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Summary
Improvement of technology has been tremendously fast and we have access to varieties of

data. However, the irony is that with so much information, it is very hard to manage and

manipulate them. This gave birth to an area of computing science called data mining. It

is the art of finding important information and from there we can make better decision,

save storage cost as well as manipulate data at a more affordable price.

In this thesis, we will look at one particular area of data mining, called linear dis-

criminant analysis. We will give a brief survey of the history as well as the varieties

of the method later, including incremental approach and some other types of imple-

mentation. One common method that is used in the implementation is Singular Value

Decomposition (SVD) which is very expensive. Thereafter we will review two special

types of implementation called Orthogonal LDA as well as Null Space Based LDA. We

will also propose improvements to the algorithm. The improvement stands apart from

other implementation as it doesn’t involve any inverse, SVD and it is a numerically sta-

ble. The main tool that we used is QR decomposition, which is very fast and the time

saved is very significant. Numerical simulations were carried out and numerical results

are reported in this thesis as well. Furthermore, we will also reveal some relationship

between these variants of linear discriminant analysis.
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Notation

1. The letter A ∈ Rm×n means the data matrix given where each column ai represents

a single data point; hence our original data are data of size m × 1 and n is the

total number of data given to us.

2. The matrix G ∈ Rm×l is the standard matrix that represents the linear transforma-

tion that we desired to use. Pre-multiplication of it to a vector in m− dimensional

space to l− dimensional space.

3. k represents the number of classes in the data sets.

4. ni is the total number of data in the i-th class.

5. e is the all ones vector, of which the size will be mentioned.

6. ci represents the class centroid of the i-th class while c represent the global centroid.

7. Sb, Sw and St are symbols of scatter matrices in the original space, of which we

will define soon.

8. SLb , S
L
w and SLt are symbols of scatter matrices in the reduced space, of which we

will define soon.

9. K is the number of neighbours considered in the K- Nearest Neighbours Algorithm.



Chapter 1

Introduction

1.1 Significance of Data Dimensionality Reduction

This century is the “century of data”, while traditionally, researchers might only record

down a handful of features due to technology constraint, now data can be collected

easily. DNA microarrays, biomedical spectroscopy, high dimensional video, and tick by

tick financial data, these are just a few means to obtain high dimensional data. The

collection of data might be an expensive process either economically or computational,

and hence it would be a great waste to the owner of the data if their data remains not

interpreted. To read the data manually and find the intrinsic relationship would be a

great challenge, fortunately, computers have avoided mankind from suffering from these

routine and mundane jobs, after all, as one can imagine that picking needle from the

hay is not a trivial job. Dimension reduction is crucial in this manner in the sense that

we have to find those factors that are contributing to the phenomenon that we observe,

usually a big phenomenon might be caused by only a handful of reasons while the rest are

just noise that make things fuzzy. Furthermore, it might be tough in the sense that the

real factor might be a combination of a few attributes that we observe directly, making

the task more and more challenging. Modeling is necessary because of this factor; the

simplest one is by assuming normal distribution and the classes linearly separable.

Mathematics of dimension reduction and heuristic approaches in this aspect had been

emphasized in many parts of the world especially for research community. As what John

8
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Tukey, one of the greatest Mathematician and Computer Scientist said, it is time for us to

admit the fact that there is going to be many data analysts while we only have relatively

much fewer mathematicians and statisticians, hence it is crucial for us to invest resources

into the research in this area, to ensure high quality of practical application that we will

discuss later. [46] A scheme to solve the problem to extract the crucial information is

not sufficient, for those, we already have some results over the years. More importantly,

we are certainly in need of an efficient scheme that guarantees high accuracy. There

are various schemes available currently. Some of them are more general while some are

more application specific. In either case, we still have room for improvement for these

technologies.

A typical case of dimensionality reduction is as follows:

A set of data is given to us; they might be clustered or not clustered, in the event

the class labels are given to us, we said that it is supervised learning, otherwise we call

it unsupervised learning, both areas are hot research areas. However, in this thesis, we

will focus on the supervised case.

Suppose that the data are given to us in the form of

A = [A1, . . . , Ak]

where each column vector represent a data point and Ai is the collection of the i-th class,

and where k is the number of classes, the whole idea is to devise a mapping f(.) such

that when a new data, x is given to us, f(x) is a projection of x to a vector of much

smaller size, maintaining the class information and help us to classify it to an existing

group. Even the most trivial case, where we intend to find optimum linear projector, still

has a lot of room for improvements. The question can be generalized in the sense that

some classes may have more than one mode or we can even made it more complicated,

some data can belong to more than one classes. This is not a purely theoretical problem

as modern world requires human to multi-task and it is easy to see that a person can be
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both an entertainer and a politician. It seems that existing algorithms still have room

for improvement. There are many things for us to investigate in this area, for a start,

what objective function should we use? Majority of the literatures have used trace or

determinant to measure the dispersion of the data. However, to maximize the distance

between the classes and minimize the distance within classes are impossible to be per-

formed simultaneously, what types of trade off should we adopt? These are interesting

problems that are suitable for a data driven society nowadays.

There are many other motivations for us to reduce the dimension, for example, stor-

ing every feature, say 106 pixels or features would cost us a lot of memory space, however,

usually after feature reduction is being performed, most likely we would only be keeping

a few features, such as 102 or 10 features, in another word, it is possible to cut down the

storage cost by 104 times! Rather than developing tools such as thumb drives with more

memory capacity to store all the information no matter how important it is, it would

be wiser to extract only the most crucial information. Besides saving up the memory

space, in the event that we intend to perform computations on the data that is given

to us, for example, computing the SVD of a matrix of size 106 × 106 matrices would be

much more expensive compared to computing the SVD of 10 × 10 matrix, the cost for

the earlier case would cost us around 1018 flops while the latter one only cost us 103 flops.

Numerical simulations have also verified that by doing feature extraction, we can

increase the accuracy in classification as we have removed the noise from the data. Hav-

ing accurate classification is crucial as sometimes it might determine how much profit

or even cost a life. For example, by doing feature reduction on Leukemia data, we

can tell what are the main features that determine someone is a patient and ways to

cure a patient might be designed from there. Feature reduction can in fact effectively

identify the trait that is common to certain disease and push life sciences research ahead.

Another motivation of dimension reduction would be to enable visualization. At

higher dimension, visualization is almost impossible as we live in a 3 dimensional world.

If we can reduce the dimension to 2 or 3 dimensions, we will be able to visualize it.
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For example, Iris data which consist of 4 features, 3 clusters cannot be visualized easily.

Comparing pair wise every single feature need not be meaningful to distinguish the

features. A feature reduction was carried out and we obtain a figure as shown below

Figure 1.1: Visualization of Iris Data after Feature Reduction

We can now visualize how closed a species is related to the other and Randolf’s

conjecture which state how the species are related was verified by R. A. Fisher back

in 1936 [44]. This shows that the applications of dimension reduction can be linked to

other areas and we will show several more famous applications in the next subsection to

illustrate this point.

1.2 Applications

Craniometry The importance of feature reduction can be traced back to even before

the years of invention of computers. In 1936, Fisher suggested feature reduction to the

area of Craniometry, namely, the study of bones. Data from bones were being reduced

to identify the gender of the humans and the lifestyle when the human was alive. This

area is still relevant nowadays to identify victims of crime scene or accident casualties.

The only different back and now is that nowadays we have computers to help us speed

up our computation and as a consequence, we can handle larger scale data.

Classification of Handwritten Digits It would be easy to ask a computer to dis-

tinguish two digits that are printed as usually two printed same digits is highly similar

to each other no matter whether they are in various font types. However, asking a

computer to distinguish handwritten digits would be a much greater challenge. After
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all, daily experience tells us that some people’s ‘3’ resembles ‘5’ and some people’s ‘5’

resemble ‘6’ even for human eyes, it would be harder for us to teach the computers how

to distinguish them apart. The goal here actually is to teach the computer to be even

smarter than human’s eye, being able to identify clearly badly written digits.

Figure 1.2: Classification of Handwritten Digits

This application is crucial if let say we want to design a machine to classify letters

in post office since many still write zip code or postcode manually, this would make the

operation in post office much more efficient. Also, the application can also be extended

to identify alphabetical letters, other characters or distinguish signatures, hence cutting

down the fraud cases.

A simple scheme to classify the data would be to consider each digit as a class and

we compute the class means. From there, we take each data as a vector and when we

are given a new data, we just compute the nearest mean and classify the new data to

that group. Experiments have shown that by doing that the accuracy is around 75%.

By using some numerical linear algebra, one can compute its SVD of the data matrix,

and when a new data is given, we can compute the residuals in each basis and classify

accordingly, by doing that, the accuracy has increased by a bit, the best performance is

97% but some performance can be as low as 80% only as people’s handwriting can be

very hard to identify. Tangent distance can be computed to solve this problem and only

QR decomposition is needed.[47]
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The accuracy is very high but in term of efficiency of classification, there is still room

for improvement in this area. Various approaches have been adopted such as preprocess-

ing the data and smoothing the images. In particular, in the classical implementation of

Tangent distance approach, each test data is compared with every single training data,

dimensional reduction might be suitable here as we can save some costs of computing

the norm. For instance, if 256 pixels were taken into consideration and if there is no

dimension reduction, the cost would be very high, if an algorithm called LDA is adopted,

the SVD that we need to compute would cut down the cost by 104 times.

Text mining One researcher might like to search for relevant journal to read by using

some search engine like GoogleTM . The search engine must be able to identify the rele-

vant documents given the keywords. It has been well known in the past that for a search

engine to do so; the search engine must not be overly reliant on the physical appear-

ance of the keywords, more importantly; the search engine must be able to identify the

concept and return relevant materials. To do so, Google has invested a lot of research

in this area. It is crucial for the algorithm to be efficient to attract more people to

use their product so as to attract more advertisers and collect more data to understand

consumer’s interest or trend of current days.

Day by day, the database increases rapidly, new websites are being created, new doc-

uments are being uploaded and latest news is being reported, maintaining the efficiency

would become tougher and tougher.

If one has very high dimensional data vector to deal with, the processing speed is

going to be slow and to store all the information would be ridiculously tough. Hence

we can design an incremental updating dimension reduction algorithm here to able to

return the latest information to the consumers to beat the competitor.

Currently we already has incremental version of dimension reduction algorithm but

there are still room for improvement in this aspect. The approximation used currently

might be too crude in some aspects. Furthermore, there are rarely any theoretical results
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to support the approximation. Most of the time, assumptions are just stated but these

assumptions are not known to whether hold in general.

Furthermore, studies have shown that in high dimensional space, the maximum dis-

tances and minimum distances in high dimensional space are almost the same for a

wide variety of distance functions and data distributions [48], this makes a proximity

query such as K- nearest neighbours algorithm meaningless and unstable because there

is poor discrimination between the nearest and furthest neighbour. Hence, a small rel-

ative perturbation of the target in a direction away from the nearest neighbour could

easily change the nearest neighbour into the furthest and vice versa. Hence this makes

the classification meaningless. Hence this provides us with another motivation to per-

form dimension reduction on this application. By doing dimension reduction, we are not

comparing document term wise, but rather conceptual wise.

Facial Recognition The invention of digital camera and phone cameras have enabled

layman to create high definition pictures easily. These are pictures with many pixels.

Hence, a lot of features are captured. It is relatively easy for human to tell apart two

humans, but for a computer, to tell two people apart might be tougher. Inside a picture,

there are only a few features that can tell two people apart and yet to do so, due to curse

of dimensionality of which we will discuss later, we will need to take a lot of pictures.

The same person might be very difficult for a computer to identify once we change the

environment, for example, we can change the viewing angle, different illumination, differ-

ent poses, gestures, attire and many other factors. Due to this reason, facial recognition

has become a very hot research topic.

It would be very slow if we use all the pixels to compare the individuals as they are

high definition pictures with a lot of pixels, hence in this case, dimension reduction is

necessary. One popular method to solve this problem would be null space based LDA

and methods have been introduced to create artificial pictures to reduce the effect of

viewing angles. It is crucial to be able distinguish a few people rapidly. [49]
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Figure 1.3: Varieties of Facial Expressions

For security purposes, some industry might think that it is too risky to create just

a card for the employees to access restricted places. Hence, other human parts such as

fingerprints and eyes has also been used to distinguish people nowadays, hence it would

be great for us to deepen our research in this area.

Microarray Analysis Human Genomes Project should be a familiar term to many.

Many scientists are interested to study the genome of human. One application of this

is to tell apart those who have certain diseases from those who don’t and if possible,

identify what are the key things to look for to identify the diseases. As we know, the size

of human genomes data is formidable. Out of such a high dimensions, to pick up what

are the gene that tell us we have a certain disease is not simple. Dimension reduction

would be great in this area. We have conducted a few numerical experiments and the

accuracy of Leukemia diseases can be up to 95% and we believe that we can increase our

accuracy and efficiency in doing this.

Another application is identifying the gene that control our alcohol tolerance, for

example, currently most experiments are modeled based on simpler animal such as flies

as their genetic structure is much simpler compared to humans. Dimension reduction

might enable us to identify individuals who are alcohol intolerant and advise the patients

accordingly. [50]

Financial Data It is well known that stock market is highly unpredictable in the

sense that it can be bearish in a moment and be bullish in the very next moment. The
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factor that affects the performance of a stock is hard to manage, making a lot of hedging

and derivative pricing a tough job to perform. Given a set of features, we might like to

identify from the set of information given what are the features that is highly responsible

for stocks with high returns and stock with low returns.

Others There are various other applications, as long as the underlying problem can

be converted into high dimensional data and we desire to find the intrinsic structures of

the data, feature reduction is suitable. For example, we can identify potential customers

by looking at consumers behaviours in the past and it is also useful in general machine

learning. For instance, if we want to create a machine to identify signal sent by human

positioning of hands and make the machine being able to response without human being

there, we can train a machine to read the signal and count the fingers and perform

corresponding task that is suitable. High accuracy is essential if this is really needed

to be realized, as at certain angle, 5 fingers might overlapped be seen as one finger to

human eyes, the position of each fingers are essential for this application and a good

dimension reduction algorithm should pick this property up provided the raw data does

report this phenomenon.

Figure 1.4: Classification of Hand Signals

1.3 Curse of Dimensionality

Coined by Richard Bellman, the curse of dimensionality is a term used to describe the

problem caused by the exponential increase in volume associated with adding extra di-

mensions to a mathematical space.
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As the dimension increases, we need more samples to describe the model well. This

can be seen from the fact that as we increase the dimension, most likely we will include

more noise as well and sometimes, if we collect too little data, we might be misguided by

the wrong representation of the data, for example, we might accidentally keep collecting

data from the tails of a distributions and it is obvious that we are not going to get a

good representation of data. However, the increase of additional sample points needed

would be so rapid that it is very expensive to cope with that.

Various works have been done to attempt to overcome this problem, for example

Silverman [45] has provided us with a table illustrating the difficulty of kernel estimation

in high dimensions. To estimate the density at 0 with a given accuracy, he reported his

estimation in the table below.

Table 1.1: Silverman’s estimation
Dimensionality Required Sample Size

1 4
2 19
5 786
7 10700
10 842000

As we can see the sample size required increases tremendously, a rough idea why

this is so can be modeled based on a model of a hypersphere of radius r inscribed in a

hypercubes or side length 2r.

The volume of the hypercube will be (2r)d but the volume of the hypersphere will

be 2rdπ
d
2

dΓ( d
2

)
where d is the dimension of the data and Γ(.) is the Gamma function. Unfor-

tunately, we can prove that the ratio of the volume of the hypersphere inscribed in the

hypercubes will converge to zero, in other word, this implies that it is going to be very

hard to obtain data that represent the central part of the data as the dimension increases.

For example, in database community, one important issue is the issue of indexing. A
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number of techniques such as KDB-trees, kd-Trees and Grid Fields are discussed in the

classical database literature for indexing multidimensional data. These methods gen-

erally work well for very low dimensional problems but they degrade rapidly with the

increase of dimensions. Each query requires the access of almost all the data. Theoreti-

cal and empirical results have shown the negative effects of increasing dimensionality on

index structures.[51]

In this research area, the phenomenon is hidden in the form of singularity of matrices,

such as for the facial recognition application that we have described above, with so many

pixels, to make sure that the so called "total scatter matrix" is non-singular, we have

to collect more and more picture, this would be very time consuming and impractical.

Mathematics to solve the problems need to be further developed to overcome or avoid

this curse such as avoid computing the inverse of such matrices. There are various heuris-

tic approaches to overcome this problem for example by taking pseudoinverse, perform a

Tirkhonov inverse or perform GSVD. Which of the generalization is better theoretically

and computationally, these are problems that are worth investigating.

Other application of dimensionality reduction, its applications and computational

issue, in particular, linear discriminant analysis (LDA) which will be discussed later to

overcome Curse of Dimensionality can be found at [1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],

[15],[16],[17],[18],[19],[20],[21],[23],[24],[25],[26], [28],[30],[31],[32],[33],[34], [35],[36],[39],[40].



Chapter 2

An Introduction to Linear

Discriminant Analysis

Given a data matrix A ∈ Rm×n, where n columns of A represent n data items in a m

dimensional space. Any linear transformation GT ∈ Rl×m can map a vector x in the m

dimensional space to a vector y in the l dimensional space,

GT : x ∈ Rm×1 → y ∈ Rl×1,

where l is an integer with l << m. Our goal is to find an optimal linear transformation

GT ∈ Rl×m such that the cluster structure in the original data is preserved in the

reduced l-dimensional space, assuming that the given data is already clustered. For this

purpose, a measure of cluster quality has to be established first. Of course, to have high

cluster quality, a specific clustering result must have a tight within-cluster relationship

while the between-cluster relationship has to be remote. To quantify this, within-cluster,

between-cluster and mixture scatter matrices are defined in discriminant analysis.

Let the data matrix A be partitioned into k clusters as

A =
[
a1 a2 · · · an

]
=
[
A1 A2 . . . Ak

]

where

Ai ∈ Rm×ni , i = 1, · · · , k, and
k∑
i=1

ni = n.

19
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Further, let

e =
[

1 . . . 1

]T
∈ Rn×1, ei =

[
1 . . . 1

]T
∈ Rni×1, i = 1, . . . , k,

and denote the set of column indices that belong to the cluster i by Ni. The centroid

c(i) and the global centroid are given by

c(i) =
1
ni
Aiei, i = 1, . . . , k,

and

c =
1
n
Ae,

respectively. Then the between-cluster scatter matrix Sb, the within-cluster scatter ma-

trix Sw and the total scatter matrix are defined as

Sb =
k∑
i=1

∑
j∈Ni

(c(i) − c)(c(i) − c)T =
k∑
i=1

ni(c(i) − c)(c(i) − c)T ,

Sw =
k∑
i=1

∑
j∈Ni

(aj − c(i))(aj − c(i))T ,

St =
n∑
j=1

(aj − c)(aj − c)T .

It is well-known [16] that St = Sb + Sw. Let

Hb =
[
√
n1(c(1) − c) . . .

√
nk(c(k) − c)

]
∈ Rm×k,

Hw =
[
A1 − c(1)eT1 . . . Ak − c(k)eTk

]
∈ Rm×n,

Ht =
[
a1 − c · · · an − c

]
= A− ceT ∈ Rm×n.

The scatter matrices Sb, Sw and St can be expressed as

Sb = HbH
T
b , Sw = HwH

T
w , St = HtH

T
t .



CHAPTER 2. AN INTRODUCTION TO LINEAR DISCRIMINANT ANALYSIS 21

Since

Trace(Sb) =
k∑
i=1

∑
j∈Ni

‖c(i) − c‖22,

and

Trace(Sw) =
k∑
i=1

∑
j∈Ni

‖aj − c(i)‖22,

it is clear that Trace(Sb) measures the distance between clusters while Trace(Sw) mea-

sures the closeness of the columns within the clusters over all k clusters. Note that

when the between-cluster relationship is remote, i.e., the centroids of the clusters are

remote, Trace(Sb) will have a large value, but, when within each cluster are located

tightly around their own cluster centroid, Trace(Sw) will have a small value. Hence, the

cluster quality can be measured using Trace(Sb) and Trace(Sw).

In the lower dimensional space mapped from the linear transformation GT ∈ Rl×m,

the between-scatter, within-scatter and total scatter matrices are of the forms

SLb = GTSbG, SLw = GTSwG, SLt = GTStG.

Ideally, the optimal transformationGT would maximize Trace(SLb ) and minimize Trace(SLw)

simultaneously, equivalently, maximize Trace(SLb ) and minimize Trace(SLt ) simultane-

ously, which results that the commonly used optimization in classical LDA for determin-

ing the optimal linear transformation GT is

G = arg max
G
{Trace((SLt )−1SLb )}. (2.1)

In the classical LDA [33], the optimization problem above is solved by computing all the

eigen-pairs

Sbx = λStx, λ 6= 0.

Thus, the solution G can be characterized explicitly through an eigen-decomposition of

the matrix S−1
t Sb if St is nonsingular. It is easy to know that rank(Sb) ≤ k − 1, so, the

reduced dimension by the classical LDA is at most k − 1.

The classical LDA does not work when St is singular, which is the case for undersam-

pled data. To deal with the singularity of St, several generalized optimization criterions
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for determining the transformation G have been proposed. These extensions include

G = arg max
G
{Trace((SLt )(+)SLb )} (2.2)

G = arg min
G
{Trace((SLb )(+)SLw)}, rank(GTHb) = rank(Hb), (2.3)

and

arg max
GTSwG=0, GTG=I

Trace(SLb ). (2.4)

They are generalizations of the optimization problem (2.1) in the sense that they

are equivalent to the problem (2.1) if St is nonsingular. The optimization problems

(2.2), (2.3) and (2.4) are the optimization criterions for establishing the OLDA in [8],

LDA/QR-GSVD [2],[10],[11],[16] and NLDA in [20],[26], respectively. One remark is

that these objective functions do not have a unique solution. One can always add vector

that are inside the common nullspace of Hb and Hw and the objective value will still

be preserved. In [8] and [2],[10],[11],[16], the optimal transformation G is obtained by

computing an eigen-decomposition associated with the generalized eigenvalue problems

Sbx = λStx, λ 6= 0, (2.5)

and

Swx = λSbx, λ 6= 0, (2.6)

through the simultaneous diagonalization of the scatter matrices Sb and St and the

QR and GSVD [37] of the pair (Hb, Hw), respectively. However, any eigen-decomposition

including the simultaneous diagonalization of the scatter matrices Sb and St for the gen-

eralized eigenvalue problem (2.5) and the GSVD of the pair (Hb, Hw) for the generalized

eigenvalue problem (2.6) is very expensive and may not be numerically stable if the some

matrix inversions are involved and the inversed matrices are highly ill-conditioned [29].

Motivated by these observations, we will show that a column orthogonal solution of both
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optimization problems (2.2) and (2.3) can be computed easily by using only orthogonal

transformations without involving any eigen-decomposition and matrix inverse. As a di-

rect result, a fast and stable orthogonal LDA algorithm is developed in the next section.

Numerous schemes have been proposed in the past to handle the problem of dimen-

sionality reduction. These methods include Principal Component Analysis (PCA) [21]

and Linear Discriminant Analysis (LDA) [33]. When the problem involves classification

and the underlying distribution of the data follow normal distributions, LDA has been

known to be one of the most optimal dimensionality reduction methods , for it attempts

to seek an optimal linear transformation by which the original data in high-dimensional

space is transformed to a much lower dimensional space, preferably the reduced dimen-

sion is as small as possible and yet retaining as much information as possible. This

algorithm is more efficient compared to PCA for it makes use of class information while

the latter doesn’t. Relative to the famous Support Vector Machine, LDA take advantage

of the normal distribution assumption and makes the classification more accurate. A

good data structure would be one that has data of the same class being close to each

other and data from different classes are far away from each other. To balance these

two goals, LDA achieves maximum class discrimination by minimizing the within-class

distance and maximizing the between-class distance simultaneously via classical Fisher

Criteria which we will discuss in the next section later.

LDA has been applied successfully for decades in many important applications in-

cluding pattern recognition [4],[23],[33], information retrieval [28],[32], face recognition

[24],[30], micro-array data analysis [18],[19], and text classification [35] of which we have

also discussed in the previous section. It is usually formulated as an optimization prob-

lem and involved linear transformation which is classically computed by applying eigen-

decompositions on scatter matrices. As a result, a main disadvantage of LDA is that

the so-called “total scatter matrix" must be nonsingular. However, in many applica-

tions such as those mentioned above, all scatter matrices can be singular since the data

points are from a very high-dimensional space and thus usually the number of the data

samples is much smaller than the data dimension. This is known as the undersampled

problem [33] and it is also commonly called small sampled size problem. As a result, we
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cannot apply the classical LDA because of the singularity of the scatter matrices caused

by high dimensionality and we need some generalizations to overcome this technical issue.

2.1 Generalized LDA

In order to overcome the singularity problem and make the LDA applicable in a wider

range of applications, many extensions of the classical LDA have been proposed in liter-

ature. According to [11], such extensions can be categorized into three groups. The first

approach, known as two-stage LDA [9],[10],[30], is to apply an intermediate dimension-

ality reduction stage to reduce the data dimensionality by applying the classical LDA

[33]. Although this approach is simple, the intermediate dimensionality reduction stage

may remove some important information, furthermore, there are some technicalities is-

sue such as to what extent should we reduce the dimension before we apply our LDA

algorithm. The second approach is to do a regularization by adding a perturbation term

to the scatter matrix, usually the perturbation term is a positive multiples of identity

matrix, the resulting algorithm is known as the regularized LDA (RLDA) [15],[34]. The

main disadvantage of RLDA is that the optimal amount of the perturbation to be used

is difficult to determine [11],[15], since if perturbation is large then we lose information

on the scatter matrix, while if it is very small the regularization may not be sufficiently

effective. Usually cross-validation is used in this implementation and it might be very

costly. The third approach applies the pseudoinverse [29] to avoid the singularity prob-

lem. The methods based on this approach include Null space LDA (NLDA) [20],[26],

Uncorrelated LDA (ULDA) [8], Orthogonal LDA (OLDA) [8], QR/GSVD-based LDA

(LDA/QR-GSVD) [2],[10],[11],[16]. It seems that the pseudoinverse-based methods are

different when dealing with the singularity problem, in fact, they are closely related,

for instance, it has been shown in [5] that NLDA and OLDA are equivalent under a

mild condition which holds in many applications involving high-dimensional data. It is

now well-realized that the pseudoinverse-based methods achieve comparable performance

with two-stage LDA and RLDA. Note that both two-stage LDA and RLDA involve the

estimation of some parameters which can be very expensive, but, the pseudoinverse-



CHAPTER 2. AN INTRODUCTION TO LINEAR DISCRIMINANT ANALYSIS 25

based methods do not involve any parameter and hence might be attractive. There is a

commonality for many generalized LDA algorithms, that is, they compute the optimal

linear transformations by some eigen-decompositions and involve some matrix inversions.

However, the eigen-decomposition is computationally expensive [29], at least much more

expensive than a QR decomposition especially when the data size is very large, and

the involvement of matrix inverses may lead to that the methods being not numerically

stable if the related matrices are ill-conditioned [29]. Hence, many LDA algorithms may

have high computational cost and potential numerical instability problems. This prob-

lem also occurs in the computation of null space based LDA as well in which inverse,

eigenvalue decomposition or singular value decomposition are being computed.

There are many other variants of LDA to handle different types of problems, for ex-

ample, semi-supervised LDA was proposed so that when incomplete information about

classes are given to us, we can still classify them and reduce the dimension, trying our

best with the information given [52]. Furthermore, the assumption of linearity is very

demanding as in real world, we clearly observe that our world is highly non-linear. A

good thing is that it has been shown that most data can be handled by using kernel

that satisfy Mercer’s condition, and transform it to a linear problem to handle, of course

the challenge is to find a nice kernel, and there seems to be a need to study the optimal

parameter of the kernel [53]. Other application such as when the data is real time in

nature, i.e. the data are created from time to time, we should also enable an algorithm

that enable updating. An algorithm was proposed by Prof Li Qi et al earlier on [39],

however the approximation is quite crude in the sense that no error bound is given and

there seems to involve a few heuristic approaches. Another variant of LDA include the

fact that some data comes in 2 dimensions in nature, for example pictures. Vectorization

would increase the computational cost significantly; hence it would be ideal if we can

handle the problem without vectorization. An algorithm called 2DLDA was proposed

and it is shown that there is a good improvement in terms of speed [54] though again,

heuristic approaches are taken, however this motivated a lot more variants of 2DLDA

algorithms as the time saved is really significant; a potential extension would be to come

out with a method to handle video. It seems that this area is full of potential and it is

interesting, relating many real life situations to mathematics.
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It would not be possible to summarize the whole development of LDA in a single

thesis as the field has invited the attention of various computer scientists, engineers and

statisticians to work on them for centuries and various heuristic approaches have been

developed over the time. It is about time for Mathematicians to join in this area to justify

and check on these heuristic approaches and explore new implementations of them, for

instance, up to date, there is no sparse implementation of LDA being developed yet.

2.2 Alternative Representation of Scatter Matrices

It is well known that computing SVD of the scatter matrices are highly expensive if we

do not adopt any trick. For in stance, knowing that St = HtH
T
t , rather than computing

SVD of an m by m matrix, we can actually just compute HT
t Ht to cut down the cost

and by doing that we can cut down the cost from O(m3) to O(n3) when m >> n. But

at the same time, they transfer the cost to matrix multiplication which can take up to

O(mn2), however, overall, we are still saving up some costs significantly.

We will propose another method to cut down the cost further.

Lemma 2.2.1. Let

E =
1
n
eeT , Ei =

1
ni
eie

T
i , i = 1 . . . , k

then



Sb = A(


E1

. . .

Ek

− E)AT

Sw = A(I −


E1

. . .

Ek

)AT

St = A(I − E)AT
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Proof. First we have

Sb =
k∑
i=1

ni(c(i) − c)(c(i) − c)T

=
k∑
i=1

ni(
1
ni
Aiei −

1
n
Ae)(

1
ni
Aiei −

1
n
Ae)T

=
k∑
i=1

[
1
ni
Aieie

T
i A

T
i −

1
n
Aieie

TAT − 1
n
AeeTi A

T
i +

ni
n2
AeeTAT ]

=
k∑
i=1

AiEiA
T
i −

1
n

(
k∑
i=1

Aiei)eTAT −
1
n
Ae(

k∑
i=1

eTi A
T
i ) +

∑k
i=1 ni
n

AEAT

= A


E1

. . .

Ek

AT − 1
n

(Ae)eTAT − 1
n
Ae(eTAT )− 1

n
Ae(eTAT ) +

n

n
AEAT

= A


E1

. . .

Ek

AT −AEAT −AEAT +AEAT

= A(


E1

. . .

Ek

− E)AT

Similarly, we can also prove that

St =
n∑
i=1

(ai − c)(ai − c)T

=
n∑
i=1

(ai −
1
n
Ae)(aTi −

1
n
eTAT )

=
n∑
i=1

aia
T
i −

1
n

(
n∑
i=1

ai)eTAT −
1
n
Ae

n∑
i=1

aTi +
n∑
i=1

1
n2
AeeTAT

= AAT − 1
n

(Ae)eTAT − 1
n
Ae(eTAT ) +

1
n
AeeTAT

= AAT − 1
n
AeeTAT

= A(I − E)AT
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Last but not least, the last equality is trivial, we know that St = Sb + Sw, so

Sw = St − Sb = A(I −


E1

. . .

Ek

)AT

and the proof is now complete.

We will now develop an alternative representation of the factor of scatter matrices

which will cut down the cost when the number of classes is big by using Householder

transformation.

Let P be the permutation matrix which is obtained by exchanging the i-th column

and the (
∑i−1

j=1 nj + 1)-th column of the n× n identity matrix, i = 2, . . . , k. Denote

Wi = I −


1√

ni −
√
ni



1−√ni

1
...

1






1√

ni −
√
ni



1−√ni

1
...

1





T

, i = 1, . . . , k,

and

W = I−


1√

n−√nn1



√
n1 −

√
n

√
n2

...
√
nk






1√

n−√nn1



√
n1 −

√
n

√
n2

...
√
nk





T

, i = 1, . . . , k,

The matrices W and Wi(i = 1, . . . , k) are nothing but the Householder transfoma-

tions of vectors



√
n1

√
n2

...
√
nk


and ei, (i = 1, . . . , k) respectively, they are all orthogonal and
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as Householder transformation, they satisfy the properties:

W (
1√
n



√
n1

√
n2

...
√
nk


) =



1

0
...

0


,Wi(

1
ni
ei) =



1

0
...

0


, i = 1, . . . , k.

Lemma 2.2.2. Denote

[A1, A2, A3] = A


W1

. . .

Wk

P
 W

I

 , A2 ∈ Rm×(k−1), A3 ∈ Rm×(n−k)

Then we have

Sb = A2A
T
2 , Sw = A3A

T
3 , St = [A2, A3][A2, A3]T

Proof. we can prove the theorem by direct verification.

The computation of A2 and A3 only requires O (mn) flops, the complexity is almost

the same with computation of Hw and Ht. However, Hw ∈ Rm×n but A3 ∈ Rm×(n−k),

thus the structure of Sw and St can be cut down and the impact will be great when

the number of classes are big. Furthermore, as a by product of the lemma, it is clear

that Sw is nonsingular only if m ≤ n − k, this fact seems to be not revealed in earlier

literatures as it is commonly addressed that Sw is non-singular only if m ≤ n, hence we

have obtained an even sharper bound.

The significance of the result is that we can now replace Hb with A2 and Hw with

A3 and obtain a faster implementation and the effect would be clear when the number

of classes is big.



Chapter 3

Orthogonal LDA

3.1 A Review of Orthogonal LDA

As mentioned earlier, orthogonal LDA is a type of LDA implementation of which we

insist that the projection axes are orthogonal to each other. Namely, Let G be the

projection matrix, then we insist that GTG = I.

The objective function considered in earlier literatures can be written in this form:

 G = argminG
{
Trace((SLt )(+)SLw)

}
rank(GTHb) = rank(Hb)

(3.1)

Notice that the rank constraint imposed, served to prevent lost of information, in

particular, when this constraint is imposed, we are avoiding the case of G = 0, of which

if it is chosen, we are going to lose all information. Common way to attain the orthogo-

nal condition is simple, after obtaining some projection direction; we can simply either

perform SVD decomposition or perform Gram Schmidt process or QR decomposition to

obtain orthogonal directions. The rank preserving condition is more meaningful as it

carries the physical meaning of preserving class separation condition.

Two famous Orthogonal LDA algorithms have been proposed in the past, namely

OLDA which was proposed by Prof Ye Jieping et al as well as Foley Sammon LDA

(FSLDA)[42]. FSLDA algorithm is very expensive for large and high dimensional data.

FSLDA algorithm is very expensive as some matrix inversions are involved, which may

30
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cause numerical instability problems, the two methods are derived from different perspec-

tive. Compared to FSLDA, the OLDA algorithm provides a simpler and more efficient

way for computing orthogonal transformation of LDA.

The whole idea of OLDA is simply to perform GSVD first, followed by an orthogonl-

ization process which can be obtained by an economic QR decomposition. Hence the

process, strictly speaking is even more expensive than a regular GSVD as it requires the

orthogonalization process. The algorithm is given as Algorithm 2 in the numerical

experiment subsection later.

3.2 A New and Fast Orthogonal LDA

Recall from the review in the earlier chapter, one way to overcome the singularity issue

is to perform a preprocessing step such as PCA or QR decomposition. We would prefer

using economic QR as a preprocessing step as it is cheaper than computation of SVD

and it really cuts down the dimension significantly, in particular, rather than dealing

with matrices of size m×n, we will be working with matrices of size n×n which is much

smaller in size especially when we deal with other more expensive operation besides ma-

trix multiplication. Hence there will be a significant saving.

Next we will develop some tools to cut down the cost of performing OLDA.

First of all, we shall define trace of a pair of matrix as follows:

For any matrix pair (A,B), the nonzero finite generalized eigenvalues of the eigen-

value problem

Bx = λAx, λ 6= 0
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be λ1, . . . , λp, then we define

Traceeig(A,B) =
p∑
i=1

λi

We have the following results which can be found in [8] and [11]

Lemma 3.2.1.

trace(S(+)
t Sb) = maxGTrace((SLt )(+)SLb )

Traceeig(Sb, Sw) = minG s.t. rank(GTHb)=rank(Hb)Trace((S
L
b )(+)SLw)

By using this lemma, we will be able to obtain the following theorem which will

enable us to have a fast algorithm.

Theorem 3.2.2. Let the economic QR decomposition of [A2, A3] be

[A2, A3] = Q1


R1,1 R1,2

0 R2,2

0 0

 , R1,1 ∈ Rq×(k−1), R2,2 ∈ Rγ−q×(n−k), Q1 ∈ Rm×(n−1)

where Q1 is column orthogonal, R1,1 and R2,2 are of full row rank,

q = rank(A2), γ = rank [A2 A3]− rank(A2)

Next, let the QR decomposition of

 R1,2

R2,2

RT2,2 be

 R1,2

R2,2

RT2,2 = Q2

 Π

0

 Π ∈ Rγ×γ , Q2 ∈ R(q+γ)×(q+γ)

where Q2 is orthogonal. Define

G = Q1(:, 1 : q + γ)Q2(:, γ + 1 : γ + q) ∈ Rm×q
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Then G satisfies

1. GTG = I

2. G solves the optimization problems (2.2) and (2.3)

Proof. First, it is clear that both Q1 and Q2 are column orthogonal, so, it is obvious

that GTG = I.

Next, since R2,2 is of full row rank, there exists an orthogonal matrix V such that

R2,2 = [R2,2 0]V, R2,2 ∈ Rγ×γ , rank(R2,2) = γ

Denote

R1,2V
T = [R1,2 R1,3] , R1,2 ∈ Rq×γ

Let
[
Q1 Q̃1

]
and

 V1

Ṽ1

 be orthogonal. We have

[
Q1 Q̃1

]T
A2 =


R1,1

0

0

 ,
[
Q1 Q̃1

]T
A3V

T =


R1,2 R1,3

R2,2 0

0 0


Hence

[
Q1 Q̃1

]T
Sb

[
Q1Q̃1

]
= (
[
Q1 Q̃1

]T
A2)(AT2

[
Q1Q̃1

]
) =


R1,1R

T
1,1 0

0 0

0 0

 ,

[
Q1 Q̃1

]T
Sw

[
Q1Q̃1

]
= (
[
Q1 Q̃1

]T
A3V

T )(V AT3
[
Q1Q̃1

]
)

=


R1,2 R1,3

R2,2 0

0 0




R1,2 R1,3

R2,2 0

0 0


T
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and

[
Q1 Q̃1

]T
St

[
Q1 Q̃1

]
= (
[
Q1 Q̃1

]T
[A2 A3]

 I 0

0 V T

)(

 I 0

0 V

 [A2 A3]T
[
Q1 Q̃1

]
)

=


R1,1 R1,2 R1,3

0 R2,2 0

0 0 0



R1,1 R1,2 R1,3

0 R2,2 0

0 0 0


T

Note that

 R1,1 R1,2 R1,3

0 R2,2 0

 is of full rank and R2,2 is nonsingular, we obtain

Trace(S(+)
t Sb) = Trace



 R1,1 R1,2 R1,3

0 R2,2 0


 R1,1 R1,2 R1,3

0 R2,2 0


T
−1  R1,1R

T
1,1 0

0 0




= Trace
(

([R1,1 R1,3] [R1,1 R1,3]T )−1(R1,1R
T
1,1)
)

(3.2)

by the matrix inversion formula and

Traceeig(Sb, Sw) = Trace((R1,1R
T
1,1)−1R1,3RT1,3) (3.3)

We partition Q2 as follows:

Q2 =

 Q1,1 Q1,2

Q2,1 Q2,2

 , Q2,1 ∈ Rγ×γ , Q1,2 ∈ Rq×q (3.4)

Since

 R1,2

R2,2

 = Q2

 Π

0

 is equivalent to

QT2

 R1,2

R2,2

V TV RT2,2 = QT2

 R1,2 R1,3

R2,2 0


 RT2,2

0

 = QT2

 R1,2

R2,2

RT2,2 =

 Π

0


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which is basically equivalent to

 QT1,2 QT2,2

QT1,1 QT2,1


 R1,2

R2,2

 =

 0

ΠR−T2,2


Hence Q1,2 is also non-singular because R2,2 is nonsingular, so now we have


QT1,2 QT2,2 0

0 I 0

0 0 I


[
Q1 Q̃1

]T
A2 =


QT1,2R1,1

0

0

 (3.5)

and


QT1,2 QT2,2 0

0 I

0 0 I


[
Q1Q̃1

]T
A3V

T =


0 QT1,2R1,3

R3,3 0

0 0

 (3.6)

which together with G = Q1(:, 1 : q+γ)Q2(:, γ+1 : γ+q) = Q1(:, 1 : q+γ)

 Q1,2

Q2,2


give us

GTA2 = QT1,2R1,1, G
TA3V

T =
[
0 QT1,2R1,3

]
,

SLb = (GTA2)(GTA2)T = QT1,2(R1,1R
T
1,1)Q1,2,

SLw = (GTA3V
T )(GTA3V

T )T = QT1,2(R1,3RT1,3)Q1,2

SLt = (GT [A2 A3]

 I 0

0 V T

)(GT [A2 A3]

 I 0

0 V T

)T

= QT1,2([R1,1 R1,3] [R1,1 R1,3]T )Q1,2 (3.7)

which together with (3.2) and (3.3), we have
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Trace((SLt )(+)SLb ) = Trace((QT1,2[R1,1 R1,3][R1,1 R1,3]TQ1,2)−1(QT1,2R1,1R
T
1,1Q1,2))

= Trace
(
([R1,1 R1,3] [R1,1 R1,3])−1(R1,1R

T
1,1)
)

= Trace(S(+)
t Sb)

Trace((SLb )(+)SLw) = Trace((QT1,2R1,1R
T
1,1Q1,2)(−1)(QT1,2R1,3Q1,2))

= Trace((R1,1R
T
1,1)−1(R1,3R1,3))

= Trace(S(+)
t Sb)

and

Trace((SLb )(+)SLw) = Trace((QT1,2R1,1R
T
1,1Q1,2)−1(QT1,2R1,3RT1,3)Q1,2)

= Trace((R1,1R
T
1,1)(R1,3R1,3T ))

= Traceeig(Sb, Sw)

Hence now it remains to check that the transformation preserves the rank.

rank(GTHb) = rank(GTHbH
T
b G) = rank(GTSbG) = rank(GTA2A

T
2 G) = rank(GTA2)

= rank(QT1,2R1,1) = rank(R1,1R
T
1,1) = rank(A2A

T
2 )

= rank(Sb) = rank(HbH
T
b ) = rank(Hb).

Therefore we conclude using Lemma 3.2.1 that G solves both the optimization prob-

lems (2.2) and (2.3).

Theorem 3.2.2 leads us to the following new orthogonal LDA, called OLDA/new for

short:

Notice that we perform QR decomposition on the data matrix at the very first step,
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Algorithm 1: OLDA/new
Input: data matrix A, cluster number k, [m,n] = size(A)
and Index vector Ind=[n1

∑2
i=1 ni . . . ,

∑k
i=1 ni]

T

Output: Transformation matrix G
1. Perform an economic QR decomposition on data matrix A, [Q̃, A] = qr(A, 0)
2. Set n1 = Ind(1), w(1, 1) =

√
n1,

v =
[
1−
√
n1 1 . . . 1

]T
/
√
n1−

√
n1 ∈ Rn1×1,

Compute
A(:, 1 : n1) = A(:, 1 : n1)− (A(:, 1 : n1) ∗ v) ∗ vT ;
For i = 2 : k
set ni = Ind(i)− Ind(i− 1),, w(i, 1) =

√
ni,

v =
[
1−
√
ni 1 . . . , 1

]T
/
√
ni−

√
ni ∈ Rni×1,

compute
A(:, Ind(i− 1) + 1 : Ind(i))
= A(:, Ind(i− 1) + 1 : Ind(i))− (A(:, Ind(i− 1) + 1 : Ind(i)) ∗ v) ∗ vT
v = A(:, i), A(:, i) = A(:, Ind(i− 1) + 1), A(:, Ind(i− 1) + 1) = v;
3. Set w(1, 1) = w(1, 1)−

√
n, w = w/

√
n−
√
n ∗ n1,

Compute A(:, 1 : k) = A(:, 1 : k)− (A(:, 1 : k) ∗ w) ∗ wT ;
4. Compute [Q1, R] = qr(A(:, 2 : n), 0), A(1 : n− 1, 2 : n) = R
q = rank(A(1 : k − 1, 2 : k)), γ = rank(A(q + 1 : n− 1, k + 1 : n));
5. [Q2, R] = qr(A(1 : q + γ, k + 1 : n) ∗A(q + 1 : q + γ, k + 1 : n)′)
6. Compute G = Q̃ ∗Q1(:, 1 : q + γ)Q2(:, γ + 1, γ + q).

that is to cut down the cost effectively, and we also multiply Q̃ to form the G at the very

last step to match things back. This is due to the rationale that frequently, in practical

world, the number of features is going to be much greater than the number of sample

points, namely, m >> n. Such examples include gene expression data, text document

data as well as facial recognition data. By performing a QR decomposition, we will cut

down subsequent computation of data matrix including something of magnitudeO(mn2)

to O(n3) which is so much cheaper.

Algorithm 1 for OLDA/new is implemented by some QR factorizations without com-

puting any eigen-decomposition and matrix inversion. Hence it is inverse-free and nu-

merically stable. Moreover, its cost is about the total cost of a QR factorization for

the data matrix A and a QR factorization of a (q + γ) × (n − k) matrix. Note that

q + γ = rank [A2 A3] = rank(St) ≤ n− 1 , therefore, Algorithm 1 is very fast.
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3.3 Numerical Experiment

Based on the optimization problem (2.3), a a generalized LDA, called orthogonal LDA

(OLDA) was derived by Prof Ye Jieping et al in [42]. The feature that distinguishes

the method from other algorithms is that it insists that the transformation matrix G

must be column orthogonal, it was computed through the simultaneous diagonalization

of the scatter matrices Sb and St and thus the singularity difficulty is overcome implicitly.

OLDA algorithm that was proposed consists of three main steps:

1. The null space of the total scatter matrix St is removed

2. Classical uncorrelated LDA (ULDA) was performed. (This is basically step 3 to

step 4 of the algorithm).

3. Apply an orthogonalization step to the transformation

Remark: ULDA is a version of LDA whereby the features produced are uncorrelated

from each other.[25]

The pseudocode of the method is given in Algorithm 2 as such:

Algorithm 2: OLDA
Input: data matrix A, cluster number k, [m,n] = size(A)
and Index vector Ind=[n1

∑2
i=1 ni . . . ,

∑k
i=1 ni]

T

Output: Transformation matrix G
1. Form matrices Hb, Hw, Ht;
2. Compute the reduced SVD of Ht as Ht = U1ΣtV

T
1 ;

3. Compute the SVD of Σ−1
t UT1 Hb as Σ−1

t UT1 Hb = PΣQT and let q = rank(Σ);
4. X := U1Σ−1

t P ;
5. Compute the economic QR factorization of X(:, 1 : q) as X(:, 1 : q) = Q̃R̃;
6. G := Q̃.

We can compare the algorithms and provide the following comments:

• Algorithm 1 is inverse-free and numerically stable

• Σ−1
t UT1 Hb and U1Σ−1

t P are involved in Algorithm 2, if Σt is highly ill-conditioned,

Algorithm 2 may have numerical instability problem;
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Computational Complexity of Algorithm 1 (OLDA/new)

Steps 1 : 4mn2 − 2n3,

Step 2 : O(n2),

Step 3 : 2n(n− 1)2 − 4
3(n− 1)3 + 4n(n− 1)γ − 4γ2n+ 4

3γ
3,

Step 4 : 2γ(n− k)(γ − q) + 4γ2(γ − q) + 2
3(γ − q)3 − 2γ(γ − q)2,

Step 5 : O(mγq).

Computational Complexity of Algorithm 2 (OLDA)

Step 1 : O(mn),

Step 2 : 14mn2 − 2n3,

Step 3 : 2mγk + 14γk2 − 2k3,

Step 4 : 2mγ2,

Step 5 : 4mq2 − 2q3.

Since q ≤ k − 1, γ ≤ n − 1, it can be seen that the computational complexity

of Algorithm 1 is much lower than that of Algorithm 2, and is also lower than that of

Algorithm 3 when m and n are huge, k is large and m is much larger than n.

As we can see from above that computational complexity of Algorithm 1 is much

lower than that of Algorithm 2, In this section we demonstrated the efficiency of our

OLDA/new algorithm by comparing the classification accuracy with Algorithm 2 for

OLDA. The K-Nearest-Neighbor (K-NN) algorithm with different K is used as the ac-

curacy classifier for Algorithms 1 and Algorithm 2.

In our numerical experiments, various high-dimensional data sets from various data

sources are used, such data sets include text documents, face images and gene expression

data. Our data sets are described as follows:

Leukemia, Lymphoma and Srbct are gene expression data. Leukemia is a data

set coming from a study of gene expression (http://www.genome.wi.mit.edu/MPR) in

two types of acute leukemia, acute lymphoblastic leukemia(ALL) and acute myeloblas-
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tic leukemia (AML) The sample size is 72 while the dimension is 7129. Lymphoma

is a data set of the three most prevalent adult lymphoid malignancies (http://genome-

www.stanford.edu/lymphoma). The sample size is 62 while the dimension is 4026. Srbct

is the data set of small, round tumors of childhood cancer

(http://research.nhgri.nih.gov/microarray/Supplement). This data consists of 83 sam-

ples spanning four classes (excluding 5 samples as done in Ye et al: Using Uncorrelated

Discriminant Analysis for Tissue Classification with Gene Expression Data), the dimen-

sion of the data is 2308.

Some data sets are related to facial recognition problem. The following two samples

are from

http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html: Yale contains 165 grayscale

images in GIF format of 15 individuals, and ORL contains ten different images of each

of 40 distinct subjects. The subscripts in the table of experiment output denotes the

number of pixels involved.

Yale B data set has 38 individuals and around 64 near frontal images under different

illuminations per individual [58].

We also studied some text document data Tr41,K1a,K1b, wap,cranmed, classic,

review and sports from CLUTO

(http:/glaros.dtc.umn.edu/gkhome/cluto/cluto/download).
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3.4 Simulation Output

The following table summarizes the data structures in our experiments.

Data m n k Test data

Leukemia 3571 58 2 14

Lymphoma 4026 51 3 11

Srbct 2308 52 4 11

Tr41 7454 707 10 134

wap 8460 1254 20 306

Yale32×32 1024 135 15 30

Yale64×64 4096 135 15 30

Yale B 32256 1959 38 465

Data m n k Test data

ORL32×32 1024 320 40 80

ORL64×64 4096 320 40 80

classic 41618 5677 4 1417

sports 126373 6866 7 1714

Kla 21839 1882 20 458

Klb 21839 1875 6 465

cranmed 41618 1946 2 485

review 126373 3258 5 811

Table 3.1 : Data dimension (m), sample size(n), number of clusters (k) and the number of test data

For For the data, we performed our study by repeated random splitting into training

and test sets ourselves. The following algorithm is used: within each class, we randomly

reorder the data and then for each class size ni, we compute d0.8nie whereby d.e is the

ceiling function. The splitting was repeated 10 times and the resulting average accuracies

of different algorithms are summarized thereafter.

Recall from earlier discussion that without performing dimension reduction, usually

the accuracy is going to be lower due to the fact that data might contain some noise.

This observation has been reported for example in [59]. K-NN accuracies are reported

in Table 3.2 below. For the K-NN algorithm, K = 1, 3, 5 are used for all data sets.
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OLDA/new OLDA

data 1−NN 3−NN 5−NN 1−NN 3−NN 5−NN

Leukemia 98.79 98.79 98.79 98.79 98.79 98.79

Lymphoma 100 100 100 100 100 100

Srbct 99.55 99.55 99.55 99.55 99.55 99.55

Tr41 87.95 87.95 87.95 87.95 87.95 87.95

wap 79.51 79.51 79.51 79.51 79.51 79.51

K1a 83.24 83.24 83.24 83.24 83.24 83.24

Yale32×32 84.83 84.83 84.83 84.83 84.83 84.83

Yale B 95.82 95.82 95.82 95.82 95.82 95.82

ORL32×32 98.81 98.81 98.81 98.81 98.81 98.81

Table 3.2 : Comparison of classification accuracy

for OLDA/new (Algorithms 1) and OLDA (Algorithm 2)

Table 3.2 indicates clearly that the classification accuracy of OLDA/new is compet-

itive with OLDA. Notice that for most of the data, the accuracy is the same for these

small values of K’s in the K-NN algorithm. This is most likely due to the fact that the

K value that we pick are close to each other and hence no significant differences are

observed. Similar observation can be seen in [59]
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OLDA/new OLDA

Leukemia 0.1329 0.3649

Lymphoma 0.1194 0.3468

Srbct 0.0601 0.1852

Tr41 8.0985 26.2900

wap 58.5860 121.1310

K1a 0.6860 2.1710

Yale32×32 0.2305 0.7685

ORL32×32 1.0475 3.1360

Yale B 100.8755 366.4930

Table 3.3 : Comparison of CPU time

for OLDA/new (Algorithms 1) and OLDA (Algorithm 2)

From the comparison of the CPU time, it is clear that our algorithm is much faster

than the original implementation of the Orthogonal LDA while retaining similar accu-

racy.

In this section, we developed a new generalized LDA method for undersampled prob-

lem. The computed optimal transformation matrix by our method is column orthogo-

nal, thus, our method is a new orthogonal LDA method. Furthermore, our method is

implemented by using only orthogonal transformations without computing any eigen-

decomposition and matrix inverse, consequently, our method is inverse-free and numeri-

cally stable. In addition, our LDA method has an acceptable computational complexity,

that is about the cost of a economic QR factorization of the data matrix A ∈ Rm×n with

column pivoting and a QR factorization of a γ × (γ − q) matrix, here k is the cluster

number of data, γ is the rank of the total scatter matrix, q is the rank of the between-

cluster scatter matrix, γ ≤ n − 1, and q ≤ k − 1, thus, our LDA method is a fast one.

The effectiveness of our new method has also been illustrated by some real-world data

sets.
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3.5 Relationship between Classical LDA and Orthogonal

LDA

OLDA and LDA/GSVD are based on the optimization (2.3) and (2.4) respectively. Ex-

periments have demonstrated that these two methods are very competitive with other

existing algorithms in terms of classification accuracy. Theorem 3.2.2 implies that the

optimization problems (2.4) admit a same column orthogonal solution. Motivated by

this fact, we study the relationship between the solutions of the two optimization prob-

lems

Theorem 3.5.1. : Any solution of the optimization problem (2.4) is also a solution of

the optimization problem (2.3), but the converse is not necessarily true.

Proof. First, let G be a solution of the optimization (2.4), with the notation in the

previous theorem and its proof, for any G ∈ Rm×l, denote


G1

G2

G3

 =


Q1,2 0 0

Q2,2 I 0

0 0 I


−1  QT1

Q̃T1

G, G1 ∈ Rq×l, G2 ∈ Rγ×l, G3 ∈ R(m−q−γ)×l,

then we have
SLb = GT1 Q

T
1,2R1,1R

T
1,1Q1,2G1

SLw = GT2 R2,2RT2,2G2 +GT1 Q
T
1,2R1,2RT1,3Q1,2G1,

SLt = GT2 R2,2RT2,2G2 +GT1 Q
T
1,2(R1,1R

T
1,1 + R1,3RT1,3)Q1,2G1

Note that rank(GTHb) = rank(Hb) implies

rank(SLb ) = rank(GTHbH
T
b G) = rank(GTHb) = rank(Hb)

= rank(HbH
T
b ) = rank(Sb) = rank(R1,1R

T
1,1) = q

so,

rank(GT1 Q
T
1,2R1,1R

T
1,1Q1,2G1) = q
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which yields

rank(G1) = q

i.e., G1 is of full row rank. Consequently, there exists an orthogonal matrix W ∈ Rl×l

such that

G1W = [G1,1 0] , G1,1 ∈ Rq×q, rank(G1,1) = q.

Denote

G2W = [G2,1 G2,2], G2,1 ∈ Rγ×q

then we have

W TSLb W =

 GT1,1Q
T
1,2R1,1R

T
1,1Q1,2G1,1 0

0 0


W TSLwW =

 GT2,1

GT2,2

R2,2RT2,2 [G2,1 G2,2] +

 GT1,1Q
T
1,2R1,3RT1,3Q1,2G1,1 0

0 0


W TSLt W =

 GT2,1

GT2,2

R2,2RT2,2 [G2,1 G2,2] +

 GT1,1Q
T
1,2(R1,1R

T
1,1 + R1,3RT1,3)Q1,2G1,1 0

0 0



According to Lemma 3.2.1 and (3.3), we have

Trace((SLb )(+)SLw) = Traceeig(Sb, Sw) = Trace((R1,1R
T
1,1)−1(R1,3RT1,3)).

We obtain
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Trace((GT1,1Q
T
1,2R1,1R

T
1,1Q1,2G1,1)−1(GT2,1R2,2RT2,2G2 +GT1,1Q

T
1,2R1,3RT1,3Q1,2G1,1))

= Trace((R1,1R
T
1,1)−1(R1,3RT1,3))

= Trace((GT1,1Q
T
1,2R1,1R

T
1,1Q1,2G1,1)−1(GT1,1Q

T
1,2R1,3RT1,3Q1,2G1,1))

which gives

GT2,1R2,2RT2,2G2,1 = 0

i.e.,

G2,1 = 0

In return, we have

W TSLb W =

 GT1,1Q
T
1,2R1,1R

T
1,1Q1,2G1,1 0

0 0


W TSLb W =

 GT1,1Q
T
1,2R1,1R

T
1,1Q1,2G1,1 0

0 0



Furthermore,

Trace((SLt )(+)SLb )

= Trace((GT1,1Q
T
1,2(R1,1R

T
1,1 + R1,3RT1,3)Q1,2G1,1)−1(GT1,1Q

T
1,2R1,1R

T
1,1Q1,2G1,1))

= Trace((R1,1R
T
1,1 + R1,3RT1,3)−1(R1,1R

T
1,1))

= Trace(S(+)
t Sb)

by (3.2). Hence we know by using Lemma 3.2.1 that G also solves the optimization

problem (2.3).
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Conversely, take

G = Q1(:, 1 : q + γ),

Then

SLb = GTA2A
T
2 G = (Q1(:, 1 : q + γ)A2)(Q1(:, 1 : q + γ)A2)T =

 R1,1R
T
1,1 0

0 0


SLw = GTA3A

T
3 G = (Q1(:, 1 : q + γ)A3V

T )(Q1(:, 1 : q + γ)A3V
T )T

=

 R1,2 R1,3

R2,2 0


 R1,2 R1,3

R2,2 0


T

SLt = SLb + SLw =

 R1,1R
T
1,1 0

0 0

+

 R1,2 R1,3

R2,2 0


 R1,2 R1,3

R2,2 0


T

It is obvious that

Trace((SLt )(+)SLb )

= Trace((

 R1,1R
T
1,1 0

0 0

+

 R1,2 R1,3

R2,2 0


 R1,2 R1,3

R2,2 0


T

)−1

 R1,1R
T
1,1 0

0 0

)

= Trace((R1,1R
T
1,1 + R1,3RT1,3)−1R1,1R

T
1,1)

= Trace(S(+)
t Sb)

by (3.2).

Thus, Lemma (3.2.1) implies that G solves the optimization problem (2.3). However,

since

(SLb )(+)SLw =

 R1,1R
T
1,1 0

0 0


(+)  R1,2 R1,3

R2,2 0


 R1,2 R1,3

R2,2 0


T
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and so if R 6= 0, we have

Trace((SLb )(+)SLw) = Trace((R1,1R
T
1,1)−1(R1,2RT1,2 + R1,3RT1,3)) > Trace((R1,1R

T
1,1)−1(R1,3RT1,3))

= Traceeig(Sb, Sw)

by (3.3).

Hence by using Lemma 3.2.1, G is not a solution of (2.4) if R1,2 6= 0.

As a result according to Theorem 5, any LDA method based on (2.4) can be regarded

as a special LDA method based on the criterion (2.3) but the converse need not be true.



Chapter 4

Null Space Based LDA

4.1 Review of Null Space Based LDA

Null Space Based LDA was introduced in [26]. The main idea is simply to project the

between class scatter matrices, Sb to the nullspace of Sw. In another words, all the data

from the same class are going to be mapped to the same point. This is clear because if

GT (aj − ci)(aj − ci)TG = 0

then we have

GT (aj − ci) = 0

and hence in the reduced space, we are going to be left with a maximum of k points.

After which, we want to further maximize the distances of the points, which imply that

we want to maximize the new between class scatter.

The assumption of the model is that the null space of within class scatter matrices

contains sufficient information to discriminate the distinct classes apart provided the

projection of the between class scatter matrices is not zero in that direction, in another

words, there is a possibility that when we first project the data to the nullspace of Sw, we

might even get exactly 1 point, in that case nullspace LDA cannot be applied. However,

for a lot of real life data, this rarely occur.

49



CHAPTER 4. NULL SPACE BASED LDA 50

By maximizing the between class scatter after projection to the null space of the

within class scatter, the singularity problem that has been bothering us from the be-

ginning would have been overcome easily. Real life data has shown that this method is

especially useful for facial recognition.

The objective to be considered for NLDA can be stated as such

G = argmaxGTSwG=0trace(G
TSbG) (4.1)

The algorithm presented in [26] is stated as Algorithm 4. Their approach is to com-

pute the nullspace of Sw using SVD, then perform SVD to maximize the scatter again.

They work on the full scatter matrices directly and did not exploit the structure of the

scatter matrices as the representation of Si = HiH
T
i , i = t, b, w were not known to them

back then, as a result, the computation of the optimal G was very expensive back then. It

involves the computation of the null space of Sw by using SVD. After all, the dimension

of null space of Sw is at least m+ k − n, so for a problem that is highly undersampled,

the computational cost is going to be very high.

Relative to the algorithm that was originally proposed in [26],Huang et al. [42]

improved the algorithm by first removing the null space of the total scatter matrices of

St, this can be done due to the observation that null(St) = null(Sb)∩null(Sw) which is

true due to the fact that the total scatter matrices are symmetric positive semidefinite

as well as St = Sb+Sw, whereby null(A) denotes the nullspace of A. Hence by removing

the common null space, the value of trace(Sb) and trace(Sw) won’t be affected at all,

details can be found at [42] and [55], this approach is actually just an application of

PCA (principal component analysis). This approach was adopted in Algorithm 5. In

his approach, the null space of St was removed by projecting the scatter matrices to the

range space of St, of which its basis can easily be obtained from the economic SVD of

Ht. We will now go through the main idea of the algorithm in [42].
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Let Ht = UΣV T , then

St = HtH
T
t = UΣΣTUT = U

 Σ2 0

0 0

UT

Let U = (U1 U2) be a partition of U such that U1 ∈ Rm×t and U2 ∈ Rm×(m−t), then

U1 would provide us with the range space of St

Notice that by removing the common null space of the between class scatter matrices

and within class scatter matrices, it won’t affect the quality of classification as trace(SLt )

and trace(SLb ) would remain the same.

Let’s denote the projected scatter matrices as follows:

S̃b = UT1 SbU1 S̃w = UT1 SwU1 S̃t = UT1 StU1

Notice that the computation involved only requires us to compute reduced SVD of

Ht to obtain U1 and full SVD is not necessary and avoided the computation of full SVD

of St. Furthermore, in computation, we do not even form the reduced scatter matrices

explicitly, but rather we just form their factors such as Hb and Hw.

Hence we have simplified our problem in terms of the size of the matrices has been

greatly reduced and we just have to find N such that

N = argmax
NT S̃wN=0

trace(NT S̃bN) (4.2)

The above optimization criteria implies that columns of N lie inside the nullspace of

S̃w and maximizes trace(NT S̃bN)

To satisfy the nullspace constraint, we just have to find a matrix M such that

N = WM where the columns of W span the nullspace of S̃w.

Next, we have to consider an issue; the constraint above certainly is unbounded and
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can make the objective value tends to infinity. This is clear, because if N is a solution,

then 2N is a better solution unless the objective function is zero which implies that our

goal has failed. To make it bounded and meaningful, we can impose the orthogonality

condition on M , of which we know that the optimal value can be obtained from the

SVD of W T S̃bW as we are just taking the principal components and we can choose our

optimal transformation matrix as

G = U1WM

The theory seems very easy to understand but computational wise, as we have seen

above, we need to compute 3 SVD which is very expensive. We shall consider an ap-

proach which is SVD free and inverse free.

4.2 New Implementation of Null Space Based LDA

Theorem 4.2.1. Denote the column orthogonal matrix [P1, P2, P3] ∈ Rm×(n+k) be

[A3 A2] = [P1 P2 P3]


R1,1 R1,2

0 R2,2

0 0


R1,1 ∈ Rq×(n−k) R2,2 ∈ R(γ−q)×(k−1)

P1 ∈ Rm×q P2 ∈ Rm×(γ−q)

where R1,1 and R2,2 are of full rank and

q = rank(A3) γ = rank [A3 A2]

G = P2 solves the optimization problem of null space LDA and it is column orthogo-

nal.

Proof. From the QR decomposition of [A3 A2] above, we can see that A3 = P1R1,1.

Since we know that Sw = A3A
T
3 , hence we have null(Sw) = null(AT3 ), to find a basis of
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null space of AT3 , we can choose them to the columns of [P2 P3 P4] where [P1 P2 P3 P4]

is an orthogonal matrix. Hence if we letN = [P2 P3 P4], its columns would span the

null space of the within class scatter matrix. We will project the between class scatter

matrix to the null space and consider the eigenvalue decomposition.

[P2 P3 P4]T Sb [P2 P3 P4] = [U1 U2]

 Σ 0

0 0


 UT1

UT2

 = U1ΣUT1 (4.3)

According to the discussion of the previous section, we know that the maximum value

is trace(UT1 [P2 P3 P4]T Sb [P2 P3 P4]U1) but observe that

trace(UT1 [P2 P3 P4]T Sb [P2 P3 P4]U1)

≤ trace([P2 P3 P4]T Sb [P2 P3 P4])

= trace([P2 P3 P4]T (P1R1,2 + P2R2,2)(P1R1,2 + P2R2,2)T [P2 P3 P4])

= trace


 R2,2

0

 [RT2,2 0
]

= trace

 R2,2R
T
2,2 0

0 0


= trace(R2,2R

T
2,2)

whereby the inequality is due the result in the appendix of [39]. After we obtain this

upper bound, what we need to show is that by letting G = P2, this upper bound can be

attained.

The fact that it is column orthogonal is obvious by the definition of P2 as it is defined

by parts of columns of Q in the QR decomposition of [A3 A2]. We will now check whether

it satisfies the constraint.
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GTSwG = P T2 A3A
T
3 P2

= P T2 (P1R1,1)(RT1,1P
T
1 )P2

= 0

The last equality is due to [P1 P2] is a column orthogonal matrix. Hence the con-

straint is satisfied. To check whether it in fact attains the maximum value, observe

that

trace(P T2 SbP2) = trace(P T2 (P1R1,2 + P2R2,2)(P1R1,2 + P2R2,2)TP2)

= trace(R2,2R
T
2,2)

Hence the maximum value is attained and the proof is now complete.

Of course, similar to the fast implementation of Orthogonal LDA, we can adopt a

pre-processing step such as taking QR decomposition first would further cut down the

workload. This trick and the theorem above leads to the following algorithm, called

NLDA/new for short:

The main features of Algorithm 3 are as follows:

1. The transformation matrix G in NLDA/new is column orthogonal

2. Algorithm 3 is implemented by only orthogonal transformations without comput-

ing any eigenvalue decomposition and matrix inversion, hence it is inverse free and

numerically stable.

3. Step 4 is carried out by the economic QR factorization of [A3 A2] with column

pivoting, as a result, the cost of Algorithm 3 is about the cost of an economic QR

factorization of the data matrix A with column pivoting, therefore, Algorithm 3 is

a fast one.
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Algorithm 3: NLDA/new
Input: data matrix A, cluster number k, [m,n] = size(A)
and Index vector Ind=[n1

∑2
i=1 ni . . . ,

∑k
i=1 ni]

T

Output: Transformation matrix G
1. Compute the QR decomposition of A = QR, thereafter let A = R

2. Set n1 = Ind(1), w(1, 1) =
√
n1

v =
[
1−
√
n1 1 . . . 1

]T
/
√
n1−

√
n1 ∈ Rn1×n1

Compute
A(:, 1 : n1) = A(:, 1 : n1)− (A(:, 1 : n1) ∗ v) ∗ vT ; For i = 2 : k
Set ni = Ind(i)− Ind(i− 1), w(i, 1) =

√
ni v =

[
1−
√
ni 1 . . . 1

]T
/
√
ni−

√
ni

Compute
A(:, Ind(i− 1) + 1 : Ind(i))
= A(:, Ind(i− 1) + 1 : Ind(i))− (A(:, Ind(i− 1) + 1 : Ind(i)) ∗ v) ∗ vT
v = A(:, i), A(:, i) = A(:, Ind(i− 1) + 1), A(:, Ind(i− 1) + 1) = v;
3. Set w(1, 1) = w(1, 1)−

√
n, w = w/

√
n−
√
n ∗ n1 and compute

A(:, 1 : k) = A(:, 1 : k)− (A(:, 1 : k) ∗ w) ∗ wT
4. Form A2 and A3 and compute the decomposition of [A3 A2] via economic QR
decomposition with column pivoting;
5. Let G := Q ∗ P2.

Notice that a remark is that we can also replace A2 and A3 with Hb and Hw re-

spectively in the Algorithm above. However, this would actually be slower than our

algorithm as we deal with bigger matrices instead.

4.3 Numerical Experiments

There are a few variants of implementation of the null space based LDA, including the

one in [26] in 2000 and also [5] in 2006. In order to compare the efficiency and accuracy

of the numerical methods, we implemented them and compare the numerical result.

The pseudocode of [26] is stated in Algorithm 4 as follows:

Algorithm 4: NLDA 2000
Input: data matrix A, cluster number k, [m,n] = size(A)
and Index vector Ind=[n1

∑2
i=1 ni . . . ,

∑k
i=1 ni]

T

Output: Transformation matrix G
1. Form matrices Hb and Hw;

2. Compute the SVD of Hw = Uw

[
Σw 0
0 0

]
V T
w , Σw ∈ Rq×q, q = rank(Hw)

3. Compute H̃b = Uw2(UTw2Hb)
4. Compute the economic SVD of H̃b to get column orthogonal matrix Ũb1 such that its columns
are eigenvectors of H̃bH̃

T
b corresponding to the nonzero eigenvalues;

5. G = Uw2U
T
w2Ũb1
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Comparing to the new algorithm, we need to compute SVD of matrices, hence it is

going to be expensive and we might need to compute inverse in step 2, which will be

problematic if the matrix that we are taking inverse is ill-conditioned.

We can also take a look at the pseudocode provided in [5] as stated below

Algorithm 5: NLDA 2006
Input: data matrix A, cluster number k, [m,n] = size(A)
and Index vector Ind=[n1

∑2
i=1 ni . . . ,

∑k
i=1 ni]

T

Output: Transformation matrix G
1. Form matrices Ht, Hb and Hw;
2. Compute the SVD of Ht = U1ΣtV

T
1 ;

3. Form the matrices H̃b = U1Hb and H̃w = UT1 Hw;
4. Compute the SVD of H̃T

w to get the null space W of H̃T
w ;

5. Compute the economic SVD of W T H̃b to get matrix M consisting of the top eigenvectors
of W T H̃bH̃bW ;
6. Compute G = U1WM

In the following we list the main computational cost of the algorithms. We only

consider the undersampled case, that is m > n.

Computational Complexity of Algorithm 3 (NLDA/new)
Step 1: 4mn2 − 2n3,
Step 2: O (n2),
Step 3: 2n(n− 1)2 − 4

3(n− 1)3 + 4n(n− 1)γ − 4γ2n+ 4
3γ

3,
Step 4: 2

3n
3 + 4n2p− 4np2 + 4

3p
3,

Step 5: O (mn(γ − q)).
Computational Complexity of Algorithm 4 (NLDA 2000)
Step 1: O (mn),
Step 2: 4m2n− 8mn2,
Step 3: 4m(n− q)k,
Step 4: 14mk2 − 2k3,
Step 5: 4m(n− q)(γ − q).
Computational Complexity of Algorithm 5 (NLDA 2006)
Step 1: O (mn),
Step 2: 14m2n− 2n3 ,
Step 3: 2mn(n+ k),
Step 4: 12n3,
Step 5: 2n(n− q)k + 14(n− q)k2 − 2k3,
Step 6: 2mn(γ − q) + 2n(n− q)γ − q.
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4.4 Simulation Output

NLDA 2000 NLDA 2006 NLDA/new

data 1− NN 3− NN 5− NN 1− NN 3− NN 5− NN 1− NN 3− NN 5− NN

Leukemia 97.05 97.05 97.05 97.05 97.05 97.05 97.05 97.05 97.05

Lymphoma 98.61 98.61 98.61 98.61 98.61 98.61 98.61 98.61 98.61

Yale32×32 77.88 77.88 77.88 77.88 77.88 77.88 77.88 77.88 77.88

Yale64×64 83.13 83.13 83.13 83.13 83.13 83.13 83.13 83.13 83.13

ORL32×32 90.82 90.82 90.82 90.82 90.82 90.82 90.82 90.82 90.82

ORL64×64 91.45 91.45 91.45 91.45 91.45 91.45 91.45 91.45 91.45

classic 86.87 86.87 86.88 86.77 86.77 86.77 86.77 86.77 86.77

K1a 82.58 82.58 82.58 82.58 82.58 82.58 82.58 82.58 82.58

K1b 96.94 96.94 96.94 96.94 96.94 96.94 96.94 96.94 96.94

cranmed 98.37 98.37 98.37 98.37 98.37 98.37 98.37 98.37 98.37

review − − − 84.42 84.42 84.42 84.42 84.42 84.42

sports − − − 69.65 69.65 69.65 69.65 69.65 69.65

Table 4.1 : Comparison of classification accuracy

for NLDA 2000 (Algorithms 4), NLDA 2006 (Algorithm 5), andNLDA/new (Algorithm 3)

Table 4.1 indicates clearly that the classification accuracy of NLDA/new is compet-

itive with NLDA 2000 and NLDA 2006.

NLDA 2000 NLDA 2006 NLDA/new

Leukemia 82.04 0.32 0.18

Lymphoma 93.92 0.63 0.19

Yale32×32 1.25 0.20 0.05

Yale64×64 28.68 0.61 0.38

ORL32×32 2.23 2.01 0.29

ORL64×64 44.83 3.38 1.25

classic 24011.00 12613.00 3075.60

K1a 3058.90 536.57 171.91

K1b 2495.30 465.78 125.32

cranmed 13314.00 694.02 235.64

review − 4538.70 2178.10

sports − 26703.83 7980.12

Table 4.2 : Comparison of CPU time

for NLDA 2000 (Algorithms 4), NLDA 2006 (Algorithm 5), andNLDA/new (Algorithm 3)
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Table 4.2 indicates clearly the CPU time of the NLDA/new is much faster than the

NLDA 2000 and NLDA 2006.

Notice that some values are not printed in the table above, this is due to some data

size is too big for NLDA 2000 to be implemented.

4.5 Relationship between Classical LDA and Nullspace Based

LDA

The NLDA [20],[26] aims to maximize the between-cluster distance in the null space of

the within-cluster scatter matrix, the singularity problem of the total scatter matrix St

is thus implicitly avoided. The basic idea behind NLDA is that the null space of Sw may

contain significant discriminant information if the projection of Sb is not zero in that

direction. Both the NLDA method in [20, 26] and the OLDA in [8] result in column

orthogonal optimal transformations. Many numerical results show they often lead to

similar performance for high-dimensional data. Due to this observation, it was proved

in [5] that under the condition

rank(St) = rank(Sb) + rank(Sw), (4.4)

the optimal transformation matrix obtained by its OLDA algorithm is also a solution of

the optimization problem (2.4). The following result reveals more intrinsic relationship

between these two optimization problems.

Lemma 4.5.1. Any solution G of the optimization problem (2.4) is also a solution of

the optimization problem (2.2) if and only if the condition (4.4) holds true.

Proof. With notation in Theorem 3.2.2 and its proof, it is easy to know by using Lemma

2.2.2 and the properties that R1,1 and R2,2 are of full row rank and R2,2 is nonsingular
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that

the condition (4.4) holds

⇔ rank([A2 A3]
[
A2 A3

]T
) = rank(A2A

T
2 ) + rank(A3A

T
3 )

⇔ rank([A2 A3]) = rank(A2) + rank(A3)

⇔ rank(
[
Q1 Q̃1

]T [
A2 A3V

T
]

= rank(
[
Q1 Q̃1

]T
A2)

+rank(
[
Q1 Q̃1

]T [
A3V

T
]

⇔ rank

 R1,1 R1,2 R1,3

0 R2,2 0

 = rank

 R1,1

0

+ rank

 R1,2 R1,3

R2,2 0


⇔ γ = q + (γ − q) + rank(R1,3)

⇔ R1,3 = 0. (4.5)

We will work with this condition instead.

For any solution G ∈ Rm×l of the optimization problem (2.4), denote


G1

G2

G3

 =

 QT1

Q̃T1

G,G1 ∈ Rq×l, G2 ∈ R(γ−q)×l, G3 ∈ R(m−γ)×l.

Then, the following is a direct consequence of Lemma 2.2.2,

GTSwG = 0 ⇔ GTA3 = 0

⇔ GTA3V
T = 0

⇔
[
GT1 GT2

]  R1,2 R1,3

R2,2 0

 = 0

⇔
[
GT1 GT2

] R1,2

R2,2

 = 0, GT1 R1,3 = 0,

⇒ rank(G1) ≤ q − rank(R1,3). (4.6)
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Since GTA3 = 0 is equivalent to

GTA3 =
[
GT1 GT2

] R1,2

R2,2

 = 0,

so, 

SLt = GT
[
A2 A3

] [
A2 A3

]T
G

=
[
GT1 GT2 e

] R1,1 R1,2

0 R2,2


 R1,1 R1,2

0 R2,2


T  G1

G2


= GT1 R1,1R

T
1,1G1,

SLb = GTA2A
T
2 G =

[
GT1 GT2

] R1,1

0n


 R1,1

0


T  G1

G2


= GT1 R1,1R

T
1,1G1.

(4.7)

Hence, according to Lemma 3.2.1 and (3.4), we have

G is a solution of the optimization problem (2.2)

⇔ Trace((SLt )(+)SLb ) = Trace((R1,1R
T
1,1 +R1,3R

T
1,3)−1(R1,1R

T
1,1))

⇔ Trace((GT1 R1,1R
T
1,1G1)(+)(GT1 R1,1R

T
1,1G1)) = Trace((R1,1R

T
1,1 +R1,3R

T
1,3)−1(R1,1R

T
1,1)).

Note that

q − rank(R1,3) ≥ rank(G1)

≥ rank(GT1 R1,1R
T
1,1G1)

= Trace((GT1 R1,1R
T
1,1G1)(+)(GT1 R1,1R

T
1,1G1)),

and Lemma 4.5.2 below gives

Trace((R1,1R
T
1,1 +R1,3R

T
1,3)−1(R1,1R

T
1,1)) ≥ q − rank(R1,3),
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so, we obtain

G is a solution of the optimization problem (2.2)

⇔

 q − rank(R1,3) = Trace((GT1 R1,1R
T
1,1G1)(+)(GT1 R1,1R

T
1,1G1)),

q − rank(R1,3) = Trace((R1,1R
T
1,1 +R1,3R

T
1,3)−1(R1,1R

T
1,1)),

(4.8)

⇔

 q − rank(R1,3) = Trace((GT1 R1,1R
T
1,1G1)(+)(GT1 R1,1R

T
1,1G1)),

R1,3 = 0, (by Lemma 4.5.2)
(4.9)

⇔ R1,3 = 0, rank(G1) = q,

⇔ Condition (4.4) holds and rank(G1) = q. (by (4.5)) (4.10)

Hence it suffices to prove that rank(G1) = q when R1,3 = 0

On the other hand, G is a solution of the optimization problem (2.4) and GTA3 = 0,

so, [
GT1 GT2

] R1,2

R2,2

RT2,2 = GTA3R
T
2,2 = 0,

which gives that  G1

G2

 =

 Q1,2

Q2,2

U
for some U ∈ Rq×l with

(Q−1
1,2G1)T (Q−1

1,2G1) = UTU = UT

 Q1,2

Q2,2


T  Q1,2

Q2,2

U

=

 G1

G2


T  G1

G2

 ≤

G1

G2

G3


T 

G1

G2

G3


= I, (4.11)

because the columns of

 Q1,2

Q2,2

 forms a basis of the null space of (

 R1,2

R2,2

RT2,2)T .
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Note that under the condition (4.4), R1,3 = 0, and consequently,

(Q1(:, 1 : γ)

 Q1,2

Q2,2

)TSw(Q1(:, 1 : γ)

 Q1,2

Q2,2

) = QT1,2R1,3R
T
1,3Q1,2 = 0.

Since Q1(:, 1 : γ)

 Q1,2

Q2,2

 is column orthogonal and G is a solution of the optimization

problem (2.4), we must have using (3.7) and (4.7) that

Trace((Q−1
1,2G1)TQT1,2R1,1R

T
1,1Q1,2(Q−1

1,2G1))

= Trace(GT1 R1,1R
T
1,1G1)

= Trace(SLb )

≥ Trace(Q1(:, 1 : γ)

 Q1,2

Q2,2


T

Sb(Q1(:, 1 : γ)

 Q1,2

Q2,2

)

= Trace(QT1,2R1,1R
T
1,1Q1,2),

which with (4.11) imply

(Q−1
1,2G1)(Q−1

1,2G1)T = I,

thus,

rank(G1) = q. (4.12)

Hence, by (4.10) and (4.12) we conclude that G is a solution of the optimization problem

(2.2) if and only if the condition (4.4) holds true.

In the proof above, the following support lemma is used.

Lemma 4.5.2. Let C ∈ Rq×l1 , D ∈ Rq×l2 and rank(D) = q. Then

Trace((DDT + CCT )−1DDT ) ≥ q − rank(C).

The equality holds if and only if C = 0.
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Proof. We can assume without loss of generality that

DDT =

 Θ1,1 Θ1,2

ΘT
1,2 Θ2,2

 , CCT =

 Φ1,1 0

0 0

 ,
with

Θ1,1,Φ1,1 ∈ Rp×p, rank(C) = rank(CCT ) = rank(Φ1,1) = p.

Now, rank(D) = q, so, Θ2,2, Θ1,1−Θ1,2Θ−1
2,2ΘT

1,2 and Φ1,1 are all symmetric and positive

definite. Hence, by using Schur complement, we have

Trace((DDT + CCT )−1DDT )

= Trace(

 (Θ1,1 −Θ1,2Θ−1
2,2ΘT

1,2) + Φ1,1 0

0 Θ2,2


−1  Θ1,1 −Θ1,2Θ−1

2,2ΘT
1,2 0

0 Θ2,2


= q − p+ Trace((Θ1,1 −Θ1,2Θ−1

2,2ΘT
1,2 + Φ1,1)−1(Θ1,1 −Θ1,2Θ−1

2,2ΘT
1,2))

≥ q − p,

and the equality holds if and only if

Trace((Θ1,1 −Θ1,2Θ−1
2,2ΘT

1,2 + Φ1,1)−1(Θ1,1 −Θ1,2Θ−1
2,2ΘT

1,2)) = 0,

i.e., p = 0, equivalently, rank(C) = 0, because, otherwise,

Trace((Θ1,1 −Θ1,2Θ−1
2,2ΘT

1,2 + Φ1,1)−1(Θ1,1 −Θ1,2Θ−1
2,2ΘT

1,2)) > 0.

Therefore, Lemma 4.5.2 follows.

Theorem 4.5.1 implies that NLDA is a special OLDA provided the condition (4.4)

holds. This confirms the numerical results in [5].



Chapter 5

Conclusion

Due to the singularities problems, variations of generalized Linear Discriminant Analysis

have been proposed. In this thesis, we have provided a survey of the history, the devel-

opments and the current state of art of various implementations of Linear Discriminant

Analysis. Various real life applications of Linear Discriminant Analysis are discussed as

well.

Though it seems that some models of Linear Discriminant Analysis have been solved

theoretically, whereby for example, analysis based on GSVD has been proposed, there are

still many issues to address. In particular, when it comes to practical implementation,

many existing methods can only solve small scale problems. In the past, there have

been various implementations that require methods such as computing Singular Value

Decomposition which is very expensive. Some of the existing algorithms even involve

computations of inverse which will be a big problem if the initial condition is large. Some

versions of Linear Discriminant Analysis require the selection of parameter of whereby

selection of parameter is solely based on heuristic approaches.

In this thesis, we proposed two new implementations of Orthogonal Linear Discrim-

inant Analysis as well as Null Space Based LDA. These algorithms are inverse free and

numerical stable. Furthermore, they do not involved any weaknesses that we mentioned

above. In stead of SVD, only QR algorithms are invoked. Numerical simulations are

implemented and they are consistent with our theoretical expectation that they produce

similar accuracy with a much shorter CPU time needed.

The future of this area is full of potentials; there are still many open problems in this
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area. For example, so far no algorithm which takes advantages of the sparse nature of

text documents data have been invented. Furthermore, there are other questions such

as does the objective functions used in the models reflect the classification accuracy? or

can we come out with an algorithm which is very robust? What are the relationships

among all the variants of models of Linear Discriminant Analysis? Hopefully all these

questions can be answered in the near future. There is no doubt that this area is going

to be filled with excitement and surprises.



Appendix

In this appendix, we include the computational complexities of various algorithms:

Computational Complexity for QR decomposition of Θ ∈ Rm×n with m ≥ n.
Full QR factorization: 4mn2 + 2

3n
3 − 2mn2;

Economic QR factorization: 4mn2 − 2n3

Full QR factorization with column pivoting:
(4mn2 − 4mn2 + 4

3n
3) + (4mnp− 2p2(m+ n) + 4

3p
3), p = rank(Θ)

Economic QR factorization with column pivoting: 2mn2 − 4
3n

3 + (4mnp− 2p2(m+ n) + 4
3p

3)

And for the computation of SVD

Computational Complexity for SVD
(Θ = UΣV T , U1 = U(:, 1 : n)) of Θ ∈ Rm×n with m ≥ n
Σ : 4mn2 − 4

3n
3;

Σ, V : 4mn2 + 8n3;
U,Σ : 4m2n− 8mn2;
U1,Σ : 14mn2 − 2n3;
U,Σ, V : 4m2n+ 8mn2 + 9n3;
U1,Σ, V : 14mn2 + 8m3

These show that it would clearly improve an algorithm if we can replace SVD by
economic QR decomposition.
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