2, Oct. 1996, pp.
349–361.

[17] J. Dorn, R. M. Kerr, and G. Thalhammer, “Reactive
scheduling: Improving the robustness of schedules and
restricting the effects of shop floor disturbances by
fuzzy reasoning,” International Journal on Human-
Computer Studies, Vol. 42, No. 6, June 1995, pp. 687–
704.

[18] M. M. Eshaghian, ed., Heterogeneous Computing,
Norwood, MA, Artech House, 1996.

[19] D. Fernandez-Baca, “Allocating modules to
processors in a distributed system,” IEEE Transaction
on Software Engineering, Vol. SE-15, No. 11, Nov.
1989, pp. 1427–1436.

[20] I. Foster and C. Kesselman, eds., The Grid: Blueprint
for a New Computing Infrastructure, San Fransisco,
CA, Morgan Kaufmann, 1999.

[21] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for
scheduling independent tasks on non-identical
processors,” Journal of the ACM, Vol. 24, No. 2, Apr.
1977, pp. 280–289.

[22] R. Jain, The Art of Computer Systems Performance
Analysis Techniques for Experimental Design,
Measurement, Simulation, and Modeling, Wiley, New
York, 1991.

[23] M. Kafil and I. Ahmad, “Optimal task assignment in
heterogeneous distributed computing systems,” IEEE
Concurrency, Vol. 6, No. 3, July-Sep. 1998, pp. 42–51.

[24] P. Kouvelis and G. Yu, Robust Discrete Optimization
and Its Applications, Dordrecht, Kluwer, 1997.

[25] P. Kouvelis, R. Daniels, and G. Vairaktarakis, “Robust
scheduling of a two-machine flow shop with uncertain
processing times,” IIE Transactions, Vol. 38, No. 5,
May 2000, pp. 421–432.

[26] S. M. Kroumba, G. Bois, Y. Savaria, “A Synthesis
Approach for the Generation of Parallel
Architectures,” 37th Midwest Symposium on Circuits
and Systems, Vol. 1, 3-5 Aug. 1994, pp. 323–326.

[27] D. Levi, “Hereboy: A fast evolutionary algorithm,” 2nd
NASA/DoD Workshop on Evolvable Hardware
(EH ’00), July 2000, pp. 17–24.

[28] V. J. Leon, S. D. Wu, and R. H. Storer, “Robustness
measures and robust scheduling for job shops,” IIE
Transactions, Vol. 26, No. 5, Sep. 1994, pp. 32–43.

[29] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, “Dynamic mapping of a class of
independent tasks onto heterogeneous computing
systems,” Journal of Parallel and Distributed
Computing, Vol. 59, No. 2, Nov. 1999, pp. 107–121.

[30] M. Maheswaran, T. D. Braun, and H. J. Siegel,
“Heterogeneous distributed computing,” Encyclopedia
of Electrical and Electronics Engineering, J. G.
Webster, ed., Vol. 8, John Wiley & Sons, New York,
NY, 1999, pp. 679–690.

[31] P. Moscato, On Evolution, Search, Optimization,
Genetic Algorithms, and Martial Arts: Towards
Memetic Algorithms, Technical Report, Caltech
Concurrent Computation Program C3P 826, California
Institute of Technology, Pasadena, CA, 1989.

[32] G. C. Onwubolu and B. V. Babu, New Optimization
Techniques in Engineering, Springer-Verlag, New
York, NY, 2004.

[33] A. Rae and S. Parameswaran, “Application-specific
heterogeneous multiprocessor synthesis using
differential-evolution,” 11th International Symposium
on System Synthesis, Dec. 1998, pp. 83–88.

[34] M. Sevaux and K. Sörensen, “Genetic algorithm for
robust schedules,” 8th International Workshop on
Project Management and Scheduling (PMS 2002),
Apr. 2002, pp. 330–333.

[35] G. F. Simmons, Calculus with Analytic Geometry,
Second Edition, New York: McGraw-Hill, 1995.

[36] S. Shivle, R. Castain, H. J. Siegel, A. A. Maciejewski,
T. Banka, K. Chindam, S. Dussinger, P. Pichumani, P.
Satyasekaran, W. Saylor, D. Sendek, J. Sousa, J.
Sridharan, P. Sugavanam, and J. Velazco, “Static
mapping of subtasks in a heterogeneous ad hoc grid
environment,” 13th IEEE Heterogeneous Computing
Workshop (HCW 2004), Santa Fe, NM, Apr. 2004.

[37] S. Shivle, H. J. Siegel, A. A. Maciejewski, T. Banka,
K. Chindam, S. Dussinger, A. Kutruff, P. Penumarthy,
P. Pichumani, P. Satyasekaran, D. Sendek, J. Sousa, J.
Sridharan, P. Sugavanam, and J. Velazco, “Mapping
of subtasks with multiple versions in a heterogeneous
ad hoc grid environment,” 3rd International Workshop
on Algorithms, Models, and Tools for Parallel
Computing on Heterogeneous Networks (HetroPar
2004), Cork, Ireland, July 2004.

[38] Y. N. Sotskov, V. S. Tanaev, and F. Werner,
“Stability radius of an optimal schedule: A survey and
recent developments,” Industrial Applications of
Combinatorial Optimization, Vol. 16, 1998, pp. 72–
108.

[39] P. Sugavanam, H. J. Siegel, A. A. Maciejewski, S. A.
Ali, M. Al-Otaibi, M. Aydin, K. Guru, A. Horiuchi, Y.
Krishnamurthy, P. Lee, A. Mehta, M. Oltikar, R.
Pichel, A. Pippin, M. Raskey, V. Shestak, and J.
Zhang, “Processor allocation for tasks that is robust
against errors in computation time estimates,” 14th
IEEE Heterogeneous Computing Workshop (HCW
2005), in the proceedings of the 19th International
Parallel and Distributed Processing Symposium
(IPDPS 2005), Apr. 2005.

[40] D. Whitley, “The GENITOR algorithm and selective
pressure: Why rank based allocation of reproductive
trials is best,” 3rd International Conference on Genetic
Algorithms, June 1989, pp. 116–121.

[41] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-
min: A static mapping algorithm for meta-tasks on
heterogeneous computing systems,” 9th IEEE
Heterogeneous Computing Workshop (HCW 2000),
May 2000, pp. 375–385.

 10

