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Abstract 

 
In a distributed heterogeneous computing system, 

the resources have different capabilities and tasks have 
different requirements. Different classes of machines 
used in such systems typically vary in dollar cost based 
on their computing efficiencies. Makespan (defined as 
the completion time for an entire set of tasks) is often 
the performance feature that is optimized. Resource 
allocation is often done based on estimates of the 
computation time of each task on each class of 
machines. Hence, it is important that makespan be 
robust against errors in computation time estimates. 
The dollar cost to purchase the machines for use can be 
a constraint such that only a subset of the machines 
available can be purchased. The goal of this study is to: 
(1) select a subset of all the machines available so that 
the cost constraint for the machines is satisfied, and (2) 
find a static mapping of tasks so that the robustness of 
the desired system feature, makespan, is maximized 
against the errors in task execution time estimates. Six 
heuristic techniques to this problem are presented and 
evaluated. 
  
 
This research was supported by the Colorado State University Center 
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1. Introduction and Problem Statement 
 

Heterogeneous computing (HC) systems utilize 
various resources with different capabilities to satisfy 
the requirements of diverse task mixtures and to 
maximize the system performance (e.g., [10, 18]). Such 
systems often operate in an environment where certain 
desired performance features degrade due to 
unpredictable circumstances, such as higher than 
expected work load or inaccuracies in the estimation of 
system parameters (e.g., [3, 4, 9, 24, 25, 34]). Thus, it is 
necessary to allocate resources to tasks to maximize the 
robustness of the allocation. 

The act of assigning (matching) each task to a 
machine and ordering (scheduling) the execution of the 
tasks on each machine is known as mapping, resource 
allocation, or resource management. An important 
research problem is how to determine a mapping so as 
to maximize the robustness of desired system features 
against perturbations in system parameters [4]. The 
general problem of optimally mapping tasks to 
machines in an HC environment has been shown to be 
NP-complete (e.g., [12, 19, 21]). Thus, the development 
of heuristic techniques to find near-optimal solutions 
for the mapping problem is an active area of research 
(e.g., [1, 2, 7, 8, 11, 18, 20, 29, 36, 37, 41]).  

For this research, a metatask composed of a 
number of independent tasks (i.e., no communication 
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between tasks are needed) is considered. Makespan is 
defined as the completion time for the entire metatask. 
It is often the performance feature that is optimized. 
Resource allocation is often done based on estimates of 
the computation time of each task on each class of 
machines. A mapping is defined to be robust with 
respect to specified system performance features 
against perturbations in specified system parameters if 
degradation in these features is limited when certain 
perturbations occur [4]. In this system, it is required 
that the makespan be robust against errors in task 
execution time estimates. Specifically, the system is 
considered robust if the actual makespan under the 
perturbed conditions does not exceed the required time 
constraint, τ.  

The problem studied here is how to select 
(purchase) a fixed set of machines, within a given dollar 
cost constraint, to use to comprise an HC system. It is 
assumed that this fixed HC system will be used to 
regularly execute metatasks in a production 
environment, where the metatasks are from a known 
problem domain with known estimated computational 
characteristics. The machines to be purchased for the 
HC suite are to be selected from different classes of 
machines, where each class consists of machines of the 
same type. The machines of different classes differ in 
dollar costs depending upon their task execution speed. 
The dollar cost of machines within a class is the same. 
To be able to use a machine for executing tasks, a one 
time dollar cost is incurred (i.e., to purchase the 
machines). 

The goal of this study is to: (1) select a subset of all 
the machines available so that the cost constraint for the 
machines is satisfied, and (2) find a static mapping of 
all tasks to the subset so that the robustness of the 
mapping is maximized. Maximizing the robustness here 
means maximizing the collective allowable error in 
execution time estimation for the tasks that can occur 
without the makespan exceeding the constraint. 

A set of T tasks in the metatask is required to be 
allocated to a chosen set of machines, M. The cost 
constraint for the machines is given by δ. The estimated 
time to compute (ETC) value for each task on each 
class of machines is assumed to be known a priori. This 
assumption is commonly made (e.g., [23]). Approaches 
for doing this estimation are discussed in [30]. Assume 
that unknown inaccuracies in the ETC values are 
expected (e.g., a task’s actual exact execution time may 
be data dependent). Hence, it is required that the 
mapping µ must be robust against them. 

Let Cest be the vector of estimated computation 
times for the T tasks on the machine where they are 
allocated. Let C be the vector of actual computation 
times (Cest plus the estimation error for each task). The 
finishing time of a given machine j, Fj, depends only on 
the actual computation times of the tasks mapped to 

that machine. The performance feature (φ) that should 
be limited in variation to ensure that the makespan is 
robust is the finishing times of the machines. That is, φ 
= {Fj | 1 ≤ j ≤ |M|}. The FePIA procedure from [4] is 
applied to determine the robustness metric for this 
problem. 

The robustness radius [4] of Fj against C for 
mapping µ, ( , ),µ jr F C  is defined as the largest 

Euclidean distance that C can change from the assumed 
value of Cest without the finishing time of machine j 
exceeding the tolerable variation. Mathematically,  

2( , ) = min .
: ( ) =

est
µ j

j
r F C C C

C F C τ
  −

   
                            (1) 

That is, if the Euclidean distance between any 
vector of actual computation times and the vector of 
estimated computation times is no larger than rµ(Fj, C), 
then the finishing time of the machine j will be at most 
the makespan constraint τ. As described in [4], equation 
(1) can be interpreted as the perpendicular distance 
from Cest to the hyperplane described by the equation τ 
– Fj(Cest) = 0. Hence, equation (1) can be rewritten as 
[35] 
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The robustness metric, ρµ(φ, C), for the mapping is 
simply the minimum of all robustness radii over all 
machines [4]. If the Euclidean distance between any 
vector of the actual execution times and the vector of 
the estimated execution times is no larger than ρµ(φ, C), 
then the actual makespan will be at most the constraint 
τ. Mathematically,  

=( , ) min ( , )µ jµ
j

.ρ C  r F
F

  
 ∈  

φ
φ

C                                           (3) 

The performance metric that is used to evaluate the 
mapping is ρµ(φ, C). It is obvious that the larger the 
robustness metric, the better the mapping. 

The goal for this study is to determine the set of 
machines such that: (1) the makespan is within τ, (2) 
the cost for the chosen set of machines is within δ, and 
(3) the robustness metric for actual makespan against 
ETC errors is maximized. Six static mapping schemes 
are studied in this research: Negative Impact Greedy 
Iterative Maximization, Parition/Merge Greedy 
Iterative Maximization, Sum Iterative Maximization, 
GENITOR, Memetic Algorithm, and Hereboy 
Evolutionary Algorithm. The emphasis of this paper is 
on selecting the set of machines to accomplish the 
above stated goal. All of the heuristics in the current 
paper use as a component machine assignment 
heuristics from our earlier work in [39], which assumed 
a given, fixed set of machines (the earlier work did not 
involve selecting a set of machines for purchasing 
which is the focus of the current paper). Simulations are 
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used to evaluate and compare the six static heuristics 
studied in this research.  

The next section describes the simulation setup 
used for this research. Section 3 provides literature 
related to this work. In Section 4, the heuristics studied 
in this research and an upper bound are presented. 
Section 5 discusses the results, and the last section 
gives a brief summary of this research work. 

 
2. Simulation Setup 
 

An HC system with five different classes of 
machines, eight machines in each class, and T = 1024 
independent tasks is simulated. This large number of 
machines and tasks are chosen to present a significant 
mapping challenge for the heuristics.  

The estimated execution times of all tasks taking 
heterogeneity into consideration are generated using the 
gamma distribution method described in [5]. The ETCs 
used in this research are of the high task and low 
machine (across various classes) heterogeneity (high-
low). In this study, the ETCs are of the type consistent 
[5] across different classes of machines; i.e., if a class i 
machine is faster than a class j machine for one task, it 
is faster for all tasks. All the machines in a given class 
are homogeneous (the execution time of any given task 
on all the machines is the same). These assumptions are 
made to represent a realistic environment. The 
machines with higher (dollar) cost typically are 
equipped with faster processor(s), bigger memory etc., 
and in general, executes tasks faster than the low-end 
cheaper machines. The estimated execution time of task 
i on machine j is given by ETC(i, j). For this study, 
heuristics are run for a total of 100 scenarios, where 
each scenario corresponds to a different ETC matrix. 

A task mean and coefficient of variation (COV) are 
used to generate the ETC matrices. A mean task 
execution time of 180 seconds and COV of 0.9 (task 
heterogeneity) is used to calculate the values for all the 
elements in a task vector (where the number of 
elements is equal to the number of tasks). Then using 
the ith element of the vector as the mean and a COV of 
0.3 (machine heterogeneity), the ETC values for task i 
on all the different classes of machines are calculated. 
The ETC values are then sorted in ascending order to 
obtain the consistent heterogeneity. Class 1 is the 
fastest machine, Class 2 is the second fastest, and so on. 
The cost values are in accordance with their execution 
speeds, with Class 1 being the most expensive and 
Class 5 the cheapest. The cost values of different 
classes of machines are shown in Table 1. These values 
are based on specific configurations of DELL desktop, 
workstation, and server products. It is assumed that all 
machines in a class use the same software environment. 

 

Class 1 2 3 4 5 
Cost (dollars) 1800 1500 1200 800 500 

Table 1: The cost values for different classes 
of machines. 
 

The cost constraint δ is chosen so that not all 
machines in the suite can be used, and the actual 
makespan constraint τ is chosen so that it adds 
significant mapping challenge to the problem. 
Experiments with simple greedy heuristics were used to 
decide the value of the cost constraint to be 34,800 
dollars and the time constraint to be 12,000 seconds. 
Choosing different values for any of the above 
parameters will not affect the general approach of the 
heuristics used in this research.  Because the tasks are 
independent, there is no communication between tasks. 
The time and resources required for loading the task 
executable file is simply assumed to be the same on all 
the machines. Hence, the network characteristics will 
not affect the solution of the problem and so it is 
ignored. The performance of each heuristic is studied 
across all 100 different ETCs. In this study, the wall 
clock time for the mapper itself to execute is arbitrarily 
required to be less than or equal to 60 minutes for any 
scenario on a typical unloaded 3GHz Intel Pentium 4 
machine. 
 
3. Related Work 

 
The current work is an extension of our earlier 

work in [39], where robust static mapping heuristics 
against errors in ETCs were derived. The tasks were 
mapped to a given, fixed set of machines in [39] and 
dollar cost was not a constraint in that environment. 
The research environment here differs from [39] with 
the addition of the cost constraint for the machines and 
choosing a subset of all the available machines to be 
used. Moreover, in this study, the machines are divided 
into classes and the machines are of consistent 
heterogeneity across the different classes. In [39], the 
machines were of inconsistent heterogeneity (i.e., the 
consistency property did not hold). The robustness 
metric used in the current work and in [39] is derived 
using the four step FePIA procedure detailed in [4]. All 
of the heuristics in the current paper use as a component 
machine assignment heuristics from our earlier work in 
[39]. 

A number of papers have studied the issue of 
robustness in distributed systems (e.g., [9, 13, 14, 17, 
25, 28, 38]). Robust decision making formulations 
presented in [13, 24, 25] motivate building a robust 
suboptimal solution over a better performing solution 
that is less robust. A detailed discussion of how the 
assignment portion of the current work differs from the 
examples above is given in [39].  
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The literature was examined to select a set of 
heuristics appropriate for the HC environment 
considered here. The Iterative Maximization (IM) 
techniques are a variation of the iterative deepening and 
random search techniques used in [16]. The 
partition/merge methods used in [26] are adapted to our 
environment to find the set of machines to be used for 
the Greedy Iterative Maximization heuristic. The 
GENITOR-style genetic algorithm used here is an 
adaptation of [40]. GENITOR is a steady-state genetic 
algorithm (GA) that has been shown to work well for 
several problem domains, including resource allocation 
and job shop scheduling, and hence was chosen for this 
problem. The research works in [15, 33] have used 
variations of GA for the synthesis of heterogeneous 
multiprocessors in embedded systems. Memetic 
Algorithm (MA) [6, 31, 32], also called the hybrid GA, 
applies a separate local search process (hill-climbing) to 
refine individuals. Combining global and local search is 
a strategy used by many successful global optimization 
approaches [6]. In this study, the MA heuristic is 
applied to maximize robustness using a specific set of 
machines. The HereBoy Evolutionary Algorithm used 
here is a combination of GA and Simulated Annealing 
(SA) and is an adaptation of [27] that was applied to the 
evolvable hardware problem. This fast evolutionary 
algorithm is shown to be well suited for exploring large 
spaces and can be applied to a wide range of 
optimization problems. The HereBoy is used for 
maximizing robustness with a specific set of machines 
that is determined using a search similar to 
partition/merge method [26]. 
  
4. Heuristics Descriptions 
 
4.1.  Overview 
 

Five of the six heuristics studied for this problem, 
Negative Impact Greedy Iterative Maximization, 
Partition/Merge Greedy Iterative Maximization, 
GENITOR, Memetic Algorithm, and Hereboy 
Evolutionary Algorithm, involve two phases. In phase 
1, a subset of machines is selected using specific 
heuristic techniques to meet the cost and makespan 
constraints, and to maximize robustness. In phase 2, 
tasks are mapped to the set of machines found in phase 
1 to further maximize the robustness metric for the 
mapping. Recall from Section 1 that all of the heuristics 
in the current paper use as a component machine 
assignment heuristics from our earlier work in [39], 
which assumed a given, fixed set of machines. The Sum 
Iterative Maximization heuristic involves only one 
phase where a robustness maximization criterion is 
used to select machines such that the cost constraint is 
always satisfied. Throughout the description of the 

heuristics, Class 1 of machines is referred to as the 
highest class and Class 5 of machines is referred to as 
the lowest class. 

 
4.2.  Negative Impact Greedy Iterative 

Maximization 
 

The Negative Impact Greedy Iterative 
Maximization (NI-GIM) heuristic used here is a 
modification of GIM described in [39]. The NI-GIM 
heuristic performs a Min-Min [21] mapping (procedure 
described in Figure 1) based on the completion times 
assuming all machines to be available, irrespective of 
the cost constraint.  

 

 
 

1. A task list is generated that includes all 
unmapped tasks. 

2. Find the completion time of each 
unmapped task on each machine (ignoring 
other unmapped tasks). 

3. Find the machine that gives the minimum 
completion time for each task.  

4. Among all the task/machine pairs found in 
3, find the pair that gives the minimum 
completion time. 

5. Remove the above task from the task list 
and map it to the chosen machine. 

6. Update the available time of the machine 
on which the task is mapped. 

7.     Repeat steps 2-6 until all the tasks have 
been mapped. 

Figure 1: Pseudo-code for the Min-Min 
heuristic.  
 

The robustness radius of all the available machines 
is calculated for the Min-Min mapping. The negative 
impact of removing machine j is determined in the 
following way. Each of the tasks mapped onto machine 
j is evaluated for reassignment to all the other machines. 
The decrease in the robustness radius of each available 
machine i if a task t is reassigned from machine j is 
calculated; call this , .i t∆  Define average decrease in 

the robustness radii across all the available machines 
due to reassignment of task t to be  

1

,
0

 number of  available machines.
M

t i t
i

α
−

=

= ∆∑  The 

negative impact of removing machine j, jNI , is 

  tasks on 
 .j t
t j

NI α
∈

= ∑  

The ratio of negative impact to cost is obtained by 
simply dividing the negative impact by the cost of the 
machine j. The machine that has the least value of the 
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negative impact to cost ratio is then removed. The 
procedure of performing the Min-Min mapping with 
only the available machines and the ratio calculation to 
remove another machine is repeated until the cost 
constraint is satisfied. 

For the set of machines determined above that 
meets the cost constraint, the GIM heuristic (please 
refer to [39]) is run to determine a mapping that 
maximizes robustness for the given machine set. 
 
4.3.  Partition/Merge Greedy Iterative 

Maximization 
 

The phase 1 of Partition/Merge Greedy Iterative 
Maximization (P/M-GIM) starts with a random number 
of machines chosen from each class. The tasks are then 
mapped to the selected machines using the Min-Min 
heuristic. The makespan for the Min-Min mapping is 
calculated. It was observed that makespan constraint in 
this study is such that if the cost constraint is violated, 
the makespan constraint is always satisfied using Min-
Min. Hence, either both of the constraints are satisfied 
or only one of the two constraints is violated using Min-
Min. If the cost constraint is violated, then the task-
merge (machine removal) [26] technique is executed. 
Otherwise, the task-partition (machine addition) [26] 
technique is executed to improve the makespan. 
Partitioning is stopped if addition of another machine 
will violate the cost constraint and merging is stopped 
once the cost constraint is satisfied.  

Five different methods for partitioning and 
merging are implemented: (a) cheap, (b) expensive, (c) 
even distribution, (d) most common, and (e) random. In 
the cheap variation, the partition step added the 
cheapest available machine, or the merge step removed 
a machine in the most expensive class. The expensive 
variation did exactly the opposite (removed a cheapest 
machine or added the most expensive). Even 
distribution attempted to merge or partition so that a 
similar number of machines from each class would be 
available (ties are broken arbitrarily). The most 
common approach attempted to add machines to the 
class that already had the most machines or to remove 
from the class that had the least number of machines 
(ties are broken arbitrarily). The random variation 
simply involved partitioning or merging an available 
machine from a randomly selected class. 

After generating a valid mapping that satisfies the 
cost and makespan constraints using one of the above 
techniques, reassignment and swapping of the GIM 
heuristic [39] are executed in an attempt to improve the 
robustness metric of the mapping. This constitutes 
phase 2. The reassignment and swapping of the GIM 
heuristic is executed for 20 unique machine 
combinations (found using phase 1) and the best 
solution is output. 

4.4.  Sum Iterative Maximization 
 
The Sum Iterative Maximization (SIM) heuristic 

starts with a cost lower bound (CLB) mapping where 
all the tasks are mapped onto a single lowest cost 
machine. There cannot be a mapping that has a lower 
cost than the cost lower bound mapping. However, 
because this mapping is not guaranteed to have a 
makespan less than τ, reassignment of some tasks to 
other machines may be necessary before continuing on 
to the next step of improving the robustness metric. It is 
assumed that all the machines are available for the 
reassignment of tasks. When a machine is used for the 
first time, the cost for using the machine is paid and the 
total cost of all the machines used in the suite must be 
less than δ. After the reassignment procedure, a task 
swapping procedure is executed. For this heuristic, the 
task-execution improvement, defined as the decrease in 
the sum of the completion times of the machines after 
reassignment or swapping, and the robustness 
improvement, defined as the increase in the sum of the 
robustness radius of the machines after reassignment or 
swapping, are maximized. The worst robustness 
machine is defined as the machine with the least 
robustness radius. The general procedure of the SIM 
heuristic used here is similar to that used in [39]. The 
SIM procedure can be summarized as follows: 
1. Begin with the CLB mapping. 
2. Find the makespan machine (the machine that 

finishes last) for the current mapping. 
a. For each task on the makespan machine, 

consider relocating it to a different machine. If 
the relocation will not reduce the makespan 
and keep the cost ≤ δ, it is ignored. Otherwise, 
the task-execution improvement of the 
particular relocation is recorded in a list H. 

b. Select the relocation in H that has the 
maximum improvement. 

c. Relocate the task, and empty the list H. 
3. Repeat step 2 until makespan ≤ τ or no task can be 

relocated. 
4. If makespan ≤ τ, go to step 7, otherwise go to step 

5. 
5. Find the makespan machine for the current 

mapping. 
a. For each task on the makespan machine, 

consider swapping it with a task on a different 
machine. If the swap will not reduce the 
makespan, it is ignored. Otherwise, the task-
execution improvement of the relocation is 
recorded in the list H. 

b. Select the relocation in H that has the 
maximum improvement. 

c. Relocate the task, and empty the list H. 
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6. Repeat step 5 until makespan ≤ τ. If this is not 
possible, the mapping procedure fails (for our 
study, this never happened). 

7. Find the worst robustness machine for the current 
mapping. 
a. For each task on the worst robustness machine, 

consider relocating it to a different machine. If 
the relocation will not increase the robustness 
and keep the cost ≤ δ, it is ignored. Otherwise, 
the robustness improvement of the relocation 
is recorded in a list H. 

b. Select the relocation in H that has the 
maximum improvement. 

c. Relocate the task, and empty the list H. 
8. Repeat step 7 until no task can be relocated. 
9. Find the worst robustness machine for the current 

mapping. 
a. For each task on the worst robustness machine, 

consider swapping it with a task on another 
machine. If the swap will not increase the 
robustness, it is ignored. Otherwise, the 
robustness improvement of the relocation is 
recorded in a list H. 

b. Select the relocation in H that has the 
maximum improvement. 

c. Relocate the task, and empty the list H. 
10. Repeat step 9 until no task can be swapped. 

A variation of this heuristic uses a predetermined 
set of minimum cost machines such that adding another 
machine will violate the cost constraint. For this set of 
lowest cost machines chosen that meets the cost 
constraint, relocations are made based on the task-
execution or robustness improvement as before. For 
another variation, define cost performance index (CPI) 
of machine j as the product of the cost of machine j and 
the average ETC of all tasks on machine j. The 
machines with the lowest CPI are selected until the cost 
is less than or equal to δ for mapping tasks. For this 
machine set, the relocation and swapping are done as 
explained above. 
 
4.5. GENITOR 
 

GENITOR is a general optimization technique that 
is a variation of the genetic algorithm approach. It 
manipulates a set of possible solutions. For phase 1, a 
chromosome is a vector of length five, where  ith 
element is the number of machines in ith class. The 
phase 1 of GENITOR operates on a fixed population of 
100 chromosomes. The entire population is generated 
randomly such that the cost constraint is met. The 
chromosomes are evaluated using the robustness metric 
based on a machine assignment using the Max-Max 
mapping from [39]. The entire population is sorted in 
descending order based on the robustness metric of the 
Max-Max heuristic.  

The special function for selecting parent 
chromosomes is a linear bias function, used to provide a 
specific selective pressure [40]. The linear bias value of 
1.5 was used to select chromosomes for crossover and 
mutation. A bias of 1.5 implies that the top ranked 
chromosome in the population is 1.5 times more likely 
to be selected for a crossover or mutation than the 
median chromosome. Elitism, the property of 
guaranteeing the best solution remains in the population, 
is implicitly implemented by always maintaining the 
ranked list. 

In the crossover step, for the pair of the selected 
parent chromosomes, a random cut-off point is 
generated that divides the chromosomes into top and 
bottom parts. A new chromosome is formed using the 
top of one and bottom of another. An offspring is 
inserted in the population after evaluation only if the 
cost constraint is satisfied (the worst chromosomes of 
the population are discarded to maintain a population of 
only 100). Otherwise, it is discarded. 

After each crossover, the linear bias function is 
applied again to select a chromosome for mutation. A 
mutation operator generates a single offspring by 
perturbing the original chromosome. Two random 
classes are chosen for the chromosome and the 
mutation operator increases the number of machines of 
the first chosen class by one and decreases the number 
of machines of the other by one. If the chromosome is 
infeasible, that is, if it violates the cost constraint or the 
possible number of machines in each class, it is 
discarded. Otherwise, the resultant offspring is 
considered for inclusion in the population in the same 
fashion as for an offspring generated by crossover. 

This completes one iteration of phase 1 of 
GENITOR. The heuristic stops when the criterion of 
500 total iterations is met. The machine combination 
found from phase 1 is used in phase 2, which derives a 
mapping using this combination of machines to 
maximize robustness based on the GENITOR 
implementation in [39] (a total of 100,000 iterations is 
used here to stop the phase 2 of GENITOR). 
 
4.6.  Memetic Algorithm 
 

The Memetic Algorithm (MA) metaheuristic [31] 
combines population-based global search with local 
search made by each of the individuals. In phase 1, 100 
random combinations of machines from each class are 
chosen such that the cost constraint is satisfied. Each of 
the 100 combinations is evaluated using the Max-Max 
heuristic [39] and the machine combination that has the 
highest robustness metric is selected. In phase 2, for the 
best machine combination found in phase 1, the MA 
heuristic identical to that described in [39] is executed, 
the only difference being the stopping criterion. That is, 
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a total of 40,000 iterations is used here to stop the phase 
2 of MA.   
 
4.7.  HereBoy Evolutionary Algorithm 
 

HereBoy is a fast evolutionary algorithm that 
combines the features of GA and SA [27]. Phase 1 of 
HereBoy starts with adding one machine in each class 
(starting from the lowest class) in a round robin fashion 
until the cost constraint is violated. The current 
machine combination is evaluated using the robustness 
metric based on a machine assignment made by the  
Max-Max mapping [39].  

Now, starting from the highest class, a new 
machine is considered to be included in the existing 
machine set in a round robin fashion (unless no more 
machines from a particular class can be added). Adding 
another machine will violate the cost constraint. Hence, 
to be able to accommodate the inclusion of a machine, 
one or more machines from other classes should be 
removed. Machines are considered to be removed from 
a single class or from two different classes (this is 
sufficient to add a machine of any class). All such 
combinations are considered and if removing a 
particular combination of machines allows adding 
another machine of a lower class (after adding the 
higher class machine under consideration), then a 
machine is added. For each combination of machines 
that is removed, and replaced by other machines, a new 
set of working machines is formed. All machine sets are 
evaluated using the mapping produced by Max-Max 
and the set that gives the highest robustness metric is 
stored as the best. For the current best machine set, the 
above described procedure is repeated until addition of 
a machine from any class will not improve the 
robustness metric. 

For the best combination of phase 1 procedure, 
HereBoy Evolutionary Algorithm [39] is executed as 
phase 2 to determine the task to machine mapping for 
that combination of machines.  
 
4.8.  Upper Bound 
 

The upper bound on the robustness metric for this 
study is similar to that for [39]. It assumes a 
homogeneous MET system in which the execution time 
for each task on all machines is the same and equal to 
the minimum time that the task would take to execute 
across the original set of machines. The minimum 
execution time of task i, METi, is given by the 
following equation.  

METi =  over all j.                                min ( , )ETC i j
The upper bound for the robustness metric of the 

homogeneous MET system is equal to or better than the 
upper bound for the robustness metric of the original 

system because of the impact of the MET values in 
equation (2).  

For this problem, there cannot be more than 33 
machines in the system for the given cost constraint. 
This includes the 33 machines of the lowest class 
possible in the entire HC suite. Following equation (2) 
and our assumption of the homogeneous MET system, 
having more machines in the suite gives a better 
robustness metric than having fewer machines in the 
suite (due to the impact of number of tasks on each 
machine).  

The tasks in the MET system are now arranged in 
ascending order of their execution times. Then, the 
robustness upper bound is calculated as follows. Let N 
= ⎣|T|/|M|⎦ . Here, |M| = 33. The first N tasks in the 
sorted order are stored in a list S. For the purposes of 
this mathematical upper bound derivation, the same N 
tasks in S are assumed to be on all the machines so that 
Fj = Fi, 1 ≤  i,j ≤  |M|. Thus, a very loose upper bound 
for robustness is given by the following equation.  

1

=0UB = 
S(i)

i

N

τ MET
   

Ν −⎛ ⎞
  −⎜ ⎟⎜ ⎟

⎝
∑

⎠                                                        

The proof of this upper bound is identical to that 
given in [39]. 

 
5. Experimental Results 

 
The simulation results are shown in Figures 2 and 3. 

All the heuristics are run for 100 different scenarios and 
the average values and 95% confidence intervals [22] 
are plotted. The running times of the heuristics 
averaged over 100 trials, mapping 1024 tasks in each 
trial, are shown in Table 2.  

The GENITOR and “cheap” variation of the P/M-
GIM heuristic are the best among all the heuristics 
studied for this problem (the cheap variation is shown 
in the figures). Both of these heuristics, on average, had 
all of the available machines from Class 4 and Class 5. 
The “cheap” variation of P/M-GIM heuristic always 
removed machines from Class 1 if the cost constraint 
was violated. But GENITOR explored the search space 
better and on average used more machines in Class 1 
than in Class 2. The “most common” and “random” 
variations of P/M-GIM heuristic were within 10% of 
the “cheap” variation. The “expensive” variation 
performed the worst among all the variations of P/M-
GIM and “even distribution” was slightly better than 
the “expensive” variation. These two variations did not 
have as many machines in the suite as compared to the 
other variations. For this problem, having a good 
balance between the execution speed of machines and 
the number of machines in the HC suite proved to be 
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important for maximizing the robustness of the 
mapping. 

The NI-GIM heuristic performed comparably to 
P/M-GIM and GENITOR. The negative impact 
calculation always forced removal of machines from 
either Class 2 or 3. All machines from Class 1, 4, and 5 
(i.e., the fastest class and the two cheapest classes of 
machines) were used in more than 90% of the scenarios.  
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Figure 2: The simulation results for robustness. 
The average UB value is 2019.3. 
 

The SIM heuristic by itself did not perform well 
(an average of 252 for the robustness metric across 100 
scenarios). The poor performance is because it always 
selected machines for relocation that will maximize 
task-execution or robustness improvement. Therefore, 
SIM typically picked machines in the order of the 
highest class to the lowest. The SIM heuristic does not 
consider replacing a fast machine with multiple slower 
machines. The cost performance index variation of SIM 
(CPI-SIM) performed within 12% of GENITOR. The 
lowest cost variation also performed similarly and is 
within 2% of the CPI-SIM variation. The lowest cost 
variation always picked machines in the order of Class 
5, 4, 3, 2, and 1. The CPI variation always picked 
machines in the order of Class 5, 4, 3, 1, and 2. No 
machines from Class 2 are included in the CPI variation 
of SIM because of the cost constraint. 

HereBoy Evolutionary Algorithm is the fastest 
among all the algorithms and its performance is within 
12% of GENITOR. The search technique used for 

selecting the machines for HereBoy used all of the 
machines of Class 1, 4, and 5. 

The MA heuristic that made use of the random 
search approach to find the set of machines in phase 1 
performed the worst among all the heuristics. The MA 
optimization heuristic has proved to work well for a 
similar environment in [39]. However, the machine 
selection by the random approach proved to be 
ineffective for this kind of an environment.  
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Figure 3: The simulation results for makespan 
(τ = 12,000). 
 

The phase 2 of all the heuristics discussed in this 
research is similar to the heuristics studied in [39]. The 
SIM heuristic performed well for the problem in [39], 
where inconsistent heterogeneity between machines is 
considered. However, due to consistent heterogeneity 
considered in this study, the sum of the task-execution 
or robustness improvement of machines did not help to 
find a good solution. The GIM heuristic performed well 
here because it focused on maximizing the robustness 
metric itself unlike SIM. The discussion on the 
performance of phase 2 of GENITOR, MA, and 
HereBoy are similar to those discussed in [39]. 

Comparing the robustness metric and makespan 
results of CPI-SIM and HereBoy, it can be easily 
noticed that for a similar robustness metric, the 
makespan results vary about 3% on average for the 
scenarios studied. Similar differences in robustness 
metric and makespan results were also shown in [39]. 
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These results prove that minimizing makespan is not 
the same as maximizing robustness and vice versa. 
 

 
heuristic 

average execution 
times (seconds) 

NI-GIM 3600 
P/M-GIM 3600 
CPI-SIM 780 
GENITOR 3420 
Memetic Algorithm 3000 
HereBoy 26 

Table 2: The average execution times of the 
heuristics averaged over 100 trials (using a 
typical unloaded 3 GHz Intel Pentium 4 
machine). 
 
6. Summary 

 
This study presents six static heuristics for 

selecting a set of machines, under a given dollar cost 
constraint, that will maximize the robustness of a 
mapping against errors in the ETC. A collection of 
independent tasks is mapped onto a set of 
heterogeneous classes of machines using the heuristics 
described in this research. 

The best robustness metric is obtained by using the 
GENITOR heuristic. The Partition/Merge Greedy 
Iterative Maximization heuristic performed comparably 
with its robustness metric within 2% of GENITOR. The 
execution times for both of the heuristics themselves 
are also comparable. Thus, both GENITOR and 
Partition/Merge Greedy Iterative Maximization are a 
good choice for the given problem. 

In this study, a suite of at most 33 machines from 
five classes were used to execute 1024 tasks. Future 
work could include examining bigger scenarios, where 
all of the above parameters are larger. 

 
Acknowledgments: The authors thank Shoukat Ali and 
Jay Smith for their valuable comments. 
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