9 research outputs found

    Atrial fibrillation classification based on MLP networks by extracting Jitter and Shimmer parameters

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac anomaly and one that potentially threatens human life. Due to its relation to a variation in cardiac rhythm during indeterminate periods, long-term observations are necessary for its diagnosis. With the increase in data volume, fatigue and the complexity of long-term features make analysis an increasingly impractical process. Most medical diagnostic aid systems based on machine learning, are designed to automatically detect, classify or predict certain behaviors. In this work, using the PhysioNet MIT-BIH Atrial Fibrillation database, a system based on MLP artificial neural network is proposed to differentiate, between AF and non-AF, segments and ECG’s features, obtaining average accuracy of 80.67% in test set, for the 10-fold cross-validation method. As a highlight, the extraction of jitter and shimmer parameters from ECG windows is presented to compose the network input sets, indicating a slight improvement in the model's performance. Added to these, Shannon's and logarithmic energy entropies are determined, also indicating an improvement in performance related to the use of fewer features.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020.info:eu-repo/semantics/publishedVersio

    A study on stability analysis of atrial repolarization variability using ARX model in sinus rhythm and atrial tachycardia ECGs

    Get PDF
    © 2016 Elsevier Ireland Ltd Background The interaction between the PTa and PP interval dynamics from the surface ECG is seldom explained. Mathematical modeling of these intervals is of interest in finding the relationship between the heart rate and repolarization variability. Objective The goal of this paper is to assess the bounded input bounded output (BIBO) stability in PTa interval (PTaI) dynamics using autoregressive exogenous (ARX) model and to investigate the reason for causing instability in the atrial repolarization process. Methods Twenty-five male subjects in normal sinus rhythm (NSR) and ten male subjects experiencing atrial tachycardia (AT) were included in this study. Five minute long, modified limb lead (MLL) ECGs were recorded with an EDAN SE-1010 PC ECG system. The number of minute ECGs with unstable segments (N us ) and the frequency of premature activation (PA) (i.e. atrial activation) were counted for each ECG recording and compared between AT and NSR subjects. Results The instability in PTaI dynamics was quantified by measuring the numbers of unstable segments in ECG data for each subject. The unstable segments in the PTaI dynamics were associated with the frequency of PA. The presence of PA is not the only factor causing the instability in PTaI dynamics in NSR subjects, and it is found that the cause of instability is mainly due to the heart rate variability (HRV). C onclusion The ARX model showed better prediction of PTa interval dynamics in both groups. The frequency of PA is significantly higher in AT patients than NSR subjects. A more complex model is needed to better identify and characterize healthy heart dynamics

    Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification

    Get PDF
    Automatic feature extraction and classification are two main tasks in abnormal ECG beat recognition. Feature extraction is an important prerequisite prior to classification since it provides the classifier with input features, and the performance of classifier depends significantly on the quality of these features. This study develops an effective method to extract low-dimensional ECG beat feature vectors. It employs wavelet multi-resolution analysis to extract time-frequency domain features and then applies principle component analysis to reduce the dimension of the feature vector. In classification, 12-element feature vectors characterizing six types of beats are used as inputs for one-versus-one support vector machine, which is conducted in form of 10-fold cross validation with beat-based and record-based training schemes. Tested upon a total of 107049 beats from MIT-BIH arrhythmia database, our method has achieved average sensitivity, specificity and accuracy of 99.09%, 99.82% and 99.70%, respectively, using the beat-based training scheme, and 44.40%, 88.88% and 81.47%, respectively, using the record-based training scheme

    Classificação de episódios de fibrilação atrial por análise do ECG com redes neuronais artificiais MLP e LSTM

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáA fibrilação atrial (AF) é uma doença cardíaca que afeta aproximadamente 1% da população mundial, sendo a anomalia cardíaca mais comum. Apesar de não ser uma causa direta de morte, frequentemente está associada ou gera outros problemas que ameaçam a vida humana, como o derrame e a doença da artéria coronária. As principais características da AF são: a alta variação do ritmo cardíaco, o enfraquecimento ou desaparecimento da contração atrial e a ocorrência de irregularidades nas atividades dos ventrículos. O diagnóstico da AF é realizado por um médico especialista, principalmente através da inspeção visual de gravações de eletrocardiograma (ECG) de longo termo. Tais gravações podem chegar a várias horas, e são necessárias pois a AF pode ocorrer a qualquer momento do dia. Dessa forma surgem os problemas quanto ao grande volume de dados e as dependências de longo termo. Além disso, as particularidades e as variabilidades dos padrões de deformação de cada sujeito fazem com que o problema esteja também relacionado com a experiência do cardiologista. Assim, a proposta de um sistema computacional de auxílio ao diagnóstico médico baseado em inteligência artificial se torna muito interessante, uma vez que não sofre com a fadiga e é fortemente indicado para lidar com dados em grande quantidade e com alta variabilidade. Portanto, neste trabalho foi proposta a exploração de modelos de aprendizagem de máquina para análise e classificação de sinais ECG de longo termo, para auxiliar no diagnóstico da AF. Os modelos foram baseados em redes neuronais artificiais do tipo Multi-Layer Perceptron (MLP) e Long Short-Term Memory (LSTM). Utilizam-se os sinais da base de dados MIT-BIH Atrial Fibrillation, sem remoção de ruído, tendências ou artefatos, numa etapa de extração de características temporais, morfológicas, estatísticas e em tempo-frequência sobre segmentos de contexto variável (duração em segundos ou contagem de intervalos entre picos R). As características do sinal ECG utilizadas, foram: duração dos intervalos R-R (RRi) consecutivos, perturbação Jitter, perturbação Shimmer, entropias de Shannon e energia logarítmica, frequências instantâneas, entropia espectral e transformada Scattering. Sobre estes atributos foram aplicadas diferentes estratégias de normalização por Z-score e valor máximo absoluto, de forma a normalizar os indicadores de acordo com o contexto do sujeito ou local do segmento. Após a exploração de várias combinações destas características e dos parâmetros das redes MLP, obteve-se uma acurácia de classificação para a metodologia 10-fold cross-validation de 80,67%. Entretanto, notou-se que as marcações do pico das ondas R advindas da base de dados eram imprecisas. Dessa forma, desenvolveu-se um algoritmo de detecção do pico das ondas R baseado na combinação entre a derivada do sinal, a energia de Shannon e a transformada de Hilbert, resultado em uma acurácia de marcação dos picos R de 98,95%. A partir das novas marcações, determinou-se todas as características e em seguida foram exploradas diversas estruturas de redes neuronais MLP e LSTM, sendo que os melhores resultados em acurácia/exatidão para estas arquiteturas foram, respectivamente, 91,96% e 98,17%. Em todos os testes, a MLP demonstrou melhora de desempenho à medida que mais características foram sendo agregadas nos conjuntos de dados. A LSTM por outro lado, obteve os melhores resultados quando foram combinados 60 RRi e as respectivas entropias das ondas P, T e U.Atrial fibrillation (AF) is a heart disease that affects approximately 1% of the world population, being the most common cardiac anomaly. Although it is not a direct cause of death, it is often associated with or generates other problems that threaten human life, such as stroke and coronary artery disease. The main characteristics of AF are the high variation in heart rate, the weakening or disappearance of atrial contraction and the occurrence of irregularities in the activities of the ventricles. The diagnosis of AF is performed by a specialist doctor, mainly through visual inspection of long-term electrocardiogram (ECG) recordings. Such recordings can take several hours and are necessary because AF can occur at any time of the day. Thus, problems arise regarding the large amount of data and long-term dependencies. In addition, the particularities and variability of the deformation patterns of each subject make the problem also related to the cardiologist's experience. Thus, the proposal for a computational system to aid medical diagnosis based on artificial intelligence becomes very interesting, since it does not suffer from fatigue and is strongly indicated to deal with data in large quantities and with high variability. Therefore, in this work it was proposed to explore machine learning models for the analysis and classification of long-term ECG signals, to assist in the diagnosis of AF. The models were based on artificial neural networks Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM). The signals from the MIT-BIH Atrial Fibrillation database are used, without removing noise, trends or artifacts, in a stage of extracting temporal, morphological, statistical and time-frequency features over segments of variable context (duration in seconds or counting intervals between peaks R). The features of the ECG signal used were: duration of consecutive R-R (RRi) intervals, Jitter disturbance, Shimmer disturbance, Shannon entropies and logarithmic energy, instantaneous frequencies, spectral entropy and Scattering transform. On these attributes, different normalization strategies were applied by Z-score and absolute maximum value, to normalize the indicators according to the context of the subject or location of the segment. After exploring various combinations of these features and the parameters of the MLP networks, the accuracy of classification for the 10-fold cross-validation methodology was 80.67%. However, it was noted that the annotations of the peak of R waves from the database were inaccurate. Thus, an algorithm for detecting the peak of R waves was developed based on the combination of the derivative of the signal, the Shannon energy, and the Hilbert transform, resulting in an accuracy of marking the R peaks of 98.95%. From the new markings, all features were determined and then several structures of neural networks MLP and LSTM were explored, and the best results in accuracy for these architectures were, respectively, 91.96% and 98.17%. In all tests, MLP showed improvement in performance as more features were added to the data sets. LSTM, on the other hand, obtained the best result when 60 RRi and the respective entropies of the P, T and U waves were combined

    Towards a better understanding of the precordial leads : an engineering point of view

    Get PDF
    This thesis provides comprehensive literature review of the electrocardiography evolution to highlight the important theories behind the development of the electrocardiography device. More importantly, it discusses different electrode placement on the chest, and their clinical advantages. This work presents a technical detail of a new ECG device which was developed at MARCS institute and can record the Wilson Central Terminal (WCT) components in addition to the standard 12-lead ECG. This ECG device was used to record from 147 patients at Campbelltown hospital over three years. The first two years of recording contain 92 patients which was published in the Physionet platform under the name of Wilson Central Terminal ECG database (WCTECGdb). This novel dataset was used to demonstrate the WCT signal characterisation and investigate how WCT impacts the precordial leads. Furthermore, the clinical influence of the WCT on precordial leads in patients diagnosed with non-ST segment elevation myocardial infarction (NSTEMI) is discussed. The work presented in this research is intended to revisit some of the ECG theories and investigate the validity of them using the recorded data. Furthermore, the influence of the left leg potential on recording the precordial leads is presented, which lead to investigate whether the WCT and augmented vector foot (aVF) are proportional. Finally, a machine learning approach is proposed to minimise the Wilson Central Terminal
    corecore