69 research outputs found

    Sparse Dimensionality Reduction Methods: Algorithms and Applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Bandwidth Allocation Mechanism based on Users' Web Usage Patterns for Campus Networks

    Get PDF
    Managing the bandwidth in campus networks becomes a challenge in recent years. The limited bandwidth resource and continuous growth of users make the IT managers think on the strategies concerning bandwidth allocation. This paper introduces a mechanism for allocating bandwidth based on the users’ web usage patterns. The main purpose is to set a higher bandwidth to the users who are inclined to browsing educational websites compared to those who are not. In attaining this proposed technique, some stages need to be done. These are the preprocessing of the weblogs, class labeling of the dataset, computation of the feature subspaces, training for the development of the ANN for LDA/GSVD algorithm, visualization, and bandwidth allocation. The proposed method was applied to real weblogs from university’s proxy servers. The results indicate that the proposed method is useful in classifying those users who used the internet in an educational way and those who are not. Thus, the developed ANN for LDA/GSVD algorithm outperformed the existing algorithm up to 50% which indicates that this approach is efficient. Further, based on the results, few users browsed educational contents. Through this mechanism, users will be encouraged to use the internet for educational purposes. Moreover, IT managers can make better plans to optimize the distribution of bandwidth

    SRDA: An Efficient Algorithm for Large-Scale Discriminant Analysis

    Full text link

    INCREMENTAL AND REGULARIZED LINEAR DISCRIMINANT ANALYSIS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Revisiting Classical Multiclass Linear Discriminant Analysis with a Novel Prototype-based Interpretable Solution

    Full text link
    Linear discriminant analysis (LDA) is a fundamental method for feature extraction and dimensionality reduction. Despite having many variants, classical LDA has its own importance, as it is a keystone in human knowledge about statistical pattern recognition. For a dataset containing C clusters, the classical solution to LDA extracts at most C-1 features. Here, we introduce a novel solution to classical LDA, called LDA++, that yields C features, each interpretable as measuring similarity to one cluster. This novel solution bridges dimensionality reduction and multiclass classification. Specifically, we prove that, for homoscedastic Gaussian data and under some mild conditions, the optimal weights of a linear multiclass classifier also make an optimal solution to LDA. In addition, we show that LDA++ reveals some important new facts about LDA that remarkably changes our understanding of classical multiclass LDA after 75 years of its introduction. We provide a complete numerical solution for LDA++ for the cases 1) when the scatter matrices can be constructed explicitly, 2) when constructing the scatter matrices is infeasible, and 3) the kernel extension

    A Novel Hybrid Dimensionality Reduction Method using Support Vector Machines and Independent Component Analysis

    Get PDF
    Due to the increasing demand for high dimensional data analysis from various applications such as electrocardiogram signal analysis and gene expression analysis for cancer detection, dimensionality reduction becomes a viable process to extracts essential information from data such that the high-dimensional data can be represented in a more condensed form with much lower dimensionality to both improve classification accuracy and reduce computational complexity. Conventional dimensionality reduction methods can be categorized into stand-alone and hybrid approaches. The stand-alone method utilizes a single criterion from either supervised or unsupervised perspective. On the other hand, the hybrid method integrates both criteria. Compared with a variety of stand-alone dimensionality reduction methods, the hybrid approach is promising as it takes advantage of both the supervised criterion for better classification accuracy and the unsupervised criterion for better data representation, simultaneously. However, several issues always exist that challenge the efficiency of the hybrid approach, including (1) the difficulty in finding a subspace that seamlessly integrates both criteria in a single hybrid framework, (2) the robustness of the performance regarding noisy data, and (3) nonlinear data representation capability. This dissertation presents a new hybrid dimensionality reduction method to seek projection through optimization of both structural risk (supervised criterion) from Support Vector Machine (SVM) and data independence (unsupervised criterion) from Independent Component Analysis (ICA). The projection from SVM directly contributes to classification performance improvement in a supervised perspective whereas maximum independence among features by ICA construct projection indirectly achieving classification accuracy improvement due to better intrinsic data representation in an unsupervised perspective. For linear dimensionality reduction model, I introduce orthogonality to interrelate both projections from SVM and ICA while redundancy removal process eliminates a part of the projection vectors from SVM, leading to more effective dimensionality reduction. The orthogonality-based linear hybrid dimensionality reduction method is extended to uncorrelatedness-based algorithm with nonlinear data representation capability. In the proposed approach, SVM and ICA are integrated into a single framework by the uncorrelated subspace based on kernel implementation. Experimental results show that the proposed approaches give higher classification performance with better robustness in relatively lower dimensions than conventional methods for high-dimensional datasets

    Fast Implementation of Linear Discriminant Analysis

    Get PDF
    Master'sMASTER OF SCIENC
    corecore