70 research outputs found

    On Intersection Graphs of Arcs and Chords in a Circle

    Get PDF
    Circular-arc graphs are the intersection graphs of arcs on a circle. We review in this thesis the main results known about this class and we analize some subclasses of it. We show new characterizations for proper circular-arc graphs derived from a characterization formulated by Tucker, and we deduce minimal forbidden structures for circular arc-graphs.All possible intersections of the defined subclasses are studied, showing a minimal example in each one of the generated regions, except one of them that we prove it is empty. From here, we conclude that a clique-Helly and proper no unit circular-arc graph must be Hellycircular-arc graph.Circle graphs are the intersection graphs of chords in a circle. We present also a review of the main results in this class and define the most important subclasses, proving some relations of inclusions between them.We prove a neccesary condition so that a graph is a Helly circle graph and conjecture thatthis condition is sufficient too. If this conjecture becomes true, we would have acharacterization and a polynomial recognition for this subclass.Minimal forbidden structures for circle graphs are shown, using the chacterization of propercircular-arc graphs by Tucker and a characterization theorem for circle graphs by Bouchet.We also analize all the possible intersections between the defined subclasses of circlegraphs, showing a minimal example in each generated region.A superclass of circle graphs is studied: overlap graphs of circular-arc graphs. We show new properties on this class, analizing its relation with circle and circular-arc graphs. A necessary condition for a graph being an overlap graph of circular-arc graphs is shown. We prove that the problem of finding a minimum clique partition for the class of graphs which does not contain either odd holes, or a 3-fan, or a 4-wheel as induced subgraphs, can be solved in polynomial time. We use in the proof results of polyhedral theory for integer linear programming. We extend this result for minimum clique covering by vertices. These results are applied for Helly circle graphs without odd holes. We also show that the problem of minimum clique covering by vertices can be solved in polynomial time for Helly circular-arc graphs. Finally, we present some interesting problems which remain open.Sociedad Argentina de Informática e Investigación Operativ

    Subclasses of Normal Helly Circular-Arc Graphs

    Full text link
    A Helly circular-arc model M = (C,A) is a circle C together with a Helly family \A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how do these classes of graphs relate with straight and round digraphs.Comment: 39 pages, 13 figures. A previous version of the paper (entitled Proper Helly Circular-Arc Graphs) appeared at WG'0

    Balancedness of subclasses of circular-arc graphs

    Get PDF
    A graph is balanced if its clique-vertex incidence matrix contains no square submatrix of odd order with exactly two ones per row and per column. There is a characterization of balanced graphs by forbidden induced subgraphs, but no characterization by mininal forbidden induced subgraphs is known, not even for the case of circular-arc graphs. A circular-arc graph is the intersection graph of a family of arcs on a circle. In this work, we characterize when a given graph G is balanced in terms of minimal forbidden induced subgraphs, by restricting the analysis to the case where G belongs to certain classes of circular-arc graphs, including Helly circular-arc graphs, claw-free circular-arc graphs, and gem-free circular-arc graphs. In the case of gem-free circular-arc graphs, analogous characterizations are derived for two superclasses of balanced graphs: clique-perfect graphs and coordinated graphs.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Guillermo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Chile; ChileFil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Wagler, Annegret Katrin. Centre National de la Recherche Scientifique; Franci

    Unit Interval Editing is Fixed-Parameter Tractable

    Full text link
    Given a graph~GG and integers k1k_1, k2k_2, and~k3k_3, the unit interval editing problem asks whether GG can be transformed into a unit interval graph by at most k1k_1 vertex deletions, k2k_2 edge deletions, and k3k_3 edge additions. We give an algorithm solving this problem in time 2O(klogk)(n+m)2^{O(k\log k)}\cdot (n+m), where k:=k1+k2+k3k := k_1 + k_2 + k_3, and n,mn, m denote respectively the numbers of vertices and edges of GG. Therefore, it is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm implies the fixed-parameter tractability of the unit interval edge deletion problem, for which we also present a more efficient algorithm running in time O(4k(n+m))O(4^k \cdot (n + m)). Another result is an O(6k(n+m))O(6^k \cdot (n + m))-time algorithm for the unit interval vertex deletion problem, significantly improving the algorithm of van 't Hof and Villanger, which runs in time O(6kn6)O(6^k \cdot n^6).Comment: An extended abstract of this paper has appeared in the proceedings of ICALP 2015. Update: The proof of Lemma 4.2 has been completely rewritten; an appendix is provided for a brief overview of related graph classe

    Isomorphism of graph classes related to the circular-ones property

    Get PDF
    We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, \Gamma-circular-arc graphs, proper circular-arc graphs and convex-round graphs.Comment: 25 pages, 9 figure

    Proper circular arc graphs as intersection graphs of paths on a grid

    Full text link
    In this paper we present a characterisation, by an infinite family of minimal forbidden induced subgraphs, of proper circular arc graphs which are intersection graphs of paths on a grid, where each path has at most one bend (turn)

    Intersection of Longest Paths in Graph Theory and Predicting Performance in Facial Recognition

    Get PDF
    A set of subsets is said to have the Helly property if the condition that each pair of subsets has a non-empty intersection implies that the intersection of all subsets has a non-empty intersection. In 1966, Gallai noticed that the set of all longest paths of a connected graph is pairwise intersecting and asked if the set had the Helly property. While it is not true in general, a number of classes of graphs have been shown to have the property. In this dissertation, we show that K4-minor-free graphs, interval graphs, circular arc graphs, and the intersection graphs of spider graphs are classes that have this property. The accuracy of facial recognition algorithms on images taken in controlled conditions has improved significantly over the last two decades. As the focus is turning to more unconstrained or relaxed conditions and toward videos, there is a need to better understand what factors influence performance. If these factors were better understood, it would be easier to predict how well an algorithm will perform when new conditions are introduced. Previous studies have studied the effect of various factors on the verification rate (VR), but less attention has been paid to the false accept rate (FAR). In this dissertation, we study the effect various factors have on the FAR as well as the correlation between marginal FAR and VR. Using these relationships, we propose two models to predict marginal VR and demonstrate that the models predict better than using the previous global VR

    Recognizing H-Graphs - Beyond Circular-Arc Graphs

    Get PDF
    corecore