-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by ScholarBank@NUS

INCREMENTAL AND REGULARIZED
LINEAR DISCRIMINANT ANALYSIS

WANG XTAOYAN
(M.Sc., ECNU, China)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF SINGAPORE
2012

https://core.ac.uk/display/48676618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby declare that the thesis is my original work and it has been written by me in its
entirety. 1 have duly acknowledged all the sources of information which have been

used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

(,Uaﬂ X{afjan

Wang Xiaoyan

19 August 2012

Acknowledgements

First and foremost I offer my sincerest gratitude to my supervisor, Professor Chu
Delin, for his support and encouragement, guidance and assistance in my studies
and my research work, especially, for his patience and advice on the improvement
of my skill in both of research and writing. It would not have been possible to
write this doctoral thesis without the help of him. Prof. Chu Delin who has the
highest degree of professionalism and integrity is a model of meticulous scholarship
in my mind.

I would like to give special thanks to Professor Ching Wai-Ki (at the University
of Hong Kong) and Professor Liao Li-Zhi (at Hong Kong Baptist University) for

their assistance and support in my research work.

I would like to thank Department of Mathematics and National University of
Singapore for providing me excellent research conditions and scholarship to com-
plete my PhD study. I also feel grateful for the facility of Center for Computational
Science and Engineering that enable us to run programmes.

I would also like to thank all my friends in Singapore for their kindness help.
With special thanks to Goh Siong Thye and Zhang Xiaowei for their helpful dis-

cussion and assistance in my research work.

This thesis is dedicated to my family, for their encouragement and support.

iii

Contents

Acknowledgements

Summary

List of Tables

List of Figures

1 Introduction

1.1 Classical LDA
1.2 Generalized LDA
1.3 Incremental LDA
1.4 Outline of the Thesis

2 Existing Incremental LDA

iii

vii

ix

xi

12

2.1 Incremental Dimension Reduction via QR Decomposition (IDR/QR) 12

2.2 Incremental LDA using Sufficient Spanning Set (ILDA/SSS) 17

2.3 Least Square Incremental LDA (LS-ILDA)

v

Contents

2.4 Incremental Complete LDA (ICLDA) 28

3 New Incremental LDA 35
3.1 Preliminaries Lo 36
3.2 A New, Efficient and Simple LDA (LDA/QR) A7
3.3 Incremental Implementation (ILDA/QR) 56
3.3.1 Sequential Incremental Implementation o7

3.3.2 Chunk Incremental Implementation 66

3.4 Numerical Experiments 70
3.4.1 Experiments for Sequential ILDA/QR 73

3.4.2 Experiments for Chunk ILDA/QR. 90

3.5 Conclusions 105

4 Existing Regularized LDA 107

4.1 Shrunken Centroids Regularized Discriminant Analysis (SCRDA) . 108

4.2 Regularized Linear Discriminant Analysis (RLDA) 110
4.3 Regularized Discriminant Analysis (RDA) 112
5 New Regularized OLDA 115
5.1 Preliminaries 116
5.2 Theoretical Basis o 124
5.3 Algorithms 151
5.3.1 Algorithm for OLDA 151
5.3.2 Algorithm for ROLDA 153

5.4 Numerical Experiments 0oL 156
5.4.1 Comparison with OLDA 157
5.4.2 Comparison with Some Existing Regularized LDA 162

5.5 Conclusions, 166

Contents

vi

6 Conclusions and Future Work

Bibliography

A Moore-Penrose Inverse and Trace Operator

B Computational Complexity

C Datasets

167

171

183

185

187

Summary

This thesis focuses on the theory, implementation and applications of linear dis-
criminant analysis (LDA). LDA is a well-known supervised dimensionality reduc-
tion technique, which has been applied successfully in many important applications
such as pattern recognition, information retrieval, face recognition, micro-array

data analysis and text classification.

The original LDA is a batch method that needs all training data to be avail-
able in advance in order to construct the transformation matrix. However, in
many applications, not all data is available at the same time. In order to avoid
storing the complete data it is necessary to process learning samples as soon as
they become available and discard them immediately afterwards. Consequently,
instead of learning data from scratch, incremental dimensionality reduction algo-
rithm that directly updates the current transformation matrix whenever a new data
is inserted, is desirable. In this thesis, an LDA-based incremental dimensionality
reduction algorithm, ILDA/QR, has been developed. ILDA/QR produces exact
transformation matrix as its batch version, in addition, it is very fast and always
achieves comparative classification accuracy compared with ULDA algorithm and
existing incremental LDA algorithms. More importantly, it can easily handle not

only the case that only one new sample is inserted but also the case that a chunk

vil

Summary viii

of new samples are added.

As an extension of classical LDA to deal with the undersampled problem, reg-
ularized LDA is frequently used by adding a regularized perturbation to the scatter
matrix. However, the major issue of regularized LDA involved in existing methods
is how to choose an appropriate regularization parameter. In this thesis, by deriv-
ing the mathematical relationship between orthogonal linear discriminant analysis
(OLDA) and regularized orthogonal linear discriminant analysis (ROLDA), we find
a mathematical criterion for selecting the regularization parameter in ROLDA. Un-
like other regularized LDA methods, no candidate set of regularization parameter

is needed in our new proposed method.

List of Tables

2.1
2.2
2.3
24

3.1
3.2
3.3

3.4

3.5
3.6

3.7
3.8

Computational complexity (flops) of algorithm IDR/QR 16
Computational complexity (flops) of algorithm ILDA/SSS 23
Computational complexity (flops) of algorithm LS-ILDA 27
Computational complexity (flops) of algorithm ICLDA 34

Computational complexity (flops) of algorithms ULDA /QR and LDA/QR 56

Computational complexity (flops) of algorithm ILDA/QR 65

Main computational cost (flops) of algorithms IDR/QR, ILDA/SSS,
LS-ILDA, ICLDA and ILDA/QR for a single insertion 66

Memory cost of algorithms IDR/QR, ILDA /SSS, LS-ILDA, ICLDA
and ILDA/QRo o 66

Computational complexity (flops) of algorithm Chunk ILDA/QR . . 70

Main computational cost (flops) of algorithms IDR/QR, ILDA /SSS,
LS-ILDA, ICLDA and ILDA/QR for a chunk insertion (s samples) . 70

Data Structures 72

Comparison of ULDA/QR, LDA/QR and ILDA/QR 74

1x

List of Tables

3.9

3.10
3.11
3.12

0.1
5.2
5.3

Comparison of classification accuracies of ILDA/SSS with different

threholds: 0.1 and 1 82
Comparison of IDR/QR, ILDA /SSS, LS-ILDA, ICLDA and ILDA/QR 83

Comparison of LDA/QR, ILDA/QR and ILDA/QR(Chunk) 91
Comparison of IDR/QR, ILDA/SSS, LS-ILDA, ICLDA, ILDA/QR

and ILDA/QR(Chunk) oo 98
Data Structureso 156
Comparison with OLDA 159

Comparison with existing regularized LDA 164

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Comparing the CPU time of ULDA/QR, LDA/QR and ILDA/QR
(measured in log scale)o
Comparing the CPU time of ULDA/QR, LDA/QR and ILDA/QR
(measured in log scale) oL
Comparing the CPU time of ULDA/QR, LDA/QR and ILDA/QR
(measured in log scale) L Lo
Comparing the CPU time of ULDA/QR, LDA/QR and ILDA/QR
(measured in log scale) L Lo
Comparing the CPU time of IDR/QR, ILDA /SSS, LS-ILDA, ICLDA
and ILDA/QR (measured in seconds in log-scale)
Comparing the CPU time of IDR/QR, ILDA /SSS, LS-ILDA, ICLDA
and ILDA/QR (measured in seconds in log-scale)
Comparing the CPU time of IDR/QR, ILDA /SSS, LS-ILDA, ICLDA
and ILDA/QR (measured in seconds in log-scale)
Comparing the CPU time of IDR/QR, ILDA /SSS, LS-ILDA, ICLDA
and ILDA/QR (measured in seconds in log-scale)

xi

List of Figures

xii

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

Comparing the CPU time of LDA/QR, ILDA/QR and ILDA /QR(Chunk)
(measured in log scale)o L 94
Comparing the CPU time of LDA/QR, ILDA/QR and ILDA /QR(Chunk)
(measured in log scale)o 95
Comparing the CPU time of LDA/QR, ILDA/QR and ILDA /QR(Chunk)
(measured in log scale)o 96
Comparing the CPU time of LDA/QR, ILDA/QR and ILDA /QR(Chunk)
(measured in log scale)o oo oo L 97
Comparing the CPU time of IDR/QR, ILDA /SSS, LS-ILDA, ICLDA,
ILDA/QR and ILDA/QR(Chunk) (measured in log scale) 102
Comparing the CPU time of IDR/QR, ILDA /SSS, LS-ILDA, ICLDA,
ILDA/QR and ILDA/QR(Chunk) (measured in log scale) 103
Comparing the CPU time of IDR/QR, ILDA /SSS, LS-ILDA, ICLDA,
ILDA/QR and ILDA/QR(Chunk) (measured in log scale) 104
Comparing the CPU time of IDR/QR, ILDA /SSS, LS-ILDA, ICLDA,
ILDA/QR and ILDA/QR(Chunk) (measured in log scale) 105

Chapter

Introduction

Many applications including machine learning, data mining and bioinformatics re-
quire us to deal with high dimensional data efficiently. Advances in data collection
and storage capabilities during the past decades have led to an information overload
in lots of applications. Researchers working in domains as diverse as engineering,
astronomy, biology, remote sensing, economics, and consumer transactions, face
larger and larger observations and simulations on a daily basis. Such datasets, in
contrast with smaller, more traditional datasets that have been studied extensively
in the past, present new challenges in data analysis. Searching for intrinsic data
structure embedded in high dimensional data can give a low dimensional repre-
sentation which can preserve essential information in the original data, and it is
often necessary to reduce the dimension of the datasets significantly in order to
achieve higher efficiency in manipulating the data. As a consequence, methods like

dimensionality reduction are important.

Dimensionality reduction, which transforms the high-dimensional data into
a lower-dimensional space with limited loss of information, studies methods that
effectively reduce data dimensionality for efficient data processing tasks. Its general
purposes are to remove irrelevant and redundant data to reduce the computational
cost and avoid data over-fitting, and to improve the quality of data for efficient

data-intensive processing tasks such as face recognition and data mining. Once the

high-dimensional data is transformed to a low dimensional space, some indexing
techniques [110, 58, 68] can be effectively applied to facilitate efficient retrieval of
data. Dimensionality reduction is an effective solution to the problem of “curse
of dimensionality” [9, 35, 30, 14, 51], that is, an enormous number of samples
is required to perform accurate prediction on problems with high dimensionality,
this is because in high-dimensional spaces, data become extremely sparse and apart
from each other. Hence, the problem of data dimensionality reduction has received
broad attention, see [39, 73, 89, 14, 103, 40, 96, 49, 99, 24, 48, 6, 29, 52, 57, 30, 55,
56, 18, 65, 83, 12, 33, 35, 34, 53, 28] for instance.

Many different techniques for dimensionality reduction have been developed in
the past. Among them, principle component analysis (PCA) [57] and linear dis-
criminant analysis (LDA) [35, 30, 51] are two of the most popular linear subspace
learning methods. PCA is an unsupervised learning method [47, 30], which per-
forms dimensionality reduction by projecting the original high dimensional data
onto the low dimensional linear subspace spanned by the leading eigenvectors of
the data’s covariance matrix. PCA deals with data in its entirety for the prin-
cipal components analysis without paying any particular attention to the under-
lying class structure. On the other hand, LDA is a supervised learning method
[51, 3], which aims to find the optimal low-dimensional representation to the orig-
inal dataset by minimizing the within-class distance and maximizing the between-
class distance simultaneously, thus achieving maximum class discrimination. In
the sense of classification, LDA is substantially optimized than PCA. Due to the
ability of PCA to shrink down the problem size, PCA is frequently used as a
pre-processing technique [83, 7] before applying LDA. LDA has been applied suc-
cessfully for decades in many important applications of diverse fields including
pattern recognition [35, 86, 30, 14], information retrieval [33, 65], face recognition

[83, 55], micro-array data analysis [6, 29], and text classification [53].

The overall objective of this thesis is to study LDA-based dimensionality re-

duction approaches.

1.1 Classical LDA

1.1 Classical LDA

Given a data matrix
A= [al an} = [A1 Ak] eR™™ m>n>k,

from a high dimensional space being grouped into k classes, where each a; (1 <
i < n) is a data point in an m dimensional space and each block matrix A4; €
R™ ™ (1 <i < k) is a collection of data items in the i-th class, n; (1 < i < k)
is the size of the class ¢ and the total number of data items in data set A is
n= Xk: n;. Let N; denote the set of column indices that belong to the class i. The

=1
global centroid ¢ of A and the local centroid ¢; of each class A; are given by

1 1
c=—Ae, ¢;=—Ae;, 1=1,---k,
n n;

respectively, where

1 1
e=1|'1€eR", e=|:|€eR" 1=1,--- k.
1 1
Let
k k
Sp = Z Z(CZ —c)(c;—o) = an(cz —¢)(¢; —)7,
i=1 jEN; i=1
k
Sw=>_3 (a;—ci)(aj —)", (1.1)
i=1 jeN;
St = Z(aj —c)(a; —o)f
j=1

Here Sy, S, and S; are called the between-class scatter matrix, the within-class

scatter matrix and the total scatter matrix, respectively. It is well known that [48]

Sy = S+ Sa. (1.2)

1.1 Classical LDA

Denote
Hy, = :\/71_1(01 —c) - rg(er — c)} c Rk
Hy = :Al —crel o Ay — ckef] e R™", (1.3)
th-cu—c an—c}:A—ceTeRmX",

where H, is called the centered data matrix. Then scatter matrices S, S, and S;

can be expressed as:
Sy = HyH}', S,=H,H. S, =HH (1.4)

It follows from the properties of matrix trace that

trace(S Z Z —¢) = Z Z a; — Cz||2 v

i=1 jEN; =1 jEN;

and
k
trace(S,) = an Ci ¢ —c)= an lei — c||§
i=1

Thus trace(S,) measures the distance between the class local centroids and the
global centroid, while trace(.S,,) measures the distance between the data points and
their corresponding class local centroid. Note that when data points within each
class are tightly located around their local class centroid, the value of trace(S,,)
will be small, while when the local centroids are remote from the global centroid,
the value of trace(S,) will be large. So the class quality can be measured by the
values of trace(S,,) and trace(S,). When trace(S,) is large while trace(S,,) is small,
the different classes will be separated well and the data points within each class

will be related tightly. This leads to high class quality.
In the lower dimensional space mapped upon using the linear transformation
G € R™!, the between-class, within-class and total scatter matrices are of the
forms
Sk =G's,G, St=G"s,G, SF=G"S,G.
Ideally, the optimal transformation G' should maximize trace(S¥) and minimize

trace(SL) simultaneously, equivalently, maximize trace(S{) and minimize trace(S})

1.2 Generalized LDA

simultaneously, which leads to optimization in classical LDA for determining the
optimal linear transformation G, namely the classical Fisher criterion:

G = arg max trace((SF)1SE). (1.5)
GeRmx!

In the classical LDA [35], the above optimization problem is solved by computing

all the generalized eigen-pairs
Spr = NSz, N #0.

When S; is nonsingular, it reduces to the following regular eigenvalue problem
S7 Sy = v, AN#£0.

Thus, the solution GG can be characterized explicitly through the eigen-decomposition
of the matrix S; 'S,. It is easy to know that rank(S,) = rank(H,) < k — 1, and so,

the reduced dimension by the classical LDA is at most k — 1.

1.2 Generalized LDA

Classical LDA has a critical drawback, that is, the total scatter matrix S; must
be nonsingular. However, when the data points are from a very high-dimensional
space and thus usually the number of the data samples is much smaller than the
data dimension, i.e., m > n, the total scatter matrix S; is singular. This is known
as the undersampled problem [35] and it is also commonly called the small sampled
size problem. Thus, we cannot apply the classical LDA to undersampled problems

directly.

To make LDA applicable for undersampled problems, various extensions of
the classical LDA can be found in the literature. These extensions can be roughly
categorized into three categories. The first approach, known as the two-stage LDA,
is to apply an intermediate dimensionality reduction stage to reduce the dimension

of the original data before classical LDA is applied, such as, PCA+LDA [83, 7],

1.2 Generalized LDA

LSI4+LDA [87, 50], and PLS+LDA [82]. Two-stage LDA implements LDA by
projecting the data into a subspace, whereby it is also known as subspace LDA
[107]. Although this approach is simple, the intermediate dimensionality reduction

stage may remove some important information.

The second approach applies the pseudoinverse [38] to avoid the singularity
problem. Orthogonal LDA (OLDA)[96, 20, 71] belongs to this group, wherein
the optimal transformation matrix G has orthonormal columns, i.e., GTG = I.
Uncorrelated LDA (ULDA) [98, 101, 94, 22| is another popular approach, the
features in the reduced space of which are uncorrelated, accomplished by adding a
constraint, GTS;G = I, to LDA. In addition, null space LDA (NLDA)[18, 52, 21]
performs LDA by maximizing the between-class distance in the null space of the

within-class scatter matrix.

Later on, Wang et al. [90, 91] pointed out that both subspace LDA and
NLDA discard some useful discriminative information and encounter the overfitting
problem. In PCA+LDA, the components with small eigenvalues are removed by
the PCA pre-processing. When the PCA subspace dimension is relatively high,
the constructed LDA classifier is often biased and unstable. With the existence
of noise, the null space of the within-class scatter matrix becomes small when the
data sample size is large, hence much discriminative information outside this null
space will be lost. The constructed classifier in NLDA may also be over tuned to

the training set.

The third approach to bear on the undersampled problem is the regularized
LDA [34, 24, 39, 104, 105]. The basic idea of the regularized LDA is to add a
multiple of identity matrix A/ to the total scatter matrix S;, where A > 0 is the

regularization parameter, so the classical LDA methodologies can be applied.

The main disadvantage of the regularized LDA is that the optimal regular-
ization parameter A is difficult to determine [24, 99], since if A is large then we
lose information on the scatter matrix S;, while if it is too small the regularization

may not be sufficiently effective. So the main task of the regularized LDA is to

1.2 Generalized LDA

choose an appropriate regularization parameter. In the existing regularized LDA,
a candidate set of the regularization parameter is given, then the cross-validation
method [31, 67], which is a classification method, is used to choose an “optimal”
regularization parameter from the given candidate set. The procedure of select-
ing an optimal value for a parameter such as A is called as model selection [45].
Obviously, the limitation of such regularized LDA methods is that it is not clear
how to choose an appropriate candidate set. The model selection problem in the
regularized LDA has been addressed in a number of work, see [34, 39, 104, 105, 54].
For the regularized LDA | there are an infinite number of choices for the value of the
regularization parameter, to achieve satisfactory performance in practice, a large
set of candidate values are usually used. Recently it has been shown in [54] that the
matrix computations involved in the regularized LDA can be simplified so that the
cross-validation procedure can be performed efficiently. However, there is still no

solid mathematical theory for selecting an appropriate regularization parameter.

One of the purposes of this thesis is to fill this gap. As we show in Chapter 5,

there is a close mathematical relationship between solutions of OLDA:

G = arg max trace((GT S,G) P GT S,G)*! (1.6)
GeRmxL, GTG=I

and solutions of regularized OLDA (ROLDA):

G* = arg max trace((GT (S, + M\)G)'GT S,Q), (1.7)
GeRmX1, GTG=I

with A > 0. Actually, given a regularization parameter, the distance between solu-
tions of OLDA and ROLDA is bounded; and conversely, given the distance between
solutions of OLDA and ROLDA (also, it is the tolerance of the approximation error
when using the solution of ROLDA to approximate the solution of OLDA), there

is a bound of the regularization parameter. Note that for any data items x and v,

16% = &Pyl — 162 = Gyl | < 6* = Gl (s + Il

'For the definition and properties of Moore-Penrose inverse and trace operator, please refer

to Appendix A.

1.3 Incremental LDA

which indicates that HG)‘x — G’\yHF is a good approximation of |Gz — Gyl pro-
vided that G* is close to G. Hence, it is expected that if the regularization param-
eter is selected by calibrating the solution of ROLDA to the solution of OLDA,
ROLDA can achieve a satisfactory classification performance similar to OLDA,
which is verified by our numerical results in Chapter 5. This observation leads to a
mathematical way to select the regularization parameter in ROLDA: with a given
tolerance of the approximation error defined by users, the regularization parameter

is set as its upper bound.

In this thesis, all solutions of OLDA (1.6) and ROLDA (1.7) are characterized
first and then the intrinsic relationship between OLDA and ROLDA is exploited.
More importantly, by means of this relationship we find a mathematical criterion
for selecting the regularization parameter in ROLDA and consequently we develop
a new regularized orthogonal linear discriminant analysis method, in which no can-
didate set of regularization parameter is needed. The effectiveness of our proposed

ROLDA is demonstrated by real-world data sets.

Regularization is a powerful tool in remarkably wide areas of many disciplines,
for example, the kernel machines area, [78, 44, 13, 43] and the references therein.
The methodology developed in the present work is expected to have impact on the

further study for regularization problems in these areas.

1.3 Incremental LDA

The original LDA is a batch algorithm, which requires that the data must be
available in advance and be given once altogether. However, in most real-world
applications, data are incrementally received from various data sources presented
as a data stream. For streaming data, the input data to be learned are not available
all at once, but rather arrive as continuous data sequences. The approach for batch
LDA to deal with streaming data is to collect data whenever a new one is presented,

and learn all the data from scratch. However, it is obvious that large memory and

1.3 Incremental LDA

high computational cost are involved in this batch learning, because the system
would need to maintain a huge memory to store the data either previously learned,
or newly presented. For large and high-dimensional datasets, the lack of available

space becomes a critical issue.

To solve the above problem, incremental learning is more suitable. Learning
from new data without forgetting prior knowledge is known as incremental learn-
ing. In this learning scheme, a system retains the knowledge acquired in the past
without keeping a large number of training samples and incorporates new data
items as they become available. Compared to non-incremental or batch learning,
incremental learning has the advantages of being more widely adaptive and reac-
tive. Such as, it can be applied to dynamic scenario where input data come only in
sequence and a timely updating model is crucial for performance. Different from
batch learning, incremental learning deals with theory revision when a new data is
inserted dynamically instead of theory creation from the beginning. In this regard,
incremental methods require less memory demand and computational cost than

batch methods.

Several methods for incremental LDA learning have been proposed in the past.
In [102], the IDR/QR. algorithm that applies regularized LDA in a projected sub-
space spanned by the class means is developed. As the dimension of the subspace
which is equal to the number of classes k is low, IDR/QR algorithm is very fast,
whereas, the potential limitation of this algorithm is that much information is lost
in the first projection as well as minor components are discarded in the updat-
ing process. Moreover, an appropriate regularization parameter should be given
in advance. In [62, 63|, a new proposed incremental LDA algorithm (we call it
ILDA/SSS in this thesis) uses the concept of sufficient spanning set approxima-
tion to update the between-class scatter matrix S, and total scatter matrix S,
where the principal eigenvectors and eigenvalues of both matrices are kept and
updated and minor components are removed in each updating. The big issue

of ILDA/SSS is that three eigenvalue thresholds for respectively determining the

1.3 Incremental LDA

10

principal components of between-class scatter matrix, total scatter matrix and the
optimal transformation matrix should be given in advance. As illustrated in [69],
ILDA/SSS suffers from a problem, that is, it is difficult to determine to which de-
gree the performance should be traded off for computational efficiency. If too many
minor components are discarded, the performance will deteriorate, otherwise the
efficiency will be impaired. Moreover, the performance is sensitive to the setting

of the approximation parameter, while tuning the parameters is not easy.

Unlike IDR/QR and ILDA /SSS, two recently proposed incremental algorithms,
LS-ILDA [69] and ICLDA [70], perform exact incremental updating whenever a new
data sample is inserted. LS-ILDA is based on the idea of LS-LDA [97] which gives
the least square solution to LDA. The core step of LS-ILDA is the updating of
the pseudo-inverse of the centered data matrix H;. ICLDA is another incremental
approach by incrementally implementing CLDA [95] exactly. However, the dimen-
sion of the reduced space of ICLDA which is equal to the rank of the total scatter
matrix is high. There are too many items that need to be updated when a new
sample is inserted as well as to be stored for subsequent learning, which increase

both the computational cost and the memory cost.

In this thesis, a new, efficient and simple implementation of LDA, called
LDA/QR, which is eigen-decomposition-free and SVD-free, is first proposed in
Chapter 3. Due to the simplicity of LDA/QR, we design a novel incremental di-
mensionality reduction algorithm, called ILDA/QR. It can easily handle not only
the case that only one new sample is inserted but also the case that a chunk of
new samples are added. Crucially, ILDA/QR is proved to accurately incrementally
update the discriminant vectors of LDA/QR instead of recomputing the LDA/QR
again. More importantly, only some matrix-vector multiplications and one matrix
addition are involved in sequential ILDA/QR, while only economic QR factor-
ization of a small size matrix and matrix multiplications are involved in chunk
ILDA/QR, thus, our new proposed LDA-based incremental algorithm is very fast.

Extensive experiments show that ILDA/QR performs favorably in classification

1.4 Outline of the Thesis

11

and execution time, in comparison with some existing LDA-based incremental al-

gorithms.

The relationship of LDA/QR to ULDA [98, 101, 94, 22] is also analyzed.
Numerical experiments conducted on a variety of real-world datasets show that
LDA/QR is competitive with ULDA/QR [22] in terms of classification accuracy

while less execution time is needed.

1.4 Outline of the Thesis

In addition to the Introduction, this thesis is organized into five chapters and two
appendices as follows. Four existing incremental LDA algorithms are summarized
in Chapter 2. Our new proposed fast LDA algorithm LDA/QR and an efficient
LDA-based incremental algorithm ILDA/QR are introduced in Chapter 3. Chap-
ter 4 reviews three existing regularized LDA methods. Chapter 5 shows a new
implementation of OLDA and a new regularized OLDA is proposed. We finish
the thesis with a conclusion and an overview of possible future work in Chapter
6. Some properties of Moore-Penrose inverse and trace operator are shown in Ap-
pendix A. Furthermore, the computational complexity of some matrix computation
used in this thesis is given in Appendix B and the description of datasets used in

our experiments is summarized in Appendix C.

Chapter 2

Existing Incremental LDA

In this chapter, we briefly review four existing incremental LDA algorithms: incre-
mental dimension reduction via QR decomposition (IDR/QR) [102], incremental
LDA using sufficient spanning set approximation (ILDA/SSS) [62, 63], least square
incremental LDA (LS-ILDA) [69] and a recently proposed incremental complete
LDA (ICLDA) [70]. Computational complexity of each algorithm is also summa-
rized. In the incremental learning, updated version of any variable X after the

insertion of new samples is denoted by X.

2.1 Incremental Dimension Reduction via QR De-

composition (IDR/QR)

IDR/QR [102] is a very efficient dimensionality reduction algorithm proposed by
Ye et al. The batch version of IDR/QR mainly consists of two stages. The first
stage is projecting scatter matrices into the subspace, in which the between class
difference are maximized, precisely, the first stage of IDR/QR aims to solve the
following optimization problem:

G = arg max trace(G' S,Q),
aTG=I

12

2.1 Incremental Dimension Reduction via QR Decomposition (IDR/QR)13

by computing the economic QR factorization of local centroid C' = [01 e Cki| €
R™* C = QR, where @ € R™** is column orthogonal and R € R*** is upper
triangular. Secondly, apply regularized LDA on the reduced scatter matrices re-
sulting from the first stage, that is, the second stage of IDR/QR is achieved by

solving the eigenvalue problem of
(W +ul)'B,

where W € R** and B € R¥** are scatter matrices projected in the reduced
space, i.e., W = Q75,0, B=Q07S,0.
The algorithm for batch IDR/QR is shown as follows:

Algorithm 2.1. (Batch IDR/QR)

Input: Data matrix A € R™*™ with cluster label, reqularization parameter p.
Output: Transformation matrizc G € R™*%.
Step 1. Construct centroid matriz C € R™** H, € R™" and H, € R™**.

Step 2. Compute economic QR factorization of C as C = QR, where Q € R™**
and R € RF*F.

Step 3. Compute Z = HIQ, Y = HF' Q.

Step 4. Compute reduced scatter matrices W = Z7Z and B =YY
Step 5. Compute eigenvectors X of (W + ul)™'B.

Step 6. G = QX.

Based on this batch algorithm, the incremental IDR/QR proceeds in two steps:
QR-updating of the centroid matrix C' and updating of the reduced scatter matri-
ces W and B with each new data being inserted. If the new inserted data belongs
to an existing class, rank-one updating and updating of adding a row are involved
in the QR-updating step. If the new inserted data belongs to a new class, QR-
updating of centroid matrix C' is accomplished by the Gram-Schmidt procedure

[38]. In both cases, the authors made an approximation for the updating of reduced

2.1 Incremental Dimension Reduction via QR Decomposition (IDR/QR)4

scatter matrix W. Thus, IDR/QR is an approximated incremental algorithm. The
implementation of incremental IDR/QR for two distinct cases are shown in the

following two algorithms:

Algorithm 2.2. (IDR/QR: Updating Existing Class)

Input: Centroid matrix C =[c1 --- ¢, its QR factorization C = QR, matriz
W, size of each class N = [ny --- ng], new data x with class label ¢ < k.

Output: Updated V~VL B, N, C and its QR factorization C = QR and transfor-
mation matriz G.

Step 1. ﬁj:nj (]%f), ne=ne+1, f=5% f=n+1.

nyg

Step 2. ¢ =c¢; (J#), Ge=co+ f.
Step 3. fi=0Q"f, fo=f—Qfg=1[0 --- 1 --- 0.
Step 4. Do rank one QR-updating
QR+ fig") = AR, Q1 e R™*, Ry e RV

Step 5. If |f2], =0, O = Q1, R =Ry,
If [faly # 0, g = fo/ | faoly, do QR-updating

R4 AS
0l | = R

Step 6. u=x — ¢y, v =20 — ¢

Step 7. @ = QTu, v = Q.

Step 8. W =W + (@ —0)(a — 0)" + n,o07.

Step 9. h=[Vi, - \/ﬁ_k]T,D:diag(\/ﬁ_l e V).
Step 10. 7 = [y -+], 7= iRr.

Step 11. B = (RD — #h")(RD — #hT)".

Step 12. Compute eigenvectors X of (W + ,u])*lé.

Step 13. G = QX.

2.1 Incremental Dimension Reduction via QR Decomposition (IDR/QR)5

Algorithm 2.3. (IDR/QR: Updating New Class)

Input: Centroid matric C = [c1 --- ¢, its QR factorization C = QR, matrix
W, size of each class N = [ny --- ng], new data x with class label ¢ < k.

Output: Updated V~VL B, N, C and its QR factorization C = QR and transfor-

mation matriz G.
Step1. nj=n; (1<j<k), 1 =1, n=n+1.
Step 2. Do QR-updating of C = [C] as C = OR.
Step 3. Update

v-[r)

Steps 4-8. The same as Steps 9-13 of Algorithm 2.2.

The incremental IDR/QR algorithm for the case that new samples are inserted

in a chunk is shown as follows:

Algorithm 2.4. (Chunk IDR/QR)

Input: Centroid matric C = [c; --- ¢, its QR factorization C' = QR, matrix
W, size of each class N = [ny -+ ng|, new data X = [xr1 -+ x5 with
class labels ¢; (i =1,---,s).

Output: Updated VT/L B, N, C and its QR factorization C = OR, and transfor-
mation matriz G.

Step 1. For each data item x; (i = 1,--- 1), determine whether it is from an
existing class or a new class.

Step 2. If z; is from an existing class, update C = QR, W and N following Steps
1-8 of Algorithm 2.2.

Step 3. If z; is from a new class, update C = QR, W and N following Steps 1-3
of Algorithm 2.3.

Steps 4. After all data items have been learned, update B and compute G following
Steps 9-13 of Algorithm 2.2.

2.1 Incremental Dimension Reduction via QR Decomposition (IDR/QR)16

By using the computational cost of some matrix computation given in Ap-
pendix B, we summarize in Table 2.1 the computational complexity of Algorithms
2.2 and 2.3 for a single insertion. Note that the updating algorithms for IDR/QR
shown above are different from those given in [102]. Specifically, Algorithms 2.2
and 2.3 include the computation of transformation matrix G while this step is
not enclosed in [102]. Thus, the computational complexity summarized in Ta-
ble 2.1 also includes the computation of G. It can be observed from Table 2.1
that incremental IDR/QR is very fast as its main cost for a single insertion is
2mk? + 26mk + 91/3k3 and 2mk? + 26mks + 91/3k3 for the insertion of a chunk
of s samples. However, since IDR/QR performs LDA in the range space of local
centroid C' and the reduced scatter matrix W is updated by its approximation in

each updating, IDR/QR may suffer from the low classification problem.

Table 2.1: Computational complexity (flops) of algorithm IDR/QR

The computational cost of incremental IDR/QR (Updating Existing Class)
Steps 1-3: dmk
Step 4: 12mk + 6k2
Step 5: 6mk + 3k?
Steps 6-8: dmk + 4k?
Steps 9-11: 6k?
Steps 12-13: 2mk? + 91/3k*

The computational cost of incremental IDR/QR (Updating New Class)
Steps 1-3: dmk
Steps 4-8: 2mk? + 91/3k?

2.2 Incremental LDA using Sufficient Spanning Set (ILDA /SSS)

17

2.2 Incremental LDA using Sufficient Spanning
Set (ILDA /SSS)

In this section, we briefly review the main idea of ILDA /SSS summarized from Kim
et. al. [62, 63] and the code [61] of algorithm ILDA/SSS provided by Kim. The
principal discriminant of batch ILDA /SSS is obtained by maximizing between-class

distance in the range space of total scatter matrix S;.

Let the singular value decomposition of the total scatter matrix S; and the

between-class scatter matrix S, be
S, =UTAU, S,=VITV,

respectively, where U, V € R™™ are orthogonal and A, I' € R™*™ are diag-
onal. Denote A; € R™*™ and I'y € R™*™ as the principal eigenvalues of S;
and Sy, respectively, determined by an eigenvalue threshold, and U; € R™*™ and
Vi € R™*™ag the corresponding principal eigenvectors. Let Z = UlAl_l/ 2, then
the optimization problem of batch ILDA /SSS is to find the components that max-
imize trace(Z7S,Z). To reduce the computational cost of computing the principal
components, sufficient spanning set approximation is introduced. Firstly, compute

the economic QR factorization of Z7V; as
7TV, = ST,

where S € R™*™ is column orthogonal and 7" € R™*™ is upper triangular. Then

the optimization problem of batch ILDA/SSS is reduced to solve

G = arg max trace(gTSTZTVlFlVlTZSQ),
GeR™2X7T GTG=]

where the scalability of G, 7, is determined by an threshold, and the final optimal
transformation is given by G' = UlAfl/ ’g.

Kim et. al. did not give the batch algorithm of ILDA/SSS in [62, 63], after
omitting some minor processes like the QR factorization thresholding, etc, we

summarize the algorithm from the website [61] provided by Kim as follows:

2.2 Incremental LDA using Sufficient Spanning Set (ILDA /SSS) 18

Algorithm 2.5. (Batch ILDA/SSS)

Input: Data matrix A € R™*™ with class label, eigenvalue threshold.
Output: Transformation matric G € R™*7.

Step 1. Construct local centroid C = [c1 -+ ¢ € R™*, global centroid c €
R™, H, € R™" and H, € R™**.

Step 2. Compute eigenvalue decomposition of HI Hy as HI H; = UAUT, where
U, A € R"™". Denote Uy € R™™ and Ay € R™*™ as the principal compo-
nents of U and A, respectively, determined by eigenvalue threshold.

Step 3. Uy := HUA; Y%

Step 4. Compute eigenvalue decomposition of HI Hy, as HI H, = VI'VT, where
V, T € R¥*k. Denote Vi € R¥*™ and I'y € R™*™ as the principal compo-
nents of V. and I", respectively, determined by eigenvalue threshold.

Step 5. Vi := H,V,I'[/2.

Step 6. Compute Z = UlAl_l/2 and economic QR factorization ZTV, = ST, where
S e R T e R™?%™2,

Step 7. Compute the eigenvalue decomposition STZTVII'WWIZS = HYHT, where
H e R™?*™ and ¥ € R™*™, Denote H; € R™*7 as the principal components
of H determined by eigenvalue threshold.

Step 8. G = ZS5H,;.

Based on this batch algorithm, the incremental ILDA/SSS mainly contains
three parts: update the eigenvalue decomposition of total scatter matrix S;, up-
date the eigenvalue decomposition of between-class scatter matrix S, and update
the discriminant components G. Like the batch version, the concept of sufficient

spanning set approximation is employed in each of these three updating parts.

For convenience, in the incremental learning, we denote D € R™** as
D:|:d1 e dk:| ::‘/1T|:Cl_c e cp — |,

where the columns of V; € R™*™ are the principal eigenvectors of between-scatter

matrix Sy, ¢; (i = 1,--- , k) are class local centroids and ¢ is the global centroid.

2.2 Incremental LDA using Sufficient Spanning Set (ILDA /SSS)

19

Kim et. al. only provided a brief structure of incremental ILDA /SSS algorithm in
(62, 63], like the above batch algorithm, we summarize the MATLAB code in [61]
by removing some minor processes in the following for the case that data sample

is inserted one at a time.

Algorithm 2.6. (ILDA/SSS: Updating Existing Class)

Input: Principal eigenvectors and eigenvalues, Uy, Ai. Ty and Vi, global cen-
troid ¢ and D = [dy --- dg], total class number k, size of each class
N = [n1 -+ nyg|, number of total samples n, new data x with class la-
bel 1 < ¢ <k, eigenvalue threshold.

Output: Updated Uy, Ay, Vi, Ty, ¢, D, l;;, N, 7 and transformation matrix G.
Step 1. 6:#10—1—#11’, A=n+1,k=Fk i =n; (1 #¢) and ng = ng + 1.

Step 2. r=c—x.

_ T _ r=Umnm _ 2
Step 3. i =Uyr, u= =5, o= lr — Uyri]s-

Step 4. Compute the eigenvalue decomposition

T -
[AI 0]+ n [rlr% 047“21} :<I)A<I>T,

n+1|oar; «

where & € RN+ A ¢ ROHDX(M+D) - Denote d; € RMTDXTL gnd
Ay € R qs the principal components of ® and A, respectively, determined
by the eigenvalue threshold.

Step 5. Update Uy = [U; u] ®;.

Step 6. ro = Vir, v = "T”__‘er”;uz, B =r—Vira:, rs = VI (Vicg+r), § = o7 (Vieo+
T).

Step 7. Compute the eigenvalue decomposition

I, nolrgr] PBra| ne |rgry Ors| _ oo
|: 0:| + n+1 {BTQT BQ ng—i-l (57’%1 (52 =VUr'vw)

where U € RMmHUx(mA) T ¢ R+ Depote U; € RMTI*72 gpg
[, € R™*™ gs the principal components of U and T, respectively, determined
by the eigenvalue threshold.

Step 8. Update V; = [Vi] ¥,.

2.2 Incremental LDA using Sufficient Spanning Set (ILDA /SSS) 20

Step 9. Update D as

; _{ v (Vld te—d), ifi#Al

i n; (Vidi+c)+x ~ e
14 (s —0), ifi=L

Step 10. Compute Z = 01/11_1/2 and economic QR factorization

where S € R™*™ | T € R2*™,
Step 11. Compute the eigenvalue decomposition
STzt Wl ZS = HYHT,

where H € Rhf%? and ¥ € R™*™. Denote H, € R™*7 as the principal
components of H determined by eigenvalue threshold.

Step 12. G = ZSH,.

Algorithm 2.7. (ILDA/SSS: Updating New Class)

Input: Principal eigenvectors and eigenvalues, Uy, Ay. T'1 and Vi. Global cen-
troid ¢ and D = [di --- dy], total class number k, size of each class
N = [n1 -+ nyg|, number of total samples n, new data x with class la-
bel ¢ > k, eigenvalue threshold.

Output: Updated Uy, Ay, Vi, Ty, ¢, D, /;;, N, 7 and transformation matrix G.
Step 1. 5__C+n+1 A=n+1k=k+1, n;=n; (1 < k) and ng,q = 1.
Steps 2-5. The same as Steps 2-5 of Algorithm 2.6.

T = nr 7,2
Step 6. ry =V/'r, v = HTVET;H’ B = HT— Vi(Vi 7")”2-

Step 7. Compute the eigenvalue decomposition

I'h n(rlry Bry ST
_ = Uy
{ 0}+n+1{57€ g2 ’

where ¥ € RMADx(m+l) T ¢ R(mADX(2+D) Depote Uy € RMTDX2 gpd
[, € R?*™ gs the prmczpal components of ¥ and T, respectively, determined
by the eigenvalue threshold.

Step 8. Update Vi = [Vi v] ¥y,

2.2 Incremental LDA using Sufficient Spanning Set (ILDA /SSS) 21

Step 9. Update D as

P = '~

i [VIidi+c—d), ifi<k,
Vi@—e), ifi=k+1.

Steps 10-12. The same as Steps 10-12 of Algorithm 2.6.

The incremental ILDA/SSS algorithm for the case that data samples are in-

serted as a chunk is shown as follows:

Algorithm 2.8. (Chunk ILDA/SSS)

Input: Principal eigenvectors and eigenvalues, Uy, Ai. Ty and Vi, global cen-

troid ¢ and D = [di --- dg], total class number k, size of each class
N =[n1 -+ nygl|, number of total samples n, new data X = [x1 --- x4
with class label {; (i =1,--- ,s), eigenvalue threshold.

Output: Updated Uy, Ay, Vi, Ty, ¢, D, /;;, N, 7 and transformation matrix G.

A ~

Step 1. The same as Steps 1-5 of Algorithms 2.5 to construct ¢, D = [dl e CZS},
Ur, Ay, Vi and Ty for new samples X .

Step 2. & =1 5 —n 5.

n+ts ’
Step 3. Compute the economic QR factorization
(U, — UTT, c—é— U UL (¢ —¢&)] = UnY,
where Uy € R™™ and Y € R71 ¥,
Step 4. Compute the eigenvalue decomposition
[Al } {UleJ}]\aUlTUl UlTU;MUQ}
0 UINUTU, UL A3U,

ns UlT(c—é)(c—é)TUl UlT(c—é)(c—é)TUQT
n-+s UQT(c—é)(c—é)TUl UQT(c—é)(c—é)TUQT

] = PAPT,

where & € RMAx(M+7) A ¢ ROHATIX(M+7) - Denote ®; € RMTTXT g d
Ay € R as the principal components of ® and A, respectively, determined
by the eigenvalue threshold.

Step 5. Update U, = U1 Us] ®,.
Step 6. Compute the economic QR factorization
Vi—viviVi c—e—viV(c— @) = 1AY,

where Vo € R™™ and Y € R™2*72,

2.2 Incremental LDA using Sufficient Spanning Set (ILDA /SSS)

22

Step 7. Denote r = Vid; + ¢ — Vid; — ¢, compute the eigenvalue decomposition
Iy VIV VIV VIV,
0 ‘/QTF%‘/lT‘/l VZTFSVQ
ns |:V1T(C —&)(c=0)"Vi Vi (c—¢)(c— é)TVzT}

n+s Vi (c=a)(c—o)"Vi Vif(c—¢&)(c—e)TVyf
_ S VErrTvy VIErrTVy| oPoT
— it g (Valrr™Vi Vol TV, 7

where U € R(2H72)x(2t72) T ¢ R(mH+72)x(m+%2) - Depote U, € R(M™T2)%72 gpd
Ty € R™*™ gs the principal components of U and T, respectively, determined
by the eigenvalue threshold.

Step 8. Update V, = Vi Vo] y.

Step 9. Update D as

—).

Step 10. Compute Z = (~]1/~\1_1/2 and economic QR factorization
20V, = 8T,
where S € R™M*™ T ¢ R™2*72,
Step 11. Compute the eigenvalue decomposition
STZTV, V28 = ASAT,

where H € R™*™ and > € R™2*™. Denote H, € R™?*7 as the principal
components of H determined by eigenvalue threshold.

Step 12. G = ZSH,.

The computational complexity of Algorithms 2.6, 2.7 and 2.8 is shown in Table
2.2, for the details of some matrix computation cost, please refer to Appendix B.
When the samples in the dataset are linearly independent and the performance of
ILDA/SSS approximate the performance of batch LDA, 7 (71) would be close to

n—1(s—1), 7 (72) and 7 (7) would be close to k — 1 (k — 1). For this case we
can observe from Table 2.2 that the main cost of ILDA/SSS for updating of one

2.2 Incremental LDA using Sufficient Spanning Set (ILDA /SSS)

23

Table 2.2: Computational complexity (flops) of algorithm ILDA /SSS

The computational cost of ILDA/SSS (Updating Existing Class)

Steps 1-3: 4mmn

Steps 4-5: 12(1y + 1)® + 272 + 2m(m + 1)7y

Steps 6-8: 8mmy + 12(13 + 1)° + 375 + 2m(m2 + 1) 7
Step 9: (2mTy + 2m + 2mTo)k + 2mTy

Step 10: m7y + 2m7 17y + 147,75 + 87

Step 11: 2mF Ty + 27175 + 275 + 7o + 1273

Step 12: 2mTT + 2TTiTo

The computational cost of ILDA/SSS (Updating New Class)
Steps 1-3: 4mmy
Steps 4-5: 12(1y + 1) + 272 + 2m(my + 1)7y
Steps 6-8: 4mTy + 12(15 + 1) + 277 + 2m(1e + 1) 7
Step 9: (2mTy + 2m + 2mTy)k + 2mTy

Step 10: m7y + 2m7 17y + 147,75 + 873
Step 11: 2mAT + 2772 + 275 + 72 + 1273
Step 12: 2m77F + 27715

The computational cost of Chunk ILDA/SSS
Step 1: omn(s2 4 k% + 57 + ki) + 1253 4 12k3

Step 3: dmmT +Amif — 37}
Step 4: 12(7’1 + 721)3
Step 5: 2m(m + 71)?
Step 6: dmmyTy + 4m7s — %%23

Step T: 12(79 + 72)3

Step &: 2m(my + 72)?

Step 9: (2mTy + 2m + 2mTy)k + 2mTy
Step 10: mfy + 2mA 7y + 14772 + 87
Step 11: 2mT7y + 2775 + 275 + 75 + 1275

Step 12: 2MTT + 27T Ty

2.3 Least Square Incremental LDA (LS-ILDA)

24

single sample is 2mn? + 12n3 and updating of a chunk of s samples is 2m(n +
$)? + 12(n + s)3, which are relatively high compared with IDR/QR [102]. Like
IDR/QR, ILDA/SSS is an approximate scheme that only principal eigenvalues
and eigenvectors of the scatter matrices are computed and used in the incremental

learning process.

2.3 Least Square Incremental LDA (LS-ILDA)

The batch algorithm of LS-ILDA [69] is based on the idea of multivariate linear

regression in [97]. In [97], LDA is put into the framework of multivariate linear

regression by adding a constraint to the optimization problem of LDA,
max trace(GT S,G(GTS,G)H)) (2.1)

st. G = (HHNDHY,

where H; € R™*" is the centered data matrix, and) is the indicator matrix to be

optimized. Optimization problem (2.1) is solved by

if a; belongs to class j,

[n _ [ni
G = (Ht(H)Tya Y= [ylj Yij = y
o otherwise.
When rank(A) = n, the above optimal solution of (2.1) is proved to be equivalent
to the solution of LDA scaled by an orthogonal matrix [97].

In [69], Liu et al. simplify the indicator matrix Y = [y;;] to be

L if a; belongs to class 7,
Yij = Vi g ’ (2.2)
0 otherwise,

for convenience of updating, which leads to the following batch algorithm of LS-

ILDA:

Algorithm 2.9. (Batch LS-ILDA)

Input: Data matrix A € R™*™ with class label.

2.3 Least Square Incremental LDA (LS-ILDA)

Output: Transformation matriz G € R™*k.
Step 1. Construct H; € R™" and indicator matriz Y € R™F* from (2.2).
Step 2. Compute Ht(Jr).

Step 3. G = (H')TY.

The incremental algorithm, LS-ILDA [69], of the above batch algorithm con-
sists of three parts: update the indicator matrix), update the centered data matrix

), where the updating of Ht(ﬂ needs the condition

H,; and its pseudoinverse Ht(+
that the new inserted data is linearly independent to the original data set. The
algorithms for LS_ILDA to update an existing class and a new class when a new
data is inserted are presented in Algorithms 2.10 and 2.11, respectively, for the

case that m > n.

Algorithm 2.10. (LS-ILDA: Updating Existing Class)

Input: Centered data matrix H, € R™ ™, its pseudo-inverse Ht(+), global cen-
troid c, indicator matriz Y, total class number k, size of each class N =

[n1 -+ nyl, transformation matric G, new data x with class label 1 < £ <
k.

)

Output: Updated H,, lT-N]t(Jr ¢, Y, k, N and new transformation matriz G.

Step 1. n; =n; (j # 1), m:ng—l—l,é:c—l—%ﬂ(x—c),l;:k.

Step 2. Definey € R as

and update

<
I
E
ps

Step 3. Update the centered data matriz as

F[t:[Ht—n%l(m—c)eT niﬂ(x—c)], e=1[1 --- l]TeR”.

2.3 Least Square Incremental LDA (LS-ILDA)

Step 4. Update the pseudo-inverse as

g% _ Ht(+) - Ht(ﬂ(x —)b’ — Len”
t - hT Y

where
r—c— Hth(H(x —0)

(x—c)(x—c)— (x — C)THth(+)(w — c)'

h:

Step 5. Compute the transformation matrix

Ioy
G=(G-h(z-c)'G - %heTy) Ve + hyt.

Algorithm 2.11. (LS-ILDA: Updating New Class)

Input: Centered data matric H, € R™ ™, its pseudo-inverse Ht(+), global cen-
troid c, indicator matrix Y, total class number k, size of each class N =
[n1 -+ nyl, transformation matriz G, new data x with class label £ > k.

)

Output: Updated H,,]th(Jr .6, Y, k, N and new transformation matriz G.

Step 1. ity =n; (j=1,- k), iu=1,¢=c+(@—c), k=k+1

Step 2. Define y € R as

y' =0 0 1],
and update
A
=[]
Step 3. Update the centered data matriz as
H, = [Ht—%ﬂ(x—c)eT HL_H(IL‘—C)}, e=[1 --- l]TER".

Step 4. Update the pseudo-inverse as

where

2.3 Least Square Incremental LDA (LS-ILDA)

27

Step 5. Compute the transformation matrix

G=[G—hlz—c)'G—2heTy 0] + hy".

The incremental LS-ILDA algorithm for the case that data samples are inserted

as a chunk is summarized as follows:

Algorithm 2.12. (Chunk LS-ILDA)

Input: Centered data matriz H, € R™ ™, its pseudo-inverse Ht(+), global cen-
troid c, indicator matriz Y, total class number k, size of each class N =
[ni -+ nyl, transformation matriz G, new data X = [x1 --- x5 with
class labels €; (i=1,---,s).

SRR

Output: Updated H,, H ¢, k, N and new transformation matrix G.

Step 1. For each data item z; (i = 1,---,7), determine whether it is from an
existing class or a new class.

@ -5

Step 2. If x; is from an existing class, update H,, H, ', ¢, Y, k, N and G fol-

lowing Algorithm 2.10.

Step 3. If x; is from a new class, update H,, f[t(ﬂ

Algorithm 2.11.

¢, YV, k, N and G following

Table 2.3: Computational complexity (flops) of algorithm LS-ILDA

The computational cost of LS-ILDA (Updating Existing Class)

Steps 1-3: mn
Step 4: 13mn
Step 5: ™mk + 2nk

The computational cost of LS-ILDA (Updating New Class)

Steps 1-3: mn
Step 4: 13mn
Step 5: ™mk + 2nk

The computational complexity of Algorithms 2.10 and 2.11 are shown in Table
2.3. We can summarize from Table 2.3 that the main cost of LS-ILDA for one single

2.4 Incremental Complete LDA (ICLDA)

insertion is 14mn+7mk. Accordingly, the main cost of LS-ILDA for the insertion of
a chunk of s samples is 14mns-+7mks, which is very low compared with ILDA /SSS.
Besides its computational efficiency, LS-ILDA produces exact least square solution
of batch LDA. However, LS-ILDA requires that the new inserted data sample is
linearly independent to the training set. This may limit the application of LS-
ILDA.

2.4 Incremental Complete LDA (ICLDA)

The batch version of ICLDA [70] is the complete linear discriminant analysis
(CLDA) method proposed by Yang et al. [95]. CLDA first divides the whole
data space into two complementary subspaces, the range space of S,, and the null
space of S,,. Then, CLDA obtains its discriminant vectors in both of these two
subspaces. In [70], Lu et al. improved the performance of CLDA by applying QR
factorization instead of SVD to obtain the range space of total scatter matrix as

well as the range space and null space of the reduced within-class scatter matrix.

For simplicity, we summarize CLDA and ICLDA for the case that rank(A) =n
in this section. Before presenting the new CLDA algorithm in [70], we give some
new notations used in this section. Separate data matrix A € R"™*™ and data

matrix of each cluster A; € R™*™ (i =1,--- k) into two parts, respectively,
A= |:a1 A]7 A= |:ai1 Ai]u
where a; € R™ is the first data point of A and A € R™*(™1 consists of the

remaining part, a;; € R™ is the first data point of A; and A; € R™*(™~1 consists

of the remaining part. Define H¢ € R™*("~1 and H¢ € R™*("F) a5
Hi = A-ae”, HE=[A —anel - A—ane]],

where

e= || eR", g=|:| eR"! i=1,--- k.

2.4 Incremental Complete LDA (ICLDA)

29

It is easy to verify that H¢ has the same range space as H; and H? has the same
range space as H,. Compute the economic QR factorization H! = Q?R;, where
Q% € R™*(™1) is column orthogonal and R; € R D*"=1 is upper triangular.

Project H,, H, and H? into the range space of H;,
Hy = (Q)"H,, Hp=(Q)"H, (Q)"Hy,

then obtain the range space and null space of S, by computing full QR factorization
of (QH)TH? as

Q' HY = [Py Py Ra.
where P, € R"DX("=F) " whose columns form an orthonormal basis of the range

space of (Q)TH?, P, € R"V*(=1 whose columns form an orthonormal basis of

the null space of (Q%)TH?

w?

the SVD of HBZ = PQTHB € R(k_l)Xk as HB2 = ZZVT’ where Z € R(k_l)x(k—l)

and R, € R Dx("=k) i5 ypper triangular. Compute

and V € R*** are orthogonal and ¥ € R*~1*F i diagonal. Then the optimal

discriminant matrix contained in the null space of S, is
Gou = QPyZ € R™ 1),

To obtain the optimal discriminant matrix in the range space of S,,, compute

the generalized eigenvalue decomposition of (Sp1, Sw1) as
Sp1X = Swi1 XA,

where Sy = PIHwHL Py, and Sp, = PFHgHEP, X € RM=Fx(=k) j5 o
thogonal and A € R("#*("=k) ig diagonal with the diagonal entries sorted in the

nonincreasing order. Then
Gran = Q'PLX € R™ 0,

is the optimal matrix in the range space of S,,, and the final optimal transformation

matrix consisting of two discriminant matrices is

G = [Gnull Gran:| e R,

2.4 Incremental Complete LDA (ICLDA)

30

The new CLDA developed in [70] is shown as follows:

Algorithm 2.13. (CLDA)

Input: Data matrix A € R™ "™ with cluster label.

Output: Transformation matriz G € R™* (=1,

Step 1. Construct H,, € R™", H, € R™* H? ¢ R™*("k) gnd H? € R™*("—1),
Step 2. Compute the economic QR factorization of H? as

Hi = Q"Ry, Q'e R™ D R, ¢ RDx(D),

Step 3. Compute Hy = (QY)'H,, Hg = (QY)T H, and (Q*)T HZ.
Step 4. Compute the full QR factorization of (QY)THE as
(QY)THy =[P PR,

where Py € RUDX0h) - py @ ROVDXEN gnd Ry € RITDX(h),
Step 5. Hpy, = P/ Hp.
Step 6. Compute the SVD of Hpy as

Hpy = Z5VT, Z e RFDxE=D 7 c RExk 51 ¢ R-1xk
Step 7. Gpu = QP 7.
Step 8. Sw1 = Pl HwH{ P, Spy = PTHgHLP;.
Step 9. Compute the generalized eigenvalue decomposition of (Sg1, Sw1) as
SpiX = Syr XA, A e RORxn=k) - x ¢ Rin—h)x(n=k)

Step 10. G,on = Q%P X.
Step 11. G = [Gpu Granl-

Based on this new implementation of CLDA, the incremental algorithm ICLDA
includes updating of H,, H,, H, H Q% Hy, Hp, and the QR-updating of
(QNHTHE as well as the updating of local centroids and global centroid. We show
two implementations of ICLDA in Algorithms 2.14 and 2.15: one for updating an

existing class and the the other one for updating a new class.

2.4 Incremental Complete LDA (ICLDA)

Algorithm 2.14. (ICLDA: Updating Existing Class)

Input: Hb e R™* H, € R™", H} € R™0h gl ¢ R0 Qd ¢
R™ =1 Hy, € R=Dxn Hp € RDxk QR factorization of (Q1)THE =
[P Py) Ry with P, € RO-DX0) | B, ¢ ROVDX0-D) gng By € Rin-Dx(nh),
global centroid c, local centroids C’ [cr -+ ¢k, size of each class N =
[n1 -+ nyl, new inserted sample x with class label 1 < ¢ < k.

Output: Updated Hb, H,, H%, A, Q, Hy, Hs, QR factorization of (QHTHY =
[Pl PQ] Ry, ¢, C, N and transformation matrix G.

Step 1. n;=mn; (1 #4), ng=ng+1,¢=c; (1 #4), ¢o =co+ fo, ¢ =c+ f, where

T —c Tr—C

f:n+17 fé nz+1

Step 2. Update

H, = FIvnr -] = iglee — &g +Vne+1(é — &)g]
H,=[H, ©—c)— fugs, HI=[H! z—an|, H'=[H v—a],

where g1 € R¥ is a unit vector with the (-th item equals to 1 and g, € R}
1s a column vector with the items equals to 1 if the sample belongs to the -th
class, otherunse the item is 0.

Ad _ [)d — 2= -Q((QN (z—a1))
Step 3. Update Q° = [Q q], where ¢ = Te—a Q7@ (e—an)],

Step 4. Update

g _ | Hw @)@ —c)| _ pay ey T
Hy = [ngw qT(x_Q) } ((Qd) fo)ga,

e R E L S AN B O Y SRV)

Step 5. Do the QR-updating of
QHTHy
qTHd)
via appending a row ¢F HE to (Q1)THE.
Step 6. Do the QR-updating of (Q1)THY = [151 P2:| Ry via appending a column

{(Qd)T(ﬂc - aa)} to {(Qd)TH{‘i] .

qT(x - ael) QTHfé

2.4 Incremental Complete LDA (ICLDA)

Step 7. _FIBQ = pQTgB
Step 8. Compute the SVD of Hpo as

flps = 7577, 7€ RE-DA-D | 7 ¢ REF 5 g RV

Step 9. G = QP 7.
Step 10. Sy = PTHy AL Py, Sp1 = PTHRHLP,
Step 11. Compute the generalized eigenvalue decomposition of (531, SWI) as
SpX = Sy XA,
where A € R*** 4s diagonal with the diagonal entries sorted in the nonin-
creasing order, X € R**°.
Step 12. Gun = QLPY .

Step 13. G = [énul Gmn].

Algorithm 2.15. (ICLDA: Updating New Class)

Input: H, ¢ R™* H, ¢ R™" H¢ ¢ R0k [gd ¢ Rox-l) Qd ¢
R™ =D Hy, € RV Hp € RPV** QR factorization of (Q4)THE =
[Pi P Ry with P, € R=1Dx(=k) - p, ¢ R=Dx(=1) gnd Ry € RMDx(=k)
global centroid ¢, local centroids C = [c1 -+ cx], size of each class N =
[n1 -+ nyl, new inserted sample x with class label ¢ > k.

Output: Updated ﬁb,NI:[wJ HY HE, Q4 Hy, Hp, QR factorization of (QHTHY =
[Pl PQ] Ry, ¢, C', N and transformation matrix G.

Step 1. flz =N, (Z § k), ﬁ]ﬁ.l = 1, él = C; (Z S k), 6k+1 =T, 6:C+f, where

xr —C
n+1

f=

Step 2. Update
Hy=[Hy = —d—f[yn - i 1],
H,=[H, 0], H!=H! HO'=[H! v—a].

Ad _ [()d _ _2=a1-QY((QN)(z—a1))
Step 3. Update Q* = [Q? q], where ¢ = To-m QU@ @—a)],

2.4 Incremental Complete LDA (ICLDA)

33

Step 4. Update
~ | Hv O
HW - |:qTHw O:|)

and

g | Hs (@) (x—0)| _ Fayr e
o= | fe @R @i v

via appending a row ¢F HE to (Q1)THE.
Steps 6-12. The same as the Steps 7-13 of Algorithm 2.1}.

The incremental ICLDA algorithm for updating a chunk of samples is shown

as follows:

Algorithm 2.16. (Chunk ICLDA)

Input: H, € R™*, H, € R™", H! ¢ R0k fgi ¢ R0 Q1 ¢
R™ (= Hy, € ROV [y € R(-—1)xk , QR factomzatzon of (Qd)THd
[Py PQ]RQ with P, € R~ 1)x(n—k) , Py ER(” X1 gnd Ry € RM-1Dx(=k)
global centroid c, local centroids C’ = [c1 -+ cx], size of each class N =
1 -+ nygl, new inserted sample x with class label € > k.

Output: Updated Hb, H, w)]:Ifi,]:If, Q4 Hy, Hg, QR factorization of(Qd)TI:IffJ =
[Pl PQ] Rg, c, C N and transformation matriz G.

Step 1. For each data item x; (i = 1,--- ,r), determine whether it is from an
existing class or a new class.

Step 2. Ifxz; is from an existing clqss, quafe]:—Ib7~~w~7]:Ig,]Sltd, Q% Hy, Hg, QR
factorization of (QY)TH2 = [Pl PZ} Ry, ¢, C, N and G following Algorithm
2.14.

Step 3. If x; is from a new class, update Hb,]:13”’ I:I{fj, ﬁItd, Q% Hy, Hg, QR

factorization of (Qd)THd = [Pl PQ} Ry, ¢, C, N and G following Algorithm
2.15.

2.4 Incremental Complete LDA (ICLDA)

34

Table 2.4 shows the computational cost of ICLDA for Algorithms 2.14 and
2.15, where the details of some matrix computation cost are given in Appendix B.
In short, the main cost of ICLDA for one insertion is about 2mn? + 20n® and for
the insertion of a chunk of s samples is 2mn?s + 20n3s, thus, it is time consuming
for ICLDA to incorporate a sample especially when sample size n is large. ICLDA
is an exact scheme, however, the dimension of the reduced space which equals to

the rank of total scatter matrix S; is high, it is actually n — 1 when the training

samples are linearly independent.

Table 2.4: Computational complexity (flops) of algorithm ICLDA

The computational cost of ICLDA (Updating Existing Class)

Steps 1-6:
Step 7:
Step 8:
Step 9:
Step 10:
Step 11:
Step 12:

O(mn)

2nk?

12k3

2mnk + 2nk?

2n%(n — k) + 2n(n — k)* + 2n(n — k)k + 2(n — k)*k
14(n — k)3

2mn(n — k) + 2n(n — k)?

The computational cost of ICLDA (Updating New Class)

Steps 1-5:
Step 6:
Step 7:
Step 8:
Step 9:
Step 10:
Step 11:

O(mn)

2nk?

12k3

2mnk + 2nk?

2n*(n — k) +2n(n — k)* + 2n(n — k)k + 2(n — k)*k
14(n — k)3

2mn(n — k) + 2n(n — k)?

Chapter

New Incremental LDA

Incremental dimensionality reduction methods have been proven to perform effi-
ciently if large amounts of training data have to be processed or if not all data
is available in advance. Several incremental LDA algorithms have been developed
and achieve success, however, as we have mentioned previously, existing LDA-
based incremental algorithms either provide approximate solutions or suffer from

high computational cost.

So in this chapter, to overcome the limitations of existing methods, we develop
a novel incremental LDA method called ILDA/QR, under a mild condition which
has been shown to hold for most high-dimensional datasets. In order to develop
ILDA/QR we first propose a new, simple and efficient implementation of batch
LDA, called LDA/QR, which applies QR factorization to data matrix rather than
scatter matrices. The distinct advantage of this strategy is that it enables the
efficient incremental learning of ILDA/QR when new samples are inserted. Our
theoretical analysis shows that ILDA/QR produces the exact transformation of
LDA/QR, more importantly, it can easily handle not only the case that only one
new sample is inserted but also the case that a chunk of new samples are added.
Extensive experiments confirm the claimed theoretical analysis of discrimination

and theoretical estimate of computational efficiency.

The rest of this chapter is organized as follows. Some foundamental knowledge

35

3.1 Preliminaries 36

including new representations of scatter matrices, is given beforehand in Section
3.1. Our new proposed LDA/QR and its incremental version ILDA/QR are shown
in Section 3.2 and Section 3.3, respectively. The experimental results are reported

in Section 3.4 and Section 3.5 draws the conclusions.

3.1 Preliminaries

Lemma 3.1. Let X, Y, Z € R¥** be symmetric positive semi-definite, and
rank [X Z} = rank(X) = rank(Z2).

Then
trace((X + V) Z) < trace(XH 2),

and the equality holds if and only if
rank [X Y} = rank(X) + rank(Y'),

which is equivalent to

if X is positive definite.

Proof. We can assume without loss of generality that

I, 00 Yii Yis O Zii 00
0 00 0 0 0 0 00

where Yy 1, Zy1 € RM*M Y, € R¥2X#2 rank(Yss) = po, rank(Z; 1) = py. Then,

trace(X(HZ) = trace(Z11),

3.1 Preliminaries

37

and
trace((X +Y)H2)
- - —1 ~
I'+Yip Yip Zip 0
=trace
Y, Yo [0 O
— - —1 _
I+Y; Yo Zin+ Y1121, 0 YiiZzi1 0
=trace . - — T
L }/12 }/2,2_ L 3/172Z1,1 0 }/172Z1,1 0
— - —1 — -
—trace I+Y; Yo I+Y; Yia| [Z11 O _ YiiZi; 0
YEQ)/2,2_ L Yrgz)/2,2 0 0_ YEQZLI 0
_ 1
Zia O I+Y; Yo YiiZzi; 0
=trace —
1 0 0 Y, Yoo YihZi1 0

=trace(Z1,1) — trace((I + Y11 — Yi2Ya, Vi) 7 (Vi1 = Y12Y5, Y1) Z10),

where the last equality is due to the fact that

-1

trace _I + 5/1,1 }/1,2 3/171Z1,1 0
L }/'17712 }/2,2 3/17,12Z1,1 O
~1
=trace I YiaYoy | |14 Yin = YiaYop Vi I
! Yao| |Vir Vil I
YiiZin O
Y?:QZIJ 0
—trace I+Y11 = Y12Yo, Y I =Y15Y55 | [Yi1Z11 O
Yoo I Y&ZL1 0
[)
X o
=Yy, Yy, 1
=trace <[+ Yl’l B Y172Y27_21Y17:2)—1 Y1,121,1 - K,21/2T21}/1?2Z1,1 0
Y2T21 Y17,12Z1,1 0
=trace((I + Y11 — Yi2Yo0 Vi) (Vi1 — Y12Y55 Y1) Z11). (3.1)

Note that Y is positive semi-definite, so Y7 ; — Y172Y27’21Y17:2, the schur complement

of Y3 9, is positive semi-definite. In addition, (I +Y; 1 — YLQYZ_;YEQ)_l and Z ; are

3.1 Preliminaries

positive definite, thus,
trace((I + Y11 — Yi2Y, Vi) 7 (Vi — YipYa, Y1) Z1,) 2 0.
Hence, we have
trace((X + YY) 2Z) < trace(XH 2),

and

trace((X +Y) P Z) = trace(X P 2)

trace((I + Y11 = Y12Y5, Vi) 7 (Yin = YiaVss V1) Z11) = 0
(I + Y11 = Yi2Yo, Vi) 7 (Yia — YipVe, Yi5) 211 = 0

Yii— Y1,2Y2,_21Y1:,FQ =0

rank(Y) = rank(Y20) = 1o

(A

rank [X Y} = rank(X) + rank(Y).
[

Remark 3.1. For the general X, Y and Z, they can be reduced to the special form

in Lemma 3.1 as follows: Let the eigen-decomposition of X be

A O
0 0

U'XU =

Y

where A € R*M>*M | 1y = rank(X). Since
rank [X Z} = rank(X) = rank(2),

it 1s easy to show that

Z 0
Urzu = ,
0 0
where Z € RM*M | Denote
. Y, Y,
Tl I % i

Yor Yoo

3.1 Preliminaries

where 57171 € RM>*M - Let the eigen-decomposition of 57272 be

- Y;
Y2,2:V 22 VT7
0
where Ys 9 € R*272 45 nonsingular. Thus,
T Vi; Yis O
7 17 ~1,1 1,2
e % = | Yo, YQ,Q 0
0 0 O
Let
A2
d=U ,
\%4
by calculating, we have
I, 00 Yii Yi2 O Zip 00
PTXO=10 0 0|, PYP=|Y], Yo, 0|, ®ZP=|0 0 0
0 0O 0 0 O 0 00

Lemma 3.2. When rank(A) = n, the following condition holds:
rank(S;) = rank(Sy) + rank(S,,).

Proof. According to (1.4) and the definitions of H,, H, and H,; in (1.3), when
rank(A) = n,

rank(S;) = rank(H;) =n — 1,
rank(S,) = rank(H,) =n — k,

rank(S,) = rank(H,) = k — 1,

thus, it holds that
rank(S;) = rank(Sy) + rank(S,,).

Denote

3.1 Preliminaries

40

where

ERY, i=1, -

e R",
1 1

Then we have the following new expression of scatter matrices.

€; =

Lemma 3.3.

k.

Sy = A(l — £)AT,
81 51
Sy=A —&| AT, S, =A|I- AT (3.2)
Sk gk
Proof. By the definition of scatter matrices in (1.1), we have
Si=> (ai—c)(a;—)"
i=1
= Z — —Ae — lAe)
n
= Z a;al l(el AT Ae Z aj + —Aeel AT
i=1 i=1 i=1
= AAT — ZAeel AT
n
= (I - S)AT7
k
Sp = Zni(cl —c)(e; —)T
i=1
S 11 1
= an(—Alel — —Ae)(—Aje; — —Ae)”
i=1 ‘ ‘
F n;
=Y (—Aieie] AT — = Aje;e” AT Aeel AT + n; Aeel AT)
i=1 ‘
e 1
=Y AEA] — —Aee” A"
=1
&
= A —E&| A",

3.1 Preliminaries

41

and

&
Su=S—-S=A|lI-| .. AT
Ek

directly follows from (1.2). O

Note that
51 gl
I —-£, -&, I— ,
gk gk:

are orthogonal projections in R". Let R;, R, and R, be the range spaces of the
above orthogonal projections, respectively. It can be shown that R; = Ry ® R
with

dim(R;) =n—1, dim(Ry) =k —1, dim(R,)=n—k.

We now devise an orthogonal basis in R™ containing partitions that span the

subspaces Ry, and R,,. Define Householder transformations

1 ;] 11— /n;] !
H, = 1— 1 /i — /ni 1 /A i — i |, i=1,- Lk,
I I
and
/i~ Vi Neea)
u=r—|| V™ | v ||| Y | e v
Notice that matrices H; (i = 1,--- , k) and ‘H are orthogonal that satisfy

Hi=HI (i=1,--- k), H=H",

3.1 Preliminaries

42

M (ei/ /i)

R —| 1 S n; — /i :0
[]| /v B R N [v

fori=1,---,

=
QO
, B
o,

HT

S

3

5

n — /nng n— Vi
N v

= [V v | - Vi | =

Let P be the permutation matrix obtained by exchanging the (Z;;ll n;+1)-th

column and the i-th column (for i = 2,--- k) of the n x n identity matrix, but

otherwise leaving the order of the remaining columns unchanged. Consequently,

[

T ~

& Hy

=X

Hk 5k Hk

fHT

LA

3.1 Preliminaries 43

and
T
Hq ” Hi ”
p[] ¢ P]
I 1
Hk ch
7{{61
1| H" U
:ﬁ[I] PrL s e eg%’“]P[I]
?{fek

L)

which give that

Hl Hl
g K I L A
1 1 I, 4
Hk Hk
(3.3)
H, s H
p[*] o P [H]
1 1
Hk 5k Hk
— Ok
= [n’j : (3.4)
and
Hl |)T (|:gl]) Hl
H H
P] —& P]
1 1
Hk_ gk Hk
_01 -
= Iy (3.5)
On—k

3.1 Preliminaries

Now, we have another formation of scatter matrices S;, S, and .9,,,.

Corollary 3.4. Denote
Hy
A Ay 4] = A P
Hy,

"
,] , (3.6)

where Ay € R™, Ay € R™ -1 and Ay € R™ %) Then
T
Sy =AY, Sy= AT, Si=[Ar A [Al (3.7)

Proof. Follows from (3.3)-(3.5), Lemma 3.3 and the definition of A;, Ay and Az in
(3.6), we have

&
S, = A —£ A"
Er
04 -
= [Al A, A3] Iy [Al As A3}
O —rk
— A,AT,
&
S,=Al|T1- AT
Er
= [/h As A3] ! B [Al Ay A3] :A3A§a
and
S, = A(I — E)AT
4 4 4|’ 5 A A

3.1 Preliminaries

45

Next, we present a useful lemma of generalized singular value decomposition
(GSVD) developed by Paige and Sauders [72], which was originally defined by Van
Loan [88].

Lemma 3.5 (GSVD). [72] Suppose two matrices X € R*** and Y € R**"2 are
given, then there exist orthogonal matrices U € R and V € R"**"? and a

nonsingular matriz ® € R*** such that
U'xXTe =[5 0|, VIyTe=[a o
where

p O(Vr'erp)Xp

5 = 0 . Q= =
I

O(Vl —p—8) X (y—p—s) o

and XTE + QTQ = I, where v = rank [X Y], p = v —rank(Y), and s =
rank(X) + rank(Y) — v. Diagonal matrices

th &1
0= 5 ==)

05 &s

satisfy
1>‘912"'203>07 0<£1§§£s<17

and

912+€i2:1’
fori=1,---s.

Lemma 3.6. When rank(A) =n, forl >k —1,

trace(S(MS,) = tuax ltrace((GTStG)(+)GTSbG) =k—1.
6 m X

3.1 Preliminaries 46

Proof. By adopting GSVD in Lemma 3.5 to H, and H,,, we have

DIEDY
dT'S,® = dTHUUTHI & = []
Oy

Ip
@2
Ov—p—s
Opn—ry
and
QrQ
'S, & ="H,VVTHI® =
Oy
Op
52
I'yfpfs
Oy

where, as defined in Lemma 3.5, ® € R™ ™ is nonsingular, U € R¥* and V ¢
R™™ are orthogonal, > € R, € R"7 O € R*** and = € R*** are diagonal,
with 7 = rank [Hb Hw} = rank(S;), p = y—rank(H,), s = rank(H,)+rank(H,)—
~. In addition,

I
7S, d = oT'S,d + d7S, o = |7 :
Om—ny
Furthermore, when rank(A) = n, by Lemma 3.2,
rank(®7S;®) = rank(®’S,®) + rank(®’ S, ®)

holds, which results in s = 0 and p = rank(H,) = rank(S,) = k — 1. Thus,

I
TS = | " :
Omkarl

and

trace(St(+)Sb) = trace((®75,®) DTS, d) = k — 1.

3.2 A New, Efficient and Simple LDA (LDA/QR)

For any G € R™!| we have
I
GTSA;Z(ﬂth¢?$¢¢—%;:gﬂ”[”]g,
m—y

I
GTsuzzzGT¢—T¢T5y$¢—%;::gT[k?1

g,
Omkarl

where G = ®71G. Let
G1
G=1G,| e R™
g3
be the partition of G so that G; € RF=1Dx! G, € RO*FDxl and G; € RM=X! It

follows that

T
GTStG = gl] [gll = ngg1 + QQTQQ, GTSbG = nggl

2 2

Hence, by Lemma 3.1, we have

trace((GT S,G)PGTS,G) = trace((GT Gy + GLG,)HGLGy)
< trace((G7'G,)MGrG,)

<k-1,

when [> k — 1. Let Go = 0, G3 = 0 and G; be any full row rank matrix, then
G = ®4G is the one such that

trace((GT9,G)MGT$,G) = trace(S\ P 9y) = k — 1.

By now, we have proved that when rank(A) = n there is a matrix G such that

trace((GT$,G)HGTS,G) achieves its maximum trace(S\S,) = k — 1. O

3.2 A New, Efficient and Simple LDA (LDA/QR)

In this section, a new, efficient and simple algorithm to solve the linear discriminant

analysis problem

G = arg max trace((GTS,G)HGTS,G) (3.8)

GeRmxl

3.2 A New, Efficient and Simple LDA (LDA/QR)

is proposed, under a mild condition that rank(A) = n. Relationship of this new
implementation of LDA, called LDA/QR, to the eigen-decomposition of St(Jr)Sb is
derived, and a comparison of LDA/QR with ULDA/QA [22] is studied.

3.2.1 New Implementation of LDA

Lemma 3.7. Denote

E: .. c RnXk
€k

as the indicator matriz, then any solution G € R™** of linear system
ATG = E, (3.9)
satisfies rank(G) = k, GTS,G = 0, and GT'S,G = GT S,G.
Proof. For any G € R™*¥ satisfies (3.9), we have
rank(G) > rank(A”G) = rank(FE) = k,

thus, rank(G) = k. By Lemma 3.3, the new form of scatter matrices, it holds that

&
G'S,G=GTA|T- ATG
Ex
&
=FET |- E
Ex
1 e 1 el 17

Nz Nz

= FE'E — ET E
N ol

-T
ny NG NG
N
0

3.2 A New, Efficient and Simple LDA (LDA/QR)

49

Therefore, scatter matrices equality (1.4) implies that

GTS,G = GTS,G.

Theorem 3.8. Assume rank(A) = n, let G € R™* satisfy (5.9), then
trace((GTS,G)PGTS,G) =k — 1,

i.e., G is an optimal solution of LDA (5.8). Furthermore, let E € R™* be defined

in Lemma 3.7 and the economic QR factorization of A be
A=QR, (3.10)

where @ € R™*™ is column orthogonal and R € R™ "™ 1is upper triangular and

nonsingular, then

G=QRTE, (3.11)

is the minimum 2-norm solution of LDA (3.8).

Proof. Let G € R™** satisfy (3.9) then by Lemma 3.3, we have

&
GTS,G =GTA —- & ATG
&k
&
=E" ~-&|E
Ex
1 1
1
- R
N N

It is easy to verify that rank(GT7S,G) = k — 1. Together with the results from

Lemma 3.7, we yield

trace((GT 8,G)PGTS,G) = k — 1.

3.2 A New, Efficient and Simple LDA (LDA/QR) 50

Thus follows from Lemma 3.6, any G as a solution of linear system (3.9), is an

optimal solution of LDA (3.8).

Under the condition rank(A) = n, R from QR factorization (3.10) is nonsin-
gular, G defined in (3.11) is the minimum 2-norm solution of linear system (3.9),

thereby it is an optimal solution of LDA (3.8). O

Theorem 3.8 leads to the following new implementation of LDA.

Algorithm 3.1. (LDA/QR)

Input: Data matriz A € R"™™ of full column rank with cluster label, size of each
class n; (i =1,--- k), cluster number k.

Output: Transformation matriz G € R™*k.
Step 1. Construct

€1 1
E = eR* e =|:|eRM, i=1,-- k.
(&3 1

Step 2. Compute the economic QR factorization of A as

A=QR, QeR™" RecR™.

Step 3. G=Q(RTE).

We now examine the relationship between LDA /QR and the eigen-decomposition

of S,

Theorem 3.9. Assume rank(A) = n. Then eigenspace of St(HSb corresponding
to all nonzero eigenvalues is contained in the range space of the minimal 2-norm

solution G of linear system (3.9) .

Proof. Denote

1
(R Ry Ry =R 1 P
Hy

H
;] : (3.12)

3.2 A New, Efficient and Simple LDA (LDA/QR)

51

where Ry € R™!, R, € R™* =1 and R; € R™*(™%) Let the QR factorization

of [RQ R3] be

 n)

=9

Rio
0
0

Ry
R23 9

0

where @ € R™™ is orthogonal, Ry, € RFEDx(k=1) "and Ry3 € RF*(=k) Gince

rank(A) = n, we have

Set

rank(Ry2) = k — 1, rank(Ry3) =n — k.

Q'R =

Rll
R21
R,

)

where Ry; € REDx1 R, ¢ RMx1 Ry e R, Then

SO,

ie.,

. .
Sy=(QQ | 0 |)QQ
0
Ry Ris
S;=(Q2| 0 Ry
\ 0 0
1

0

S8, = QQ | —RyIRY, 0

S8,QQ | -RTRY,| = QQ

I

0

0

0

)T
R12 R13
0 Ryl
0 0
0
0 (QQ)",
0
I
— Ry R
0

(3.13)

3.2 A New, Efficient and Simple LDA (LDA/QR) 52

1
Hence, the columns of QQ | — R, RT, | span the eigen-space of S (+).S, correspond-
0

ing its all nonzero eigenvalues.

On the other hand,

T
T 7‘[1
R:[Rl R2 Rg] PT
Hy,
T
Riy Ria Rz T Hy

=Ry 0 Ry 7 P ;

R31 0 0 Hk

and so, the minimal 2-norm solution G of linear system (3.9), which is given in

(3.11), satisfies
G=QRTE
Ry Rz Ru

=Q< |Ryy 0 Ry
Ry 0 0 Vi

0 I - - Vi
I (R51R23TR?3 - R?l)RIQT

=QQ | 0 —Ry RL . s HT
_Rng O 2 \/nk
(3.14)
Therefore, Theorem 3.9 follows directly from (3.13) and (3.14). O

3.2.2 Relationship to ULDA

Uncorrelated LDA (ULDA) was originally proposed in [55] for extracting feature
vectors with uncorrelated attributes. Later on, the ULDA in [55] was general-

ized by Ye et. al. in [96, 98] for undersampled problems based on simultaneous

3.2 A New, Efficient and Simple LDA (LDA/QR) 53

diagonalization of scatter matrices. The new criterion in [96, 98] is

G = arg GeRmXIlI,I%XTStG:I trace((GT5,G) P (GTS,Q)). (3.15)

In [98], two SVDs are involved in the new proposed ULDA algorithm, which is
expensive for large and high-dimensional data sets. To further improve the per-
formance of ULDA, Chu et al. [22] characterized all solutions of the optimization
problem (3.15) and solve it by applying QR factorizations only. We denote this
ULDA algorithm as ULDA/QR, and show it in Algorithm 3.2, for details, please
refer to [22].

Note that the optimal solution obtained in Algorithm 3.2 is a specific solution

of the optimization problem (3.15) with minimum Frobenius norm.

Algorithm 3.2. (ULDA/QR)
Input: Data matric A € R™*™ with cluster label.
Output: Transformation matriz G € R™*!.

Step 1. Compute economic QR factorization of data matriz A as

A=UR, UeR™", ReR™"™

Step 2. Denote

M, "
[Ri R, Rg):=R P{]],
Hy,

where Ry € R, Ry € R™*=D Ry e R0 P H, (i=1,--- k) and
H are defined in section 3.1.

Step 3. Compute the economic QR factorization of [Re Rs] with column pivoting
[Ry R3] = QR,
where @ € R™7, R € RV v =rank [Ry Rj].
Step 4. Compute the economic QR factorization of RT be

RT = PTAT, PeR™™ D AeR™.

3.2 A New, Efficient and Simple LDA (LDA/QR)

Step 5. Denote P, := P(:,1: k — 1) and compute the economic QR factorization
of Py with column pivoting be

P, = VII,
where V € R4, 11 € R**FY | g = rank(P,).
Step 6. Solve the upper triangular linear system of equations

ATY = V.

Step 7. G =U(QY).

The relationship of LDA/QR to ULDA/QR is summarized in the following

theorem.

Theorem 3.10. Assume rank(A) = n, let G € R™* be a solution of linear system
(3.9), there exists a full column rank matriz

-1
N
U = H* 0 e RW* (1),
Iy

V1
such that GV is a solution of ULDA (5.15), where H € R*** is a Householder

transformation defined in section 3.1.

Proof. 1f G is a solution of linear system (3.9), by Lemma 3.7 and using the proof

in Theorem 3.8, we have

G'S,G =G" S,G

-nl (Al
1
- ||l
L N N
[/ vm NG

3.2 A New, Efficient and Simple LDA (LDA/QR)

55

furthermore,
VG S,GY = U'GTS,GY

- [o I,H}H j

n

:[0 Ik—l} I—|H| [/Vn||H]| P |/Vn [0]

-1 AT
11 |1
01 10 0
= [0 [k71i| =1 11. = Ir1.
. .]k—l
Of {0
Therefore, GV is an optimal solution of ULDA (3.15). O

Theorem 3.10 implies that our new proposed solution G of LDA (3.8) is equiv-
alent to the solution of ULDA (3.15) scaled by a full column rank matrix.

3.2.3 Complexity Analysis

We close this section by analyzing the time complexity of the batch algorithm
LDA/QR as well as ULDA/QR [22].

Both of these two algorithms apply economic QR factorization rather than SVD
or GSVD. As compared in [22], ULDA/QR is less expensive than another famous
ULDA algorithm in [96, 98]. We summarize in Table 3.1, the computational cost
of LDA/QR shown in Algorithm 3.1 and ULDA/QR [22] shown in Algorithm 3.2,
where there are n samples of k£ classes in m dimension, v is the rank of S; and ¢
is the rank of S;,. The cost for some matrix computation such as economic QR
factorization and solving an upper triangular linear system are given in Appendix
B. Note that when the training set is of full column rank which is satiesfied in

many applications, v = rank(S;) = n — 1 and ¢ = rank(S,) = k — 1. For this case,

3.3 Incremental Implementation (ILDA/QR)

we can observe from Table 3.1 that the main cost of ULDA/QR and LDA/QR are

4mn?+44n? and 4mn? — in3, respectively, which implies that LDA /QR outperforms

3

ULDA/QR and the gap is obvious when the sample size n is large.

Table 3.1: Computational complexity (flops) of algorithms ULDA/QR and

LDA/QR

The computational cost of Algorithm ULDA/QR:
Step 1: 4mn? — %nS
Step 2: O(n?)

3
Step 4: 4(n—1)y* —37°

Step 6: 2mngq + 2nvyq + +%q

Step 3: 2n(n—1)* = 2(n — 1) + 4n(n — 1)y — 27*(2n — 1) + 37°

Step 5: 2y(k = 1) = 2(k = 1)* + 4y(k — 1)g — 2¢*(y + k — 1) + 3¢°

The computational cost of Algorithm LDA/QR:
Step 1: n

Step 2: 4mn? — %nS

Step 3: 2mnk + n?k

3.3 Incremental Implementation (ILDA/QR)

In this section, we study the incremental learning of LDA /QR proposed in section

3.2. We will adopt the following convention in rest of this section. For any variable

X, its updated version after the insertion of new samples is denoted by X. For

example, the data matrix A is changed to A, and the number, n;, of elements in

the i-th class is changed to n;.

With the insertion of new data, the indicator matrix F, data matrix A and op-

timal transformation G will change accordingly. From the batch method LDA/QR

presented in Algorithm 3.1, the incremental updating of LDA/QR proceeds in

three steps:

3.3 Incremental Implementation (ILDA/QR)

57

e Updating of indicator matrix F;
¢ QR-updating of data matrix A;

e Updating of optimal transformation G.

3.3.1 Sequential Incremental Implementation

Let x be the new inserted sample, which belongs to the /-th class. Without loss of
generality, let us assume that we have data aq, - - - , a, from the 1st to the kth class,
just before the new data is inserted. This can be done by switching class labels
between different classes. In terms of the learning of batch algorithm in section 3.2,
matrix F is closely related to the class of new inserted sample, so is GG, therefore,
the updating of matrix £ and optimal transformation G are demonstrated in two

distinct cases:
e 1 belongs to an existing class, i.e., 1 </ < k;
e 1 belongs to a new class, i.e., £ > k.

As will be seen later, the updated F or G are different for these two cases. While
the updating of data matrix A is just to accommodate the new inserted sample,
there is no class label involved in the QR-updating step. So the updating of the

QR factorization of data matrix A is unified into one form.

Updating of £

This section will focus on the updating of the indicator matrix E defined in Lemma
3.7 for two different cases: the new inserted sample is from an existing class; the

new inserted sample is from a new class.
I. Insertion of a new sample from an existing class

Before we update the indicator matrix E, the updating of three scatter matrices

with the new expression in (3.2) is shown as follows:

3.3 Incremental Implementation (ILDA/QR) 58
Lemma 3.11. When the new data sample x belongs to an existing class, i.e.,
1 < ¢ <k, the updated scatter matrices are
S = A1 - £)A",
&] &
Sy = A & —E|AT, S, =A| T~ & AT

Ex

Ex

where A is the updated data matriz, i.e.,

A= [«41 Ar v A Al
~ T ~ ~
£ = L&t with ¢ = [1 1} ER it = n+1, and & = L&l with & =
T _
[1 1} e R, ng=mny+ 1.
Proof. The proof is similar to the one in Lemma 3.3. [

Let P be the permutation matrix which is obtained by exchanging the i-th

column and the (i — 1)-th column of the (n 4+ 1) x (n + 1) identity matrix, i is

l
=1

chosen from n+1 to Y., n; + 1, then we have the following results.

Theorem 3.12. When the new inserted sample x belongs to an existing class, i.e.,

1<l <k, let
E

T

i=[ad, £=]

, (3.16)

where z € RF is a column vector with the (-th element 1 and the others zero, then

the updated data matriz A and indicator matrz

€1

3
Il
™

~

(&%

3.3 Incremental Implementation (ILDA/QR) 59

satisfy
A=ApP, E=P"E. (3.17)

Assume A or equivalently A is of full column rank, then
ATG=FE & ATG =E, (3.18)

and any G € R™* satisfying (3.18) is an optimal solution of LDA (3.8) with S,
and Sy being changed to S, and Sy, respectively.

Proof. Tt is easy to check that (3.17) holds according to the definition of P and
(3.16). The equivalence of two linear systems in (3.18) directly follows from (3.17).
For the last part, by the proof of Theorem 3.8, it is sufficient to show that

rank(GTS,G) =k —1 and GTS,G =0.

Let G satisfy (3.18), by Lemma 3.11, we have the rank of matrix

_51 -
GT8,G— BT 3 &P
Ex
_nl - _nl_
_ I _
= Ny —% TNy ng - Ng -+ ng| »
ng N
is k— 1, and
_51 -
G'S,G = ET(I - &)JE=E'E - ETE =0.

Ex

3.3 Incremental Implementation (ILDA/QR)

60

From here we have proved that any solution of linear system (3.18) is an optimal

transformation matrix of LDA (3.8). O

Remark 3.2. In our experimental implementation for the incremental algorithm
as will be seen later, the new presented data is inserted into the last column of
the data matriz, which is the same as A exhibit. In the rest of this thesis, for the
case that the new inserted sample is from an existing class, we use A and FE given
in (3.16) to represent the updated data matriz and the updated indicator matriz,

respectively. For convenience, we still denote them as Aand E.

II. Insertion of a new sample from a new class

For the case that the new sample is from a new class, the updating of scatter
matrices: Sy, S, and 5, is given in the following lemma, and the updating of

indicator matrix F is shown in Theorem 3.14.

Lemma 3.13. When the new data sample x belongs to a new class, i.e., { > k,

the updated scatter matrices are

G, — A(I -)AT,

51 81

&
1 1

where A = [A x}, and € = Lee! with e = [1
Proof. The proof is similar to the one in Lemma 3.3.

Theorem 3.14. When the new inserted sample x belongs to a new class, 1i.e.,

>k, k=k+1, the updated E is

~ E
E

(3.19)

3.3 Incremental Implementation (ILDA/QR)

Assume the new data matriz A is of full column rank, then any G € Rk satisfying
linear system

ATG =F, (3.20)

is an optimal solution of (3.8) with Sy and S, being changed to S’t and gb, respec-
tively.

Proof. The proof is similar to the proof of Theorem 3.8.]

QR-updating of A

In this section, we will analyze the updating of QR factorization of data matrix
A under the condition that the data set containing the new inserted sample z is
of full column rank. As shown in the above section for the updating of indicator

matrix, the updated data matrix has the form
i=fa 4

either x belongs to an existing class or x is from a new class. Therefore, the

QR-updating of A is integrated into one case.

Given the economic QR factorization A = QR, where) € R™" and R €

nxn
R™™,

ifa o] =fon = [o A["

We seek vectors ¢ € R™, r € R™ and a scalar a so that
I r
@ o] =led " |
«
with QT¢ = 0 and |q|, = 1. By directly calculating, the last column is

T = Qr+qa,

multiplying both sides by Q7 gives 7 = QT2 and qoo = x — Qr.

3.3 Incremental Implementation (ILDA/QR) 62

fo—-Qr#0,a=|z—-Qr|,=Valez —rTr and ¢ = 229" which result in

«

~ r R
A= 1]
_Q 1
B Q } 1][R
v 1 e 1
r ‘R
= @ q}
: |«
- QR,
the updated QR factorization of A, where
~ mx(n+l) R r (n+1)x (n+1)
Q=1]Q ¢ er . R= cR . (3.21)
a
If x —Qr =0, then a =0,
- R 7 -~
i-fo 1] e
Q q 0 0
is the updated QR factorization of A, where
~ N R r
= [Q q] e R R — c R(HX(n+1)
0 0

Theoretically, any unit vector orthogonal to the range of) could be used for q.

When = — Qr = 0, z is in the range space of (), i.e., in the range space of

A. Therefore, for the case that all data samples are linearly independent, this

situation will not occur, that is, when rank(A) =n+ 1, a # 0.

3.3 Incremental Implementation (ILDA/QR) 63

Updating of G

When the new inserted data sample x belongs to an existing class ¢, 1 < ¢ < k,

from the definition of £ in (3.16), @ and R in (3.21), we have

G=QR"E
_ -7
- |R r -

.«
= RT F
= éTTR—T 1| |7
B [Q] RTE

1 LT —yTRTE)

When the new inserted data sample x belongs to a new class ¢, £ > k, use the
expression of R~7 given in the above equation, the definition of E in (3.19) and Q

in (3.21), we have

G=QRTE
[rT E
=€ Ly TR-T L 1
- RTE
- @ q] L TRTE L

— [QRTE - LgTRTE 1]

= :QR_TE - équQR_TE éq}

= :G— Lq2TG iq] :

3.3 Incremental Implementation (ILDA/QR)

64

Sequential Incremental Algorithm

With the above analysis, the incremental implementation of LDA/QR finally in-
volves in two steps: The updating of orthonormal matrix @) from QR factorization
of data matrix and the updating of optimal transformation G. We call this in-
cremental LDA method as ILDA/QR. The algorithms of ILDA/QR for updating
existing class and new class are shown in the following two separated algorithms,

respectively.

Algorithm 3.3. (ILDA/QR: Updating Existing Class)

Input: Orthonormal matriz Q € R™™ from QR factorization of data matriz,
optimal transformation G € R™* and new sample x from the (-th class,
1</i(<k.

Output: Updated Q and G.
Step 1. Computer = QTx, a = VaTx — rTr, update
Q=1Q (x—Qr)/a].

Step 2. Compute r = —GTx, r({) =r({) + 1 and r = r/a, update

G=G+Q(,n+1)r".

Algorithm 3.4. (ILDA/QR: Updating New Class)

Input: Orthonormal matriz Q € R™™ from QR factorization of data matriz,
optimal transformation G € R™F*, and new sample x from the (-th class,

0> k.
Output: Updated Q and G.
Step 1. Compute r = QTx and o = VaTx — rTr, update
Q=[Q (z—Qr)/a].

Step 2. Letr=Q(:,n+1)/«a, update

G=[G-r@"G) r].

3.3 Incremental Implementation (ILDA/QR)

65

Complexity Analysis

In this section, we analyze the time and memory complexity of the proposed

ILDA/QR algorithm.
In both our updating algorithms of ILDA /QR, the update of () and G involves

in several simple operations including multiplication between a matrix and a vector,
and addition between matrices. Note that, there are no multiplication between
matrices or matrix decomposition. Therefore, the complexity of these operations
is at most O(mn) for each update, where m is the dimension of the data and n is
the sample size. We summarize the precise computational cost of ILDA/QR. for

one single insertion in Table 3.2, where k is the number of classes.

Table 3.2: Computational complexity (flops) of algorithm ILDA/QR

The computational cost of ILDA/QR (Updating existng class):
Step 1: 4mn + 4m + 2n
Step 2: Smk + k

The computational cost of ILDA/QR (Updating new class):
Step 1: 4mn + 4m + 2n
Step 2: Smk+m

To compare the efficiency of ILDA/QR with four existing incremental LDA
algorithms: IDR/QR [102], ILDA/SSS [62, 63], LS-ILDA [69] and ICLDA [70]
shown in Chapter 2, we present the main cost of these five algorithms in Table
3.3. We can observe from Table 3.3 that when the dataset contains limited classes,
IDR/QR is very fast; the time complexity of LS-ILDA and ILDA/QR is linear in
the number of points and linear in the dimension of dataset; the computational
cost of ILDA/SSS and ICLDA are relatively high, especially when n is large. In
addition, using the notations given in Chapter 2, those information that need to
be kept in main memory for incremental learning is summarized in Table 3.4. In

both Table 3.3 and Table 3.4, we assume for ILDA/SSS that the total scatter

3.3 Incremental Implementation (ILDA/QR) 66

matrix is nearly full column rank and the performance of ILDA /SSS approximate

the performance of batch LDA.

Table 3.3: Main computational cost (flops) of algorithms IDR/QR, ILDA/SSS,
LS-ILDA, ICLDA and ILDA/QR for a single insertion

Method Time Complexity
IDR/QR | 2mk?* +91/3k3
ILDA/SSS || 2mn® + 12n°
LS-ILDA 14mn 4 Tmk
ICLDA 2mn? + 20n?
ILDA/QR || 4mn + 5mk

Table 3.4: Memory cost of algorithms IDR/QR, ILDA /SSS, LS-ILDA, ICLDA and
ILDA/QR

Method Data Space Complexity
IDR/QR | C, Q, R, W, N mk +mk + k> + k> + k
ILDA/SSS || Uy, Ay, Vi, Ty mn—1)+n—-1)+m(k—1)+ (k—1)
c, C;, N +m+mk+k
LS-ILDA H,, Ht(+), V.G ¢, N|mn+mn+n+mk+m+k
ICLDA Hy,, H,, HY HZ mk 4+ mn +m(n — k)
Q? Hyw,Hp +mn—1)4+mn—1)+ (n—1)n
P, P +(n—Dk+(n—-1)(n—k)
Ry, ¢, C, N +n—1)k—1)+m+mk+k
ILDA/QR | @Q ,G mn + mk

3.3.2 Chunk Incremental Implementation

In this section, we study another case of the incremental learning of LDA/QR
that the new samples are acquired in a chunk way. The same as we assumed in
sequential ILDA/QR, we have data A = [al an} from the 1st to the kth

classes, just before the new data sets are inserted. Let X = [ml %} be the

3.3 Incremental Implementation (ILDA/QR)

67

new inserted samples and ¢; be the class label of z;, i = 1,--- , s, and assume that
after the insertion of data X the new data matrix is of full column rank.
After incorporating X, the new data matrix A = [A X] contains totally

k (k> k) classes of samples and the new indicator matrix has the form

E 0 :
e RmF)xk, (3.22)
Z

E =
where Z = [zl zS}T eR*Fand z; € R* (i=1,---,5) is a unit vector with
the /;-th element 1.

Given the economic QR factorization of A = @QR, where € R"™"™ and
R € R™™ let the economic QR factorization of X — Q(QTX) be

X —Q(Q"X) = QR,

where Q € R"™** is orthonormal and column orthogonal to) and R € R**s is
upper triangular. It is easy to show that when A is of full column rank, R is

nonsingular. Therefore, the updated QR factorization of Ais

A=[a]
- lor 4]
r R QT™x
-0 (I—QQT)X][¢]
- I
oo [r orx
=le " .
= QR,
where
T
Q: |:Q Qi| ERmX(n+s)’ R: f QRX GR(n+S)X(n+S)7

and R is nonsingular.

3.3 Incremental Implementation (ILDA/QR) 68

Furthermore, the updated transformation matrix is

G=QR"E
5 'R QTA x|
i R
T RT E 0
—¢ —RTXTQR™™ R Z
) [Q Q] RT [E o]

RTZT - RTATQRT B 0]
—QRT [E 0} +QRTZ - QR TXTQRT [E O}

— [G o} +QRTZ-QRTXT [G 0}

Based on the above analysis on the updating of E, QR factorization of A and
G, the algorithm for chunk ILDA /QR is summarized in the following.

Algorithm 3.5. (Chunk ILDA/QR)

Input: Orthonormal matrix Q € R™™ from QR factorization of data matrix,
optimal transformation G € R™* and new samples X = [r1 -+ xy] with
class labels €;, i =1,--- ,s.

Output: Updated Q and G.

Step 1. Construct Z € Rs<F by

where

Step 2. Compute economic QR factorization

A A

X —Q(Q"TX) = QR,
where Q € R™** and R € R¥**. Update

~ ~

Q=[Q Q.

3.3 Incremental Implementation (ILDA/QR)

69

Step 3. Update

~

G=[G-QRTXTQ) 0] +QRTZ).

Remark 3.3. With the above chunk incremental updating algorithm and two se-

quential incremental updating schemes presented in Section 3.5.1, the incremental

method ILDA/QR works as follows:

e For a given initial training dataset, use batch algorithm LDA/QR in Algo-
rithm 3.1 to compute and save the orthonormal matriz () from the economic

QR factorization of the data matrix A and the transformation matriz G.

o When a new sample x is inserted, determine whether it is from an existing
or a new class. If it is from an existing class, update the orthonormal matriz
Q and the transformation G by applying Algorithm 3.3; otherwise update the
orthonormal matriz Q and the transformation G by applying Algorithm 3./.

o When a chunk of new samples x1, xa,--- ,xs are inserted, update the column
orthogonal matrix Q) and the optimal transformation G by applying Algorithm
3.5.

e The above procedure is repeated until all points are considered. Then the

optimal transformation is the final updated G.

The ILDA/QR algorithm follows the general criteria of the incremental learn-
ing algorithm [76]:

e [t is able to learn additional information from new samples;
e [t does not need to process the original data;
e [t preserves the previously acquired knowledge;

e [t can accommodate new classes that may be introduced with new data.

3.4 Numerical Experiments 70

We summarize the computational cost of chunk ILDA/QR for the insertion of
a chunk of s samples in Table 3.5, where % is the number of classes of the new data

matrix.

Table 3.5: Computational complexity (flops) of algorithm Chunk ILDA/QR

The computational cost of Chunk ILDA/QR:

4.3
38

Step 3: 4msk + mk + sk + 2msk + s2k

Step 2: 4mns + ms + 4ms? —

To compare the efficiency of chunk ILDA/QR with IDR/QR [102], ILDA/SSS
(62, 63], LS-ILDA [69] and ICLDA [70] for the case that new data samples are
inserted as a chunk, we present the main cost of these five algorithms in Table 3.6.
Those information that need to be kept in main memory for incremental learning
is the same as we shown in Table 3.4. In Table 3.6, we assume for ILDA/SSS
that the total scatter matrix is nearly full column rank and the performance of
ILDA/SSS approximate the performance of batch LDA.

Table 3.6: Main computational cost (flops) of algorithms IDR/QR, ILDA/SSS,
LS-ILDA, ICLDA and ILDA/QR for a chunk insertion (s samples)

Method Time Complexity
Chunk IDR/QR 2mk? + 26mks + 91/3k3
Chunk ILDA/SSS || 2m(n + s)? + 12(n + s)3
Chunk LS-ILDA 14mns + Tmks

Chunk ICLDA 2mn?s + 20n3s

Chunk ILDA/QR. | 2ms(2n + 2s + 2k + k)

3.4 Numerical Experiments

In this section, we evaluate the efficiency of our new proposed incremental al-
gorithm ILDA/QR by comparing with batch LDA algorithms: LDA/QR and
ULDA/QR[22], and four existing incremental LDA algorithms: IDR/QR [102],

3.4 Numerical Experiments

71

ILDA/SSS [62, 63], LS-ILDA [69] and ICLDA [70]. The performance is mainly
measured by the computational cost (seconds) and the classification accuracy (as
a percentage). Before reporting the experimental results, we discuss the testing

databases and the experimental setting.

Experimental Platforms: All experiments were conducted by using a Sun
v40z with 2.4GHz Opteron 850 CPUs and 32 GB RAM computer in Center for

Computational Science and Engineering, National University of Singapore.

Experimental Data Sets: Our experiments were performed on the following
20 real-world data sets from three different sources, including text document, face
image and gene expression. The structures of these datasets are summarized in
Table 3.7, where m is the dimension of the dataset, n is the total sample size and
k is the number of classes, a more detailed description of these data is presented

in Appendix C.

For all data sets used in this section, we perform our study by repeated random
splitting into two groups using the following algorithm: within each class, we ran-
domly reorder the data and then for each class with size n;, the first [0.5n;| data
are sorted into Group I and the others are sorted into Group II, whereby [-] is the
ceiling function. Initially, we select the first [0.5k]| classes of samples from Group
I for training, while the others are inserted into the training set one by one incre-
mentally for sequential incremental implementation and chunk by chunk for chunk
incremental implementation. Incremental learning is completed until all samples
in Group I are added into the training set. The classification accuracy of the final
updated transformation matrix is then computed using Group II as the test data.
The computational cost is the CPU time of updating the transformation matrix
for one single insertion (sequential incremental experiment) or a chunk insertion
(chunk incremental experiment). For each algorithm, to reduce the variability, this

process is repeated for 10 times, and the average results are recorded.

K-Nearest Neighbor method (K-NN) [30] is a popular method for classification

that gives the maximum likelihood estimation of the class posterior probabilities

3.4 Numerical Experiments

72

by finding the closest K training points according to some metric, e.g., Euclidean,
Manhattan, etc. In our experiments, K-NN with K = 1, which predicts the same
class as the nearest instance in the training set, measured by Euclidean distance
is used as classification algorithm. CPU time in this experiment is recorded by
MATLAB commands tic and toc, which provide the time elapsed between their

points of usage.

Table 3.7: Data Structures

Type Data m n k
Kla 21839 | 2340 | 20
K1b 21839 | 2340 | 6
Text Document | T'r12 5804 | 313 | 8
Tr23 5832 204 |6
Wap 8460 | 1560 | 20

ARs0x40 2000 | 1680 | 120
AR50x45 2250 | 1680 | 120

Feret 6400 | 1000 | 200
ORLs3y30 1024 | 400 | 40
Face Image ORLgsxsa 4096 | 400 | 40

Palmprint || 4096 | 600 | 100
Yalesayuso 1024 | 165 | 15
Yalegsxpa 4096 | 165 | 15
YaleB 32256 | 2424 | 38
Brain 5H97 | 42 5
Colon 2000 | 62 2
Leukemia || 3571 | 72 2
Lymphoma || 4026 | 62 3
2
4

Gene Expression

Prostate 6033 102
SRBCT 2308 | 63

3.4 Numerical Experiments

73

3.4.1 Experiments for Sequential ILDA/QR

In the experiment for sequential ILDA /QR, new data samples are inserted into the

training set one by one.

Comparison with Batch LDA

In this experiment, we compare the performance of ILDA/QR with its batch ver-
sion LDA/QR and another LDA-based batch dimensionality reduction algorithm:
ULDA/QR [22] which is summarized in Algorithm 3.2.

For batch algorithms: LDA/QR and ULDA/QR, when a new data sample is
inserted, the construction of optimal transformation G is achieved from scratch.
That it, either LDA/QR or ULDA/QR will repeat the learning from the begin-
ning whenever one additional sample is presented, and the knowledge acquired in
the past is discarded. The CPU time for LDA/QR and ULDA/QR is the total
time of computing the optimal transformation. While for incremental algorithm,
ILDA/QR, the optimal transformation is updated from the previously obtained
information when a new sample is added. Thus, the CPU time for ILDA/QR to

construct the optimal transformation is the updating time.

The results of mean classification accuracies of the final optimal transformation
matrix and 10 times’ standard deviation are shown in Table 3.8. To give a concrete
idea of the benefit of using incremental method from the perspective of the com-
putational efficiency, we show a comparison on the execution time of ILDA/QR
with LDA/QR and ULDA/QR for each single updating in Figures 3.1-3.4. In the
Figures, the horizontal axis shows the number of new inserted data items, and the
vertical axis indicates the CPU time (seconds in logarithmic scale) of computing

the transformation matrix.

Main observations are as follows:

e ILDA/QR achieves the same accuracies as that of LDA/QR, which coincides

with our theoretical analysis that our new proposed incremental algorithm

3.4 Numerical Experiments

ILDA/QR is an exact scheme of LDA/QR.

e ILDA/QR and LDA/QR are comparative with ULDA/QR in terms of clas-
sification accuracy. It is interesting to note that ILDA/QR or LDA/QR
achieves higher accuracies than ULDA/QR for the text document datasets.

e Considering the execution time, ILDA/QR is much faster than LDA/QR and
ULDA/QR. Indeed, for a single updating, the computational complexity of
LDA/QR is 4mn? — %n‘g and ULDA/QR is 4mn? + 4n3, while ILDA/QR
only takes 4mn flops. As more new samples are inserted, that is, the sample
size n increases, the speed-up of incremental algorithm ILDA/QR over batch
algorithms LDA/QR and ULDA/QR keeps increasing. Generally speaking,
LDA/QR outperforms ULDA/QR, especially when n is large, which can be

explained by their computational complexity.

Table 3.8: Comparison of ULDA/QR, LDA/QR and ILDA/QR

Data Method Accuracy | Standard Deviation
ULDA/QR 80.34 0.63
Kla LDA/QR 82.37 0.84
ILDA/QR 82.37 0.84
ULDA/QR 95.87 0.50
K1b LDA/QR 96.28 0.53
ILDA/QR 96.29 0.52
ULDA/QR 76.43 3.31
Tri2 LDA/QR 83.05 3.43
ILDA/QR 83.05 3.43
ULDA/QR 74.40 3.04
Tr23 LDA/QR 80.90 2.34
Continued on next page

3.4 Numerical Experiments

75

Table 3.8 — continued from previous page

Data Method Accuracy | Standard Deviation
ILDA/QR 80.90 2.34
ULDA/QR 76.40 1.03
Wap LDA/QR 80.05 1.45
ILDA/QR 80.05 1.45
ULDA/QR 95.87 0.77
ARs50%40 LDA/QR 95.98 0.81
ILDA/QR 95.98 0.81
ULDA/QR 79.15 0.78
ARs50x45 LDA/QR 79.36 0.70
ILDA/QR 79.36 0.70
ULDA/QR 69.88 1.63
Feret LDA/QR 70.28 1.46
ILDA/QR 70.28 1.46
ULDA/QR 91.25 1.63
ORLs3sy32 | LDA/QR 91.35 1.55
ILDA/QR 91.35 1.55
ULDA/QR 94.65 1.52
ORLgsxes | LDA/QR 94.00 1.38
ILDA/QR 94.00 1.38
ULDA/QR 99.27 0.33
Palmprint | LDA/QR 99.27 0.33
ILDA/QR 99.27 0.33
ULDA/QR 78.53 2.70
Yalesayso LDA/QR 78.53 2.56
ILDA/QR 78.53 2.56
ULDA/QR 90.13 2.54
Yalegsxpa LDA/QR 90.93 1.67
ILDA/QR 90.80 1.63
ULDA/QR 93.29 1.28

Continued on next page

3.4 Numerical Experiments

76

Table 3.8 — continued from previous page

Data Method Accuracy | Standard Deviation
YaleB LDA/QR 94.23 1.31
ILDA/QR | 94.23 1.31
ULDA/QR 80.00 5.55
Brain LDA/QR 81.90 5.13
ILDA/QR 81.90 5.13
ULDA/QR 84.84 3.24
Colon LDA/QR 83.87 4.08
ILDA/QR 83.87 4.08
ULDA/QR 97.14 1.81
Leukemia | LDA/QR 97.43 2.00
ILDA/QR 97.43 2.00
ULDA/QR || 100.00 0.00
Lymphoma | LDA/QR 97.00 3.14
ILDA/QR 97.00 3.14
ULDA/QR 91.57 2.78
Prostate LDA/QR 91.57 2.78
ILDA/QR 91.57 2.78
ULDA/QR 97.74 2.07
SRBCT LDA/QR 98.06 2.14
ILDA/QR 98.06 2.14

3.4 Numerical Experiments 77

T T T T T T T 10° F T T T T T T T]
““““ ULDA/QR oo ULDA/QR
- — —LDA/QR) - - —LDA/QR
ILDA/QR : S ILDA/QR
10 b] = .1
4 410 | 9
2 2
o o
S 3
o Q
) [
o o
£ £
[[
10° i o
10 1
i i ! . . h . . .
1 51 101 151 201 251 301 351 399 1 21 41 61 81 101 121 141 158
Number of inserted samples Number of inserted samples
(a) CPU time for Kla (b) CPU time for K1b
T T T T T T T T T T T T T
““““ ULDA/QR < i ULDA/QR
- — —LDA/QR N g il T oweAQR e]
ILDA/QR BGIaR g ILDA/QR P = -~
I Y Rl
s [WSSiie VL
A b2 PSRt
L e
107 F] Rt
7 z [
3 kel
2 2
o o
S S
] r u
~ S 2%
o L o
5 [£
[[
2 2
10°F E w0]
1 15 29 43 57 71 85 99 107 1 6 11 16 21 26 31 34
Number of inserted samples Number of inserted samples
(c¢) CPU time for Tr12 (d) CPU time for Tr23
T T T T T T T T T T T T T T
““““ ULDA/QR 1r ULDAIQR
- — —LDA/QR - - -LDAQR |
ILDA/QR ILDA/QR RTNTL
““““““““““““““““““ e 000 10° | P IR
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ R e
- _—r
— .o & .,n\\w""""'” ’
g 10 ¢ q 0 [owre
2 2
<] S
3 S
1 o
o 22
-1
£ gy]
[[
107F E
107 E
T n
1 29 57 85 113 141 169 197 223 1 54 107 160 213 266 319 372 420
Number of inserted samples Number of inserted samples

(e) CPU time for Wap (f) CPU time for AR5ox40

Figure 3.1: Comparing the CPU time of ULDA/QR, LDA/QR and ILDA/QR
(measured in log scale)

3.4 Numerical Experiments

78

Time (Seconds)

Figure 3.2: Comparing the CPU time of ULDA/QR, LDA/QR and ILDA/QR

““““ ULDA/QR
- — —LDAIQR
ILDA/QR -
10° b JI P b
bwpt? VI
@ ‘“’\,f\l -
2
o
8
L3
(4
2 107} 1
E
107
1 54 107 160 213 266 319 372 420
Number of inserted samples
(a) CPU time for ARs50x45
1071 F T T T T T T T 3
““““ ULDA/QR
- — —LDAQR
ILDA/QR
PRGEPENEN
== 7
2 -7
8
2
8
& 107 E
o
£
E
10’3L .))]

1 14 27 40 53 66 79 92 100
Number of inserted samples

(¢) CPU time for ORL32x32

““““ ULDA/QR
- - —LDAQR
ILDA/QR

10 & L L

. d
1 20 39 58 7 96 115 134 150
Number of inserted samples

(e) CPU time for Palmprint

(measured in log scale)

““““ ULDA/QR
- - —LDA/QR
ILDA/QR
. 10°
0
kel
2
o
S
@
2
o
£
E
107 3
1 39 7 115 153 191 229 267 300
Number of inserted samples
(b) CPU time for Feret
T T T T T T T
““““ ULDA/QR
- — —LDA/QR
ILDA/QR
U
107F Lpts T TN]
L e T
& o 2
=] Loy~
2
o
S
Q
o
o
£
E
107 9
f 14 27 40 53 66 79 92 100
Number of inserted samples
(d) CPU time for ORLgaxe4
T T T T T T
““““ ULDA/QR
- - —LDA/QR
102H ILDA/QR c]
AAAAA PP
—~ [e s>
g | Sea--
2 L_ -
8
Q
[
o
£
=
107 9
.
1 7 13 19 25 31 37 42

Number of inserted samples

(f) CPU time for Yalesaxsa

3.4 Numerical Experiments

““““ ULDA/QR ©ii ULDA/QR

- — —LDA/QR 5 || - - = LDA/QR
ILDAIQR 1071 ILDAIQR]
g s g 10" | i
) - 2
g g
F o F
10° b 9
1 % £3 £9 2‘5 3‘1 3‘7 42 1 7‘7 1é3 229 365 32;1 457 Sé3 608
Number of inserted samples Number of inserted samples
(a) CPU time for Yalegaxea (b) CPU time for YaleB
““““ ULD;X/QR ‘ ‘ ‘ ULDAIQR ‘ ‘ ‘ ‘ ‘
- — —LDA/QR - — —LDA/QR
ILDA/QR ILDA/QR
3 L ommm S 10+ Lt T 1
@ e o [e V-
o 23 R
@ o [ot -7
£ £ -7
[S _-
10°F
1 2 3 a 5 6 1 . 7 0 1 6 1920
Number of inserted samples Number of inserted samples
(¢) CPU time for Brain (d) CPU time for Colon
““““ ‘ULDA/QF‘% ‘ ‘ ‘ ‘ ‘ 102H e ULD‘AIQR ‘ ‘ ‘ 1
- — —LDA/QR - - —LDA/QR
0?2 ILDA/QR ILDA/QR
1021 e
S Phe S
@ o 2
o [
o o
£ £
[[
10° 107 J
v 4 7 10 13 15 19 2 1 2 3 . 5 o
Number of inserted samples Number of inserted samples
(e) CPU time for Leukemia (f) CPU time for Lymphoma

Figure 3.3: Comparing the CPU time of ULDA/QR, LDA/QR and ILDA/QR
(measured in log scale)

3.4 Numerical Experiments

80

““““ ULDA/QR ©ii ULDA/QR

- — —LDA/QR - - —LDA/QR
ILDA/QR ILDA/QR
2107} W‘/u"”ﬂy\‘/ 2 P o
S P s [LT
§ | A
) o -
g e [
S E 107
10’3 I L L L L L | L L L L L L
1 5 9 13 17 21 2526 1 3 5 7 9 11 13 15 16
Number of inserted samples Number of inserted samples
(a) CPU time for Prostate (b) CPU time for SRBCT

Figure 3.4: Comparing the CPU time of ULDA/QR, LDA/QR and ILDA/QR
(measured in log scale)

Comparison with Some Existing Incremental LDA

In this experiment, we compare the performance of our new proposed incremental
algorithm ILDA/QR with that of four existing incremental LDA: IDR/QR [102],
ILDA/SSS [62, 63], LS-ILDA [69] and ICLDA [70].

For ILDA/SSS [62], we used the MATLAB code written by one of the authors
on the website [61]. While for IDR/QR [102], LS-ILDA [69] and ICLDA [70], we
wrote the MATLAB codes that follow their algorithms presented in Chapter 2.
As we mentioned in Chapter 2, ILDA/SSS has three parameters: the threshold
for significant components of the total scatter matrix, the threshold for significant
components of the between-class scatter matrix and the threshold for the discrim-
inative components. The authors of ILDA/SSS did not give the best parameter
setting either in the paper or on the website, we used the same threshold 0.1 for
these three parameters as Liu et. al. selected in [69], which enables the algorithm
to achieve its best performance. The regularization parameter p in IDR/QR was

set to be 0.5, which produced good overall results in [102].

The execution time for incremental algorithms in this experiment is the total

CPU time of updating the optimal transformation matrix in a single insertion,

3.4 Numerical Experiments

81

and the classification accuracy is of the final transformation when incremental
updating is completed. The results of mean classification accuracies of 10 times’
and corresponding standard deviation are shown in Table 3.10, the mean execution
time of each upating is shown in Figures 3.5-3.8. In the Figures, the horizontal
axis shows the number of inserted samples while the vertical axis indicates the

execution time (in log-scale) of different tested methods.

The following observations can be made from Table 3.10 and Figures 3.5-3.8:

e Overall, ILDA/QR always achieve comparative classification accuracy among

the five incremental algorithms.

— It is interesting to note that ILDA/QR achieves higher accuracies than
IDR/QR, ILDA/SSS, LS-ILDA and ICLDA on text document datasets.
While ICLDA achieves relatively high accuracies on some face image
datasets. Asillustrated in Chapter 2, the dimension of the reduced space
of ICLDA is n — 1 when the training samples are linearly independent
which is just the case in our experiment. Thus, it is reasonable that
ICLDA has good classification performance. However, when sample size
n is large, the reduced representation may not be suitable for efficient

indexing and retrieval.

— For some datasets, IDR/QR produces relatively low accuracies com-
pared with the other four algorithms, such as, Tr12, Tr23, Feret,
Yalesoxso, Yalegyxes and Prostate. This is mainly caused by projecting
the scatter matrices into the range space of the between-class scatter
matrix, in which some useful information are discarded, as well as the

approximation for the updating of reduced scatter matrix W.

— It is interesting to note that LS-ILDA achieves almost the same accu-
racies as ILDA/SSS on some datasets. However, the performance of
ILDA/SSS is largely determined by the threshold. As shown in Table
3.11, the accuracy deviation between ILDA /SSS with threshold 0.1 and

3.4 Numerical Experiments

82

threshold 1 exceeds 10%.

Table 3.9: Comparison of classification accuracies of ILDA/SSS with different
threholds: 0.1 and 1

Accuracy Tr12 | ORL3oy30 | Brain

threshold 0.1 || 76.43 91.25 80.00
threshold 1 60.97 80.10 57.61

e The execution time for computing the transformation in a single updating by
IDR/QR or ILDA/QR is significantly smaller than by ILDA/SSS, LS-ILDA
and ICLDA.

— ILDA/QR and IDR/QR are very fast, much faster than ILDA/SSS,
LS-ILDA, and ICLDA. ILDA/QR is faster than IDR/QR on face imag-
ine datasets, while IDR/QR is faster than ILDA/QR on text document
datasets. Indeed, for a single updating, IDR/QR takes O(mk? + k3),
while ILDA/QR takes O(mn), where k is the number of classes in the
current training set and n is the size of the current training set. When
n > k, IDR/QR costs less than ILDA/QR, otherwise, ILDA/QR per-

forms faster.

— ILDA/SSS and ICLDA are the two slowest incremental algorithms, as
the computational costs of them are about O(mn? + n?®) for each up-
dating. It is interesting to see that ICLDA outperforms ILDA/SSS on
text documents and face images, while ILDA /SSS outperforms I[CLDA

on gene expression datasets.

— LS-TILDA is faster than ICLDA and ILDA/SSS but slower than IDR/QR
and ILDA/QR.

e Considering both classification accuracy and computational cost, ILDA/QR
is the best choice among the five compared algorithms. It provides an efficient
and effective incremental dimensionality reduction for large-scale streaming

datasets.

3.4 Numerical Experiments

Table 3.10: Comparison of IDR/QR, ILDA /SSS, LS-ILDA, ICLDA and ILDA/QR

Data Method Accuracy | Standard Deviation
IDR/QR 80.71 0.37
ILDA/SSS 80.34 0.63
Kla LS-ILDA 80.34 0.63
ICLDA 76.62 9.35
ILDA/QR 82.37 0.84
IDR/QR 95.97 0.35
ILDA/SSS 95.87 0.50
K1b LS-ILDA 95.87 0.50
ICLDA 91.44 11.98
ILDA/QR 96.29 0.52
IDR/QR 69.61 4.59
ILDA/SSS 76.43 3.31
Tri2 LS-ILDA 76.43 3.31
ICLDA 74.81 9.93
ILDA/QR 83.05 3.43
IDR/QR 72.80 5.31
ILDA/SSS 74.40 3.04
Tr23 LS-ILDA 74.40 3.04
ICLDA 74.10 2,77
ILDA/QR 80.90 2.34
IDR/QR 79.06 1.37
ILDA/SSS 76.40 1.03
Wap LS-ILDA 76.40 1.03
ICLDA 75.57 2.60
ILDA/QR 80.05 1.45
IDR/QR 96.40 0.61
ILDA/SSS 95.87 0.77
AR50x40 LS-ILDA 95.87 0.77
ICLDA 98.20 0.62
Continued on next page

3.4 Numerical Experiments

84

Table 3.10 — continued from previous page

Data Method Accuracy | Standard Deviation
ILDA/QR 95.98 0.81
IDR/QR 71.33 1.09
ILDA/SSS 79.15 0.78
AR50x45 LS-ILDA 79.15 0.78
ICLDA 87.71 1.11
ILDA/QR 79.36 0.70
IDR/QR 51.08 2.51
ILDA/SSS 69.88 1.63
Feret LS-ILDA 69.88 1.63
ICLDA 85.60 1.30
ILDA/QR 70.28 1.46
IDR/QR 92.80 1.12
ILDA/SSS 91.25 1.63
ORL3sx32 | LS-ILDA 91.25 1.63
ICLDA 97.00 1.02
ILDA/QR 91.35 1.55
IDR/QR 90.60 1.89
ILDA/SSS 93.95 1.68
ORLgyxes | LS-ILDA 94.65 1.52
ICLDA 97.10 1.02
ILDA/QR 94.00 1.38
IDR/QR 98.37 0.59
ILDA/SSS 99.27 0.33
Palmprint | LS-ILDA 99.27 0.33
ICLDA 98.50 0.75
ILDA/QR 99.27 0.33
IDR/QR 64.13 4.75
ILDA/SSS 78.53 2.70
Yalesawso LS-ILDA 78.53 2.70

Continued on next page

3.4 Numerical Experiments

85

Table 3.10 — continued from previous page

Data Method Accuracy | Standard Deviation
ICLDA 80.53 3.69
ILDA/QR 78.53 2.56
IDR/QR 72.13 4.36
ILDA/SSS 87.73 1.67
Yalegyxpa LS-ILDA 90.13 2.54
ICLDA 87.47 3.44
ILDA/QR 90.80 1.63
IDR/QR 75.40 1.52
ILDA/SSS 84.40 1.68
YaleB LS-ILDA 93.29 1.28
ICLDA 92.72 1.15
ILDA/QR 94.23 1.31
IDR/QR 81.43 6.19
ILDA/SSS 80.00 5.55
Brain LS-ILDA 80.00 5.55
ICLDA 79.52 5.65
ILDA/QR 81.90 5.13
IDR/QR 79.68 7.50
ILDA/SSS 84.84 3.24
Colon LS-ILDA 84.84 3.24
ICLDA 84.84 3.24
ILDA/QR 83.87 4.08
IDR/QR 95.14 2.57
ILDA/SSS 97.14 1.81
Leukemia | LS-ILDA 97.14 1.81
ICLDA 97.14 1.81
ILDA/QR 97.43 2.00
IDR/QR 98.33 2.24
ILDA/SSS 100.00 0.00

Continued on next page

3.4 Numerical Experiments

86

Table 3.10 — continued from previous page

Data Method Accuracy | Standard Deviation
Lymphoma | LS-ILDA 100.00 0.00
ICLDA 100.00 0.00
ILDA/QR 97.00 3.14
IDR/QR 74.12 7.00
ILDA/SSS 91.57 2.78
Prostate LS-ILDA 91.57 2.78
ICLDA 91.57 2.78
ILDA/QR 91.57 2.78
IDR/QR 94.19 3.76
ILDA/SSS 97.74 2.07
SRBCT LS-ILDA 97.74 2.07
ICLDA 97.74 2.07
ILDA/QR 98.06 2.14

3.4 Numerical Experiments

87

141

158

31

34

““““ IDR/QR ICLDA
10* || = - ILDA/SSS ILDA/QR | 10°
LS-ILDA -
PP A L T
IR ST S v SN afTe ALt Saaln
yorm e R Ay Addavy At ver™T
10 :_,_,»-.,«¢-\--.r ~ | 1017
% 2
B kel
2 2
o o
3 S .0
3 & 10° F
o 10° | E P
£ £
= =
10
107 E
1 51 101 151 201 251 301 351 399 1 21 a1 61 81 101 121
Number of inserted samples Number of inserted samples
(a) CPU time for Kla (b) CPU time for K1b
T T T T T T
““““ IDR/QR -
- = ILDA/SSS .
LS-ILDA R _ 107 F
10th ‘-A/::;“i‘_ _____ ----I-TTmo =TS
=T . L. e
= 2T X P
) ~ m
NS so o E
o N o
8 8
@ 2 _,
a D 102t
£ £
F 107] =
10°F
107} L= M T
1 15 29 43 57 71 85 99 107 1 6 11 16 21 26
Number of inserted samples Number of inserted samples
(c¢) CPU time for Tr12 (d) CPU time for Tr23
T T T T T T T
““““ IDR/QR oo IDRIQR
" - = ILDA/SSS - = ILDA/SSS
0 LS-ILDA - , LS-ILDA
4444444444 T 10" F e
e~ ™ [PV,
B SR s
----- ’_‘,~"”V’ PR
0 - =TT
& 107 F q > ~ 7T e
2 B 1 e
& §10 ¢ .-
Q Q
[a
£ 107} E 2
= =
107
B 10
Lz . 5 P . . . h
1 29 57 85 113 141 169 197 223 1 54 107 160 213 266 319

Number of inserted samples

(e) CPU time for Wap

Figure 3.5: Comparing the CPU time of IDR/QR, ILDA/SSS, LS-ILDA, ICLDA

and ILDA/QR (measured in seconds in log-scale)

Number of inserted samples

(f) CPU time for AR5ox40

372

420

3.4 Numerical Experiments

““““ IDR/QR ICLDA
—— ' ILDA/SSS ILDA/QR "

. LS-ILDA] 10 ¢ B}
100 F e - q Y
Lo el
v eyt A= st

T aoArnY avptpm
7 =T R o pyrs et
k) - k] Fhe

P 7/
5100 L omn] 5 v REYYal
g 10 ¢ 8 s
© 2100k A nity i
@ 2 PRYNVALYRAA
@ o A TN
£ £
S [

1 54 107 160 213 266 319 372 420 1 39 7 115 153 191 229 267 300
Number of inserted samples Number of inserted samples

(a) CPU time for AR50x45 (b) CPU time for Feret

““““ IDR/QR ++ IDRIQR
— - ILDA/SSS — —ILDA/SSS
LS-ILDA LS-ILDA

10 -~ 4 o

Time (Seconds)
\
<

Time (Seconds)

10k
1 14 27 40 53 66 79 92 100 1 14 27 40 53 66 79 92 100
Number of inserted samples Number of inserted samples

(¢) CPU time for ORL32x32 (d) CPU time for ORLgaxe4

““““ IDR/QR o IDRIQR
—— ' ILDA/SSS —— ' ILDA/SSS
LS-ILDA LS-ILDA
10 L | s j
107p TS E
e

P =~ \ P -

g T phe=s

2 2

o o

3 3

Q Q

o [

o o

E10 E VN NS

[[= A~ T~ L e
10%F 4

10724 i J
1 20 39 58 7 96 115 134 150 1 7 13 19 25 31 37 42
Number of inserted samples Number of inserted samples

(e) CPU time for Palmprint (f) CPU time for Yalesaxsa

Figure 3.6: Comparing the CPU time of IDR/QR, ILDA/SSS, LS-ILDA, ICLDA
and ILDA/QR (measured in seconds in log-scale)

3.4 Numerical Experiments

89

Time (Seconds)

Time (Seconds)

Time (Seconds)

Figure 3.7: Comparing the CPU time of IDR/QR, ILDA/SSS, LS-ILDA, ICLDA

Sl IDR/QR
10 —— ' ILDA/SSS
LS-ILDA
=37 =1
- PualkaNyd - v
sz = TN/ N
= v
L= N
107
10°L E . : . . .]
1 7 13 19 25 31 37 42
Number of inserted samples
(a) CPU time for Yalegsxepa
T T T
““““ IDRIQR
— = ILDA/SSS
LS-ILDA
107 o _--=-=-_-_]
- - == i
10°F
1 2 5 6
Number of inserted samples
(¢) CPU time for Brain
T T T
““““ IDRIQR
—— ' ILDA/SSS
LS-ILDA
-2 ,——’,’ ——_/"’/~
107} - -
L=~ - e -
S g ~. .
10°F
{ :
1 4 7 10 13 16 19 22 24

Number of inserted samples

(e) CPU time for Leukemia

Time (Seconds)

Time (Seconds)

Time (Seconds)

10

10

10

10~

10

10

““““ IDR/QR ICLDA
—— ' ILDA/SSS ILDA/QR
LS-ILDA

,o
LA gy
st Y Jevih]
LRIV AL} v
NP NLE
o

i avale U
PN 1
g 1 Pt

Ann RISl I

A

1 7 153 229 305 381 457 533 608
Number of inserted samples

(b) CPU time for YaleB

““““ IDRIQR
~ - ILDA/SSS
[LS-ILDA
P -7 -
R R
o s~ - -
1 4 7 10 13 16 19 20

Number of inserted samples

(d) CPU time for Colon

““““ IDR/QR
-~ ILDA/SSS
LS-ILDA

Number of inserted samples

(f) CPU time for Lymphoma

and ILDA/QR (measured in seconds in log-scale)

3.4 Numerical Experiments

90

“““ IDRIQR
ILDA/SSS
LS-ILDA

“““ IDR/IQR
ILDA/SSS

— — —ICLDA — — —ICLDA
ILDA/QR ILDA/QR

PR 107} — 4

LS-ILDA

1072k e

Time (Seconds)
Time (Seconds)

10°F

10°

2526 1 3 5 7 9 11 13 15 16
Number of inserted samples

1 5 9 13 17 21
Number of inserted samples

(a) CPU time for Prostate (b) CPU time for SRBCT

Figure 3.8: Comparing the CPU time of IDR/QR, ILDA/SSS, LS-ILDA, ICLDA
and ILDA/QR (measured in seconds in log-scale)

3.4.2 Experiments for Chunk ILDA /QR

In the experiment for chunk ILDA/QR, new data samples are inserted into the
training set chunk by chunk (The size of each chunk is shown in the CPU-time

figures). The recorded CPU-time is the execution time for a chunk insertion.

Comparison with LDA /QR and Sequential ILDA /QR

In this experiment, we compare the performance of chunk ILDA /QR with its batch
algorithm LDA/QR and its sequential version. The results of mean classification
accuracies and 10 times’ standard deviation are presented in Table 3.11. And the

CPU-time of these three algorithms is given in Figures 3.9-3.12.

Main observations are as follows:

e ILDA/QR and LDA/QR yield the same accuracies for all tested data sets
except for data Tr12 and Yalegixes, Which coincides with our theoretical
analysis that both of our sequential and chunk incremental algorithms are
exact schemes of their batch version. The difference between ILDA/QR and
LDA/QR on data Tr12 and Yalegyxps is subtle which is less than 2%.

3.4 Numerical Experiments

91

e Chunk ILDA/QR is obviously faster than LDA /QR and sequential ILDA /QR.

e When chunk size s is relatively large, LDA/QR is faster than sequential
ILDA/QR, otherwise, sequential ILDA/QR is faster than LDA/QR. This is
because, for sequential ILDA/QR, one chunk insertion process consists of
s times’ single updating. Thus, in practical application, preferably chunk

ILDA/QR is utilized when the size of the new presented data samples is

large.

Table 3.11: Comparison of LDA/QR, ILDA/QR and ILDA /QR(Chunk)

Data Method Accuracy | Standard Deviation
LDA/QR 82.37 0.84
Kla ILDA/QR 82.37 0.84
ILDA/QR(Chunk) 82.37 0.84
LDA/QR 96.28 0.53
K1b ILDA/QR 96.29 0.52
ILDA /QR(Chunk) 96.29 0.52
LDA/QR 83.05 3.43
Tri2 ILDA/QR 83.05 3.43
ILDA/QR(Chunk) 81.10 3.90
LDA/QR 80.90 2.34
Tr23 ILDA/QR 80.90 2.34
ILDA/QR(Chunk) 80.90 2.34
LDA/QR 80.05 1.45
Wap ILDA/QR 80.05 1.45
ILDA /QR(Chunk) 80.05 1.45
LDA/QR 95.98 0.81
ARs50x40 ILDA/QR 95.98 0.81
ILDA/QR(Chunk) 95.98 0.81
LDA/QR 79.36 0.70
AR50x45 ILDA/QR 79.36 0.70
Continued on next page

3.4 Numerical Experiments

92

Table 3.11 — continued from previous page

Data Method Accuracy | Standard Deviation
ILDA/QR(Chunk) 79.36 0.70
LDA/QR 70.28 1.46
Feret ILDA/QR 70.28 1.46
ILDA/QR(Chunk) 70.28 1.46
LDA/QR 91.35 1.55
ORL3ssx32 | ILDA/QR 91.35 1.55
ILDA /QR(Chunk) 91.35 1.55
LDA/QR 94.00 1.38
ORLgsxes | ILDA/QR 94.00 1.38
ILDA/QR(Chunk) 94.00 1.38
LDA/QR 99.27 0.33
Palmprint | ILDA/QR 99.27 0.33
ILDA /QR(Chunk) 99.27 0.33
LDA/QR 78.53 2.56
Yalesaywso ILDA/QR 78.53 2.56
ILDA/QR(Chunk) 78.53 2.56
LDA/QR 90.93 1.67
Yalegsxpa ILDA/QR 90.80 1.63
ILDA /QR(Chunk) 90.27 2.53
LDA/QR 94.23 1.31
YaleB ILDA/QR 94.23 1.31
ILDA/QR(Chunk) 94.23 1.31
LDA/QR 81.90 5.13
Brain ILDA/QR 81.90 5.13
ILDA/QR(Chunk) 81.90 5.13
LDA/QR 83.87 4.08
Colon ILDA/QR 83.87 4.08
ILDA /QR(Chunk) 83.87 4.08
LDA/QR 97.43 2.00
Continued on next page

3.4 Numerical Experiments

93

Table 3.11 — continued from previous page

Data Method Accuracy | Standard Deviation
Leukemia | ILDA/QR 97.43 2.00
ILDA/QR(Chunk) 97.43 2.00
LDA/QR 97.00 3.14
Lymphoma | ILDA/QR 97.00 3.14
ILDA /QR(Chunk) 97.00 3.14
LDA/QR 91.57 2.78
Prostate ILDA/QR 91.57 2.78
ILDA/QR(Chunk) 91.57 2.78
LDA/QR 98.06 2.14
SRBCT ILDA/QR 98.06 2.14
ILDA /QR(Chunk) 98.06 2.14

3.4 Numerical Experiments

- + - LDA/QR - + - LDA/QR
ILDA/QR _ - ILDA/QR
—0- ' ILDA/QR(Chunk) - —~O~- ILDA/QR(Chunk)
-+ -
B PN P -+
S i S — e m T 1
210 | 1 z .
2 10 ¢ 1
s 5
3 3
@ @
a (23
o o
£ E
[=
D-—g’ 10° i
- ©
o _o--9-"0-9- -0 _o O~ o - 0=~
10" - 1 - ~ O
-9 -9 . . Q= =@ : . .
40 80 120 160 200 240 280 320 360 399 16 32 48 64 80 96 112 128 144 158
Number of inserted samples Number of inserted samples
(a) CPU time for Kla (b) CPU time for K1b
- + — LDA/QR - + — LDA/QR
ILDA/QR 10} ILDA/QR 1
- —+
—0- ILDA/QR(Chunk) . —O— ILDA/QR(Chunk) po— T T T -
¥ -
- _ o+
- —+
* - -
e N = 47 i
- -
— 7z - */ — - -
8 10t 7 8
S 107F ¥ i g
3 - 8
@ - @
@ L& @
g ’ g
=
= Pl =
_-Q
o =% \
o~ N
o~ " 107]
_.0- " O- g —@ ~® = O--0-._q
.- _e-e~ 3
- -® kil A)
11 22 33 44 55 66 7 88 99 107 3 6 9 12 15 18 21 24 27 30 3334
Number of inserted samples Number of inserted samples
(c) CPU time for Tr12 (d) CPU time for Tr23
- + — LDA/QR — + — LDA/QR
ILDA/QR P) ILDA/QR _
—0~- ILDA/QR(Chunk) T A 10° - —0- - ILDA/QR(Chunk) -t
B “4
—*"*'* A
L -
- k=
10 | 4 _ =
)) _ =
k] kel e ==
2 2
] S
3 3
@ 3
a (23
@ Iy
£ E
[=
=t
10 -
-SRI
-
R oy
gm0 - 0- =0 oo
10— e - 0-=¢ < A . . . 4 _ -9 o €
22 44 66 88 110 132 154 176 198 223 42 84 126 168 210 252 294 336 378 420

Number of inserted samples

(e) CPU time for Wap

Figure 3.9

Comparing the

CPU time of LDA/QR,

ILDA/QR(Chunk) (measured in log scale)

Number of inserted samples

(f) CPU time for AR50><40

ILDA/QR and

3.4 Numerical Experiments

95

Time (Seconds)

Time (Seconds)

Time (Seconds)

Figure 3.10:

- + - LDA/QR
ILDAIQR -
o || —©— ILDAIQR(Chunk) -
10" ¢ P 1
- -+
-7
-4 -
=% =
=%
=1k _o- -0 -
10 oo
-
— e - Q"
42 84 126 168 210 252 294 336 378 420
Number of inserted samples
(a) CPU time for AR50x45
- + — LDA/QR
ILDA/QR
—0- ILDA/QR(Chunk) - -
_ -4
P
-+ -
- +-
_ -+ *
107 —
O - -
_e - O -e
-G -0~
_o”
— :
10 20 30 40 50 60 70 80 90 100
Number of inserted samples
(¢) CPU time for ORL32x32
— + = LDA/QR
ILDA/QR
—0~- ILDA/QR(Chunk)
R S
-+
_+
-+
-~
- —+-
—+
-+ -
107 —
B
_o--o~
P -Re
e — -0~
- © -
15 30 45 60 75 90 105 120 135 150

Number of inserted samples

(e) CPU time for Palmprint

Time (Seconds)

Time (Seconds)

Time (Seconds)

T T T T T T T T
- + — LDAQR l
ILDAIQR
—O— ILDAIQR(Chunk)
s T
/* -
e
10° ¢ A i
S .
0O~ _
- -6 - - —©
_o- -0 & -0
- o - -
30 60 90 120 150 180 210 240 270 300
Number of inserted samples
(b) CPU time for Feret
- + — LDAQR
ILDA/QR
—O— ILDAIQR(Chunk) A==
T
- _ - =+
10 _ 1
Y
. -
L -7 ot
e~
o m -
P ——
e’ .

L L L L L
10 20 30 40 50 60 70 80 90 100

Number of inserted samples

(d) CPU time for ORL64><64

L|[- + - LDAIQR i
10 ILDA/QR
—O— * ILDA/QR(Chunk) 1
- -t -
—+
-+
—+
-+
-+
7
-F -
_.0
. o T e \z
10 "1 6 - ©- -0 -
_ @~ -
4 8 12 16 20 24 28 32 36 40 42

Comparing the CPU time of LDA/QR,
ILDA/QR(Chunk) (measured in log scale)

Number of inserted samples

(f) CPU time for Ya1632><32

ILDA/QR and

3.4 Numerical Experiments

96

~ + —LDAIQR
ILDA/QR
~O— ILDA/QR(Chunk) _+
-+ -
- -+ -
-+
-+
- _+
0 -
2 _-*
5] +
S P
S P
Q
P
£
= =
107 g
_o-—° 7 “
o-
o -
~e - o
- -0~
_ =]
4 8 12 16 20 24 28 32 36 40 42
Number of inserted samples
(a) CPU time for Yalegsxpa
1022 . -
-+ —LDAIQR
ILDA/QR
102%}| —O- ILDAIQR(Chunk) i
107 - i
P 7
g -
§10%°F _--—"7 1
S r_
3
24
g 1079 1
=
1077 4
107° p
_________ e -~ 7"
4 6
Number of inserted samples
(¢) CPU time for Brain
- + - LDAIQR
|| ILDA/QR |
10T —o- ILDA/IQR(Chunk)
7
g ¥ -
=3 -
5 -
8 -
@ -
aQ Phe
o +
£ e
[4
.
-
-
o — T T T
_.-—07 -
_ -0 }
10 15 20 24

Figure 3.11:

Number of inserted samples

(e) CPU time for Leukemia

- + - LDAIQR
10°} ILDA/IQR ,
—0O~ ILDA/QR(Chunk)
Pl e
I -+ T
2 -7
=} + 7
3 -
& [- -+
Py
£
Fojott 4
-
o -
~ -0 - 0- -6 _ _
o & -0 ©--"°
61 122 183 244 305 366 427 488 549 608
Number of inserted samples
(b) CPU time for YaleB
- + - LDAIQR
ILDA/QR
—O— ILDA/QR(Chunk)
- 47 i
5 _+7
3 -
) -
[-
gl g]
= =
-
-
-
-
-4
- -0
_—me T
- -
- L L L
4 8 12 16 20
Number of inserted samples
(d) CPU time for Colon
- + - LDAIQR
ILDA/QR
~0O- ILDA/QR(Chunk) |
-—-—"*‘<—_—-_
w
4
g
s
3
(23
P
£
£
10°} [1
o=) T -4
6

Comparing the CPU time of LDA/QR,
ILDA/QR(Chunk) (measured in log scale)

4
Number of inserted samples
f) CPU time for Lymphoma
ymp

ILDA/Q

R and

3.4 Numerical Experiments

97

Time (Seconds)

Figure 3.12:

N
S,

- + — LDAIQR
ILDA/QR
—0- " ILDA/QR(Chunk)

_.-e

10 15 20
Number of inserted samples

(a) CPU time for Prostate

conds)

Time (Se

10°F

Comparing the CPU time of LDA/QR,
ILDA/QR(Chunk) (measured in log scale)

- + — LDAIQR
ILDAIQR

—O— ILDAIQR(Chunk)

il ollatbelibticd . %

6 9 12
Number of inserted samples

(b) CPU time for SRBCT

Comparison with Existing Incremental LDA

In this experiment, we compare the performance of chunk ILDA/QR with four
existing incremental LDA: IDR/QR [102], ILDA/SSS [62, 63], LS-ILDA [69] and

ICLDA [70]. The results for classification accuracies and execution time are pre-

sented in Table 3.12 and Figures 3.13-3.16, respectively.

Main observations are shown in the following:

ILDA/QR and

e Similarly to the performance of sequential ILDA /QR, our new chunk ILDA/QR

always produces reasonable classification accuracies. For more details, please

refer to the experimental results shown in Section 3.4.1.

Chunk ILDA/QR is faster than IDR/QR for all face image data sets and
all gene expression data sets except for prostate; IDR/QR is faster than
chunk ILDA/QR for text document data sets Tr12, Tr23 and K1b; chunk
ILDA/QR and IDR/QR are comparative in terms of execution time for data
sets Wap, Kla and prostate. Compared with the numerical experiment of

sequential ILDA/QR, chunk ILDA/QR improves its computational perfor-

mance.

3.4 Numerical Experiments

98

Table 3.12: Comparison of IDR/QR, ILDA/SSS, LS-ILDA, ICLDA, ILDA/QR

and ILDA/QR(Chunk)

Data Method Accuracy | Standard Deviation
IDR/QR 80.71 0.37
ILDA/SSS 80.34 0.63
Kla LS-ILDA 80.34 0.63
ICLDA 76.62 9.35
ILDA /QR(Chunk) 82.37 0.84
IDR/QR 95.97 0.35
ILDA/SSS 95.87 0.50
K1b LS-ILDA 95.87 0.50
ICLDA 91.44 11.98
ILDA/QR(Chunk) 96.29 0.52
IDR/QR 69.61 4.59
ILDA/SSS 76.43 3.31
Tri2 LS-ILDA 76.43 3.31
ICLDA 74.81 9.93
ILDA/QR(Chunk) 81.10 3.90
IDR/QR 72.80 5.31
ILDA/SSS 74.40 3.04
Tr23 LS-ILDA 74.40 3.04
ICLDA 74.10 2,77
ILDA/QR(Chunk) 80.90 2.34
IDR/QR 79.06 1.37
ILDA/SSS 76.40 1.03
Wap LS-ILDA 76.40 1.03
ICLDA 75.17 3.74
ILDA/QR(Chunk) 80.05 1.45
IDR/QR 96.40 0.61
ILDA/SSS 95.87 0.77
AR50x40 LS-ILDA 95.87 0.77
Continued on next page

3.4 Numerical Experiments

99

Table 3.12 — continued from previous page

Data Method Accuracy | Standard Deviation
ICLDA 98.20 0.62
ILDA/QR(Chunk) 95.98 0.81
IDR/QR 71.33 1.09
ILDA/SSS 79.15 0.78

AR50x45 LS-ILDA 79.15 0.78
ICLDA 87.71 1.11
ILDA/QR(Chunk) 79.36 0.70
IDR/QR 51.08 2.51
ILDA/SSS 69.88 1.63

Feret LS-ILDA 69.88 1.63
ICLDA 85.60 1.30
ILDA/QR(Chunk) 70.28 1.46
IDR/QR 92.80 1.12
ILDA/SSS 91.25 1.63

ORL3sx32 | LS-ILDA 91.25 1.63
ICLDA 97.00 1.02
ILDA/QR(Chunk) 91.35 1.55
IDR/QR 90.60 1.89
ILDA/SSS 93.95 1.68

ORLgyxes | LS-ILDA 94.65 1.52
ICLDA 97.10 1.02
ILDA/QR(Chunk) 94.00 1.38
IDR/QR 98.37 0.59
ILDA/SSS 99.27 0.33

Palmprint | LS-ILDA 99.27 0.33
ICLDA 98.50 0.75
ILDA/QR(Chunk) 99.27 0.33
IDR/QR 64.13 4.75
ILDA/SSS 78.53 2.70

Continued on next page

3.4 Numerical Experiments

100

Table 3.12 — continued from previous page

Data Method Accuracy | Standard Deviation
Yalessyso LS-ILDA 78.53 2.70
ICLDA 80.53 3.69
ILDA /QR(Chunk) 78.53 2.56
IDR/QR 72.13 4.36
ILDA/SSS 87.73 1.67
Yalegaxea LS-ILDA 90.13 2.54
ICLDA 87.47 3.44
ILDA/QR(Chunk) 90.27 2.53
IDR/QR 75.40 1.52
ILDA/SSS 84.40 1.68
YaleB LS-ILDA 93.29 1.28
ICLDA 92.72 1.15
ILDA /QR(Chunk) 94.23 1.31
IDR/QR 81.43 6.19
ILDA/SSS 80.00 5.55
Brain LS-ILDA 80.00 5.55
ICLDA 79.52 5.65
ILDA /QR(Chunk) 81.90 5.13
IDR/QR 79.68 7.50
ILDA/SSS 84.84 3.24
Colon LS-ILDA 84.84 3.24
ICLDA 84.84 3.24
ILDA/QR(Chunk) 83.87 4.08
IDR/QR 95.14 2.57
ILDA/SSS 97.14 1.81
Leukemia | LS-ILDA 97.14 1.81
ICLDA 97.14 1.81
ILDA/QR(Chunk) 97.43 2.00
IDR/QR 98.33 2.24
Continued on next page

3.4 Numerical Experiments

101

Table 3.12 — continued from previous page

Data Method Accuracy | Standard Deviation
ILDA/SSS 100.00 0.00
Lymphoma | LS-ILDA 100.00 0.00
ICLDA 100.00 0.00
Chunk TLDA/QR 97.00 3.14
IDR/QR 74.12 7.00
ILDA/SSS 91.57 2.78
Prostate LS-ILDA 91.57 2.78
ICLDA 91.57 2.78
ILDA /QR(Chunk) 91.57 2.78
IDR/QR 94.19 3.76
ILDA/SSS 97.74 2.07
SRBCT LS-ILDA 97.74 2.07
ICLDA 97.74 2.07
ILDA /QR(Chunk) 98.06 2.14

3.4 Numerical Experiments

102

Time (Seconds)

Time (Seconds)

Time (Seconds)

Figure 3.13: Comparing the CPU time of IDR/QR, ILDA/SSS, LS-ILDA, ICLDA,

+r 4 IDR/IQR — % — |CLDA
—%— ILDA/SSS —0- ILDA/QR(Chunk)
: LS-ILDA -
10° b x.—-*--*"*‘_*——*— k
S
10°]
i — % 7
B -
———
10' £ 5
o [T)
10° ¢
40 80 120 160 200 240 280 320 360 399
Number of inserted samples
(a) CPU time for Kla
1+ IDRIQR — % — ICLDA
—%— ILDA/SSS —O- ' ILDA/QR(Chunk)
LS-ILDA x
- - =~
10° b B E
- ="
PR
—x
L -
_ke— T
¥ >
10™ _am T g
%
P
RTTPITRISEE SEEREIE SR T S A
g ot —e -9
—o— 7
-9~ ! L L L L L L
11 22 33 44 55 66 7 88 99 107
Number of inserted samples
(¢) CPU time for Tr12
+4 0 IDR/IQR — % — |CLDA
—%— ILDA/SSS —0O- ILDA/QR(Chunk)
107 L LS-ILDA S
P e
A i
10" £ 4
R i
g LR
T
10° £ —
B
FTO g S-S Yoot Rhatha, Jaskial SALAAAA SN]

22

44

66 88 110 132 154 176 198 223
Number of inserted samples

(e) CPU time for Wap

Time (Seconds)

Time (Seconds)

Time (Seconds)

10" ¢

=
ON

=
O_

10

10

10’

N
CN

-2

14 IDRIQR % — ICLDA
—%— ILDA/SSS —©— " ILDA/QR(Chunk) | |
LS-ILDA
(__—x~——x-——n—-x——*——-x——-x——"‘~‘
K K — g - W TR i
L ol o
- - - 0 ~0 - o©--0—9° o - ¢
ATTRT SYRTRURT "RXRRNEL AURERRL FRUOH
g PRIEENE SRS oty

16 32 48 64 80 96 112 128 144 158
Number of inserted samples

(b) CPU time for K1b

+v# IDR/IQR — % — |CLDA
—%—ILDA/SSS —O— " ILDA/QR(Chunk)
LS-ILDA
o ek |
- \
B N
=
T
>*——*”**_,*-
3 - B- - -0~ O -0 - 9- 0]
SIS
oA,
ek, t
$ 3 -
L L L L L L L L L L3
3 6 9 12 15 18 21 24 27 30 3334
Number of inserted samples
(d) CPU time for Tr23
+v4 0 IDR/IQR — % —|CLDA
—%—ILDA/SSS —O— ILDA/QR(Chunk)
LS-ILDA R
L Ce— %]
—e -
-
_ -
'
E — T
o * =¥ -
- * 7 -
PRI +
LR + k|
FOTNE A
' =] q
- @ - -0--
@ - - @ =970~ -0

42 84 126 168 210 252 294 336 378 420
Number of inserted samples

(f) CPU time for AR50><4()

ILDA/QR and ILDA/QR(Chunk) (measured in log scale)

3.4 Numerical Experiments 103

<14 IDRIQR — % — ICLDA L || % IPRIQR — % —ICLDA
—%— ILDA/SSS —O- ' ILDA/QR(Chunk) 10" f| - —*—ILDA/SSS —O— " ILDA/QR(Chunk) |4
LS-ILDA - w1 LS-ILDA
5 %" -
10° b M] -7
- - - -
e e
- e
— — o
8 € 0]
g L R g 10
g0 Pt i 7 8 B
a b () ¥
o - o - +
— B .
E - E k=¥ L EERREEL + + *
gt
0 + L ERERRE OF -
10 | [REC SREEEE]

L + 10° b]
= - 0= — -8 -0 _.g.——0-—§
S SN VS Shll el il G A BPY il diniin S G S
42 84 126 168 210 252 294 336 378 420 30 60 90 120 150 180 210 240 270 300

Number of inserted samples Number of inserted samples

(a) CPU time for AR50x45 (b) CPU time for Feret

"+ IDRIQR — % — ICLDA 4 IDRIQR — % —ICLDA
o —%— ILDA/SSS —O- ' ILDA/QR(Chunk) —%— ILDA/SSS —O— " ILDA/QR(Chunk)
10 | LS-ILDA 3 LS-ILDA

— 4
I -
_x—‘*__* 0 _*——*"*_ T
__x-——‘ 10 *'_*,_*— |
—_ E--*—7 . %"
)) - = =
2 _ = B
S | PR] 8
3 10 _ 3 _ .4
a g=-% 1) B
- -
g i T) g e
S - oo (S ¥
LS 107} -
+ - PR 3
RETIRENNL o
R T o
107} 1 gt
-4
. 0- -0 -4 _ - 9- -0
—o- - g - —0- &~ -0" om0 m OO

S - L L L L L L L @ = L L L L L L L

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Number of inserted samples Number of inserted samples

(¢) CPU time for ORL32x32 (d) CPU time for ORLg4x64

L | | # - IDRIQR — % —ICLDA || #* IDRIQR — * —ICLDA
10" F| —%— . ILDA/SSS —0- - ILDA/QR(Chunk)|] 107 F | —%— . ILDA/SSS —O— - ILDA/QR(Chunk) H
LS-ILDA LS-ILDA
g — = ==X
x—'*——*_-* _’,x_--x-"“ \
- - * - x— = X7 -
— b -7 * — - -7
3 o
° o _ %
£ 10" ¥ E s PR
o % o ke — T
& Lo & 1072} * o I]
o - T Y o P .=
£ e e B £ + Hoy
e R ok)
T + * * N SEETTI— + +
T PO +
107 4
— -0~ 4
o - e--0 T ® 5 _o--0-~"¢
o —e -~ 10° o -0 - 0- - %
-9 - -Q - 0- "%
15 30 45 60 75 90 105 120 135 150 4 8 12 16 20 24 28 32 36 40 42
Number of inserted samples Number of inserted samples
(e) CPU time for Palmprint (f) CPU time for Yalesaxs2

Figure 3.14: Comparing the CPU time of IDR/QR, ILDA/SSS, LS-ILDA, ICLDA,
ILDA/QR and ILDA/QR(Chunk) (measured in log scale)

3.4 Numerical Experiments 104

T T T T T T T T T T T T T
<4 IDRIQR — % —ICLDA 10°F | # IDRIQR — * —ICLDA K
—%— ILDA/SSS —0- ILDA/QR(Chunk) —%— - ILDA/SSS —O— ILDA/QR(Chunk)
LS-ILDA LS-ILDA
_ox— =X _ox—— X
” B \ 5 B
- - s - - 4
107 _xe X \ 10 R
P - % —~ -
) o 0
8 8
2 2
8 8
) e)
i 2L j
g . et 210 1
[PR = — T
_ I *
R .
+ PR -
07 e 10t 4
- + o +
¢ o - 0— O e g + + +
o - @ =0 + + ' 4
_-e-°" 0 0 0 . SN Sl it bl it -Setbed s
4 8 12 16 20 24 28 32 36 40 42 61 122 183 244 305 366 427 488 549 608
Number of inserted samples Number of inserted samples
(a) CPU time for Yalegsxpa (b) CPU time for YaleB
"+ IDRIQR — % —ICLDA 41 IDRIQR — % — ICLDA
—%— ILDA/SSS —O- ' ILDA/QR(Chunk) —%— ILDA/SSS —O— ILDA/QR(Chunk)
LS-ILDA LS-ILDA
_ - A
e
== _—’X"__
——————— =7 -2 -7
7 k- ---- 7O -7 b
2] -
S 107} g
2 2
a R (2 ISR
g B g i - S
= =
+ + + e * +
-3
. 10
b
- o- - =8
R B
,,,,,, === == SN Tt ; .
4 6 4 8 12 16 20
Number of inserted samples Number of inserted samples
(¢) CPU time for Brain (d) CPU time for Colon
4 IDR/QR — % — |CLDA +r4 o IDR/IQR — % —|CLDA
—%— ILDA/SSS —O— " ILDA/QR(Chunk) —%— - ILDA/SSS —O— - ILDA/QR(Chunk)
0 LS-ILDA LS-ILDA
_____ x— — — — — X
e S, T
=TT FoT T T
—~ s =
8 8 102
2 2 10 4
s s
2 @ -
%) [e Foom T T T
g - B *- o g
F 10 " - =
_____ ——
__43~—*-25 I I
——0- " 10T e O - m b
U « e i ; . e ; - - -
10 15 20 24 4 6
Number of inserted samples Number of inserted samples
(e) CPU time for Leukemia (f) CPU time for Lymphoma

Figure 3.15: Comparing the CPU time of IDR/QR, ILDA/SSS, LS-ILDA, ICLDA,
ILDA/QR and ILDA/QR(Chunk) (measured in log scale)

3.5 Conclusions 105

<4 IDRIQR — % —ICLDA r# IDRIQR — % —ICLDA
—%=— ILDA/SSS —0~- - ILDA/QR(Chunk) —%- ILDA/SSS —O— ILDA/QR(Chunk)
LS-ILDA % LS-ILDA
e S
S L
10 o w--T \ -
Lo - \ P \
= \ 5 .- v
2 B 107
s S 107
8 R g =%
% e — *- T % ST S
- _ -
£ 1077 £ R T
F 10 E
e +
e L +
) S e T GTOT +
pooo gy + 3
10°} E
-3 - ®&--=-=-©
10 . . P N @ === =@ 7 . .
5 10 15 20 25 26 3 6 9 12 15 16
Number of inserted samples Number of inserted samples
(a) CPU time for Prostate (b) CPU time for SRBCT

Figure 3.16: Comparing the CPU time of IDR/QR, ILDA/SSS, LS-ILDA, ICLDA,
ILDA/QR and ILDA/QR(Chunk) (measured in log scale)

3.5 Conclusions

In this chapter, we have proposed a novel incremental linear discriminant analysis
algorithm, called ILDA/QR. ILDA/QR incrementally updates the optimal trans-
formation of LDA with exactness. In addition, ILDA/QR can easily handle not
only the case that only one new sample is inserted (sequential ILDA/QR) but also
the case that a chunk of new samples are added (chunk ILDA/QR). The compu-
tational complexity of one update in sequential ILDA/QR is O(mn) and in chunk
ILDA/QR is O(mns), where there are n samples in m dimensions and s samples are
added as a chunk. Experiments on several real-world datasets, show that ILDA/QR
achieves the same accuracy as its batch version with far lower computational cost,
which is consistent with our theoretical analysis. Compared with four recently pro-
posed incremental LDA algorithms, IDR/QR, ILDA/SSS, LS-ILDA and ICLDA,
our new proposed ILDA/QR algorithm works well. ILDA/QR is comparable with
IDR/QR in terms of execution time whilst requires much less computation than
the others, and is comparable with ICLDA from the perspective of classification

accuracy whilst outperforms the others.

However, like LS-ILDA, ILDA/QR requires that samples in the training set

3.5 Conclusions 106

are linearly independent. Although most of our real-world datasets satisfy this
condition, to extend ILDA/QR to the general case, regularization of the data
matrix is a good choice. Similarly, to avoid the singularity of the scatter matrix,
regularization is also introduced in IDR/QR. The big issue of the regularization
problem is the selection of an appropriate regularization parameter. The work in

Chapter 5 gives a novel solution to optimal parameter selection.

Chapter

Existing Regularized LDA

In this chapter, we will briefly outline the schemes of three existing regularized LDA
methods: shrunken centroids regularized discriminant analysis (SCRDA)[39], reg-
ularized linear discriminant analysis (RLDA)[104, 54] and regularized discriminant
analysis (RDA)[105].

For all these three existing regularized LDA approaches, given a candidate
set for the regularization parameter, model selection by KC-fold cross-validation
[31, 67] is applied on the training set to select an optimal parameter. Then the test
error based on the tuning parameter is calculated by the corresponding regularized

algorithm.

Remark 4.1. Model selection by K-fold cross-validation

e Divide the data set into mutually exclusive IC folds of (approximately) equal
size. Select the i-th (for i =1,--- [K) fold as the test set and all the other

K — 1 folds are used for training.

e For each regularization parameter, compute the cross-validation accuracy de-
fined as the mean of the IC accuracies, each of which is obtained by applying

reqularized LDA on the i-th (fori=1,--- K) training set and test set.

e The optimal reqularization parameter is the one that maximizes all the cross-

validation accuracies with respect to the given reqularization parameter set.

107

4.1 Shrunken Centroids Regularized Discriminant Analysis (SCRDA) 108

4.1 Shrunken Centroids Regularized Discriminant

Analysis (SCRDA)

The method of shrunken centroids regularized discriminant analysis (SCRDA)[39]
generalizes the idea of nearest shrunken centroids (NSC) [85] into the classical
discriminant analysis. Given the data matrix A = [al e an} € R™*" which has
been defined in Chapter 1, denote cl(j) as the class label of data point a; (1 < j <
n), i.e., cl(j) = 7 if a; belongs to the i-th cluster. In [39], Guo et al., would classify
a data point x to a cluster * which maximizes the sample version discriminant
function d;(z), that is,

Y |
i* = arg max di(z),

where
N 1 N
di(z) = 275 ¢; — iciTS;lci + log 7;,
¢; is the local centroid of cluster i, m; is the proportion of cluster ¢ such that

T+ -+ me =1, eg, m ="t S, is the covariance matrix of data set A defined

as

k
Sy = %Z > (aj—ci)a; —)" (4.1)

i=1 jEN;

When the dimensionality of the data point is greater than the size of the sam-
ple, i.e., m > n, the covariance matrix S, is singular and cannot be inverted. To
resolve this singularity problem, instead of using S directly, the authors intro-
duced
Se=aS, + (1 —a)l

for some a, 0 < o < 1. The corresponding regularized discriminant function is

A N 1 ~
dz(fﬂ) = xTS(;lci - §CZTS;1C1' + lOg ;. (42)

Similar to the idea of NSC [85], the authors applied shrunken centroids to the

regularized discriminant function (4.2). That is to shrink the centroids in (4.2)

4.1 Shrunken Centroids Regularized Discriminant Analysis (SCRDA) 109

before calculating the discriminant function, i.e.,
¢ = sgn(c)(|ei| = A)y,

where A > 0 is the shrinkage parameter, sgn(-) is the sign function, | - | is the
absolute value function. In addition to directly shrink the centroids , there are also

two other ways, such as to shrink S’;lci, ie.,

& = sgn(S;) (19 el — A)-+, (4.3)
and the other way is to shrink 5’;%01-, ie.,

¢ = sgn(Si Pe) (S0 el = A)s
In this thesis, we choose (4.3) as the way to shrink the centroids, which is the same

as the authors did in [39)].

Unlike other LDA approaches, there is no explicit expression of the optimal
transformation, so the output of SCRDA shown in the following algorithm is clas-

sification accuracy.

Algorithm 4.1. (SCRDA)

Input: Training set A € R™ ™ with cluster label, test set B € R™" with cluster
label cl(j) (j =1,---,n), cluster number k, reqularization parameter (o, A).

Output: accuracy.
Step 1. Form proportion m; (i = 1,--- , k) of training data A.

Step 2. Compute centroids ¢; (i=1,---,k) of A and form its covariance matriz
Sw by (4.1), compute A A
Sa = aS, + (1 —a)l.
Step 3. Shrink c¢; as
& =sgn(Sy) (1S el — Ay, i=1,-- k.
Step 4. Compute

1
d(j,1) = (B(:,7))"e — 55@ +logm, j=1,---,n, i=1--- k.

Step 5. Obtain cly.x(j) = arg max d(j,i), j=1,--- ,n.

1<i<k

Step 6. Compute accuracy by comparing cl with clyax.

4.2 Regularized Linear Discriminant Analysis (RLDA) 110

4.2 Regularized Linear Discriminant Analysis (RLDA)

Given a data matrix A as defined in Chapter 1, between-class, within-class and

total scatter matrices are redefined as
1 k
Sb = ﬁ Zl:nz(Cz — C)(Cz‘ — C)T,

Su=2 33— ey —), (4.4

i=1 jEN;
S = %zn:(aj —¢)(a; —c)T.
i=1
Correspondingly,
iy = = [yrler =) - V(e = o).
i, = % [Al — €4 A — ckef] , (4.5)
H, = %(A —cel),
and

$ = AT, S = AL AT, &= ALAT
Regularized linear discriminant analysis (RLDA) [104, 54] aims to solve the

following regularized optimization problem

G = arg ax ltrace((GT(S't +u)G)IGTS,G), (4.6)
cRmMmX

for some p > 0. The optimal solution of (4.6) is computed by the eigenvalue
decomposition of (S; + pI)~1S).
Let ﬁt = UXVT be the reduced SVD of ﬁt, where U € R™*7 and V € R™*7

are column orthogonal, ¥ € RY*7 with v = rank(H,) = rank(S,) . Denote Ut €

R™*(m=7) ag the orthogonal complement of U, then for any p > 0, the equality

(S, + pul)' S, = US? + puI)'UTS,

4.2 Regularized Linear Discriminant Analysis (RLDA) 111

holds since (UL)TS”b = 0. Let y be any eigenvector of (St + p,])*lgb corresponding
to a nonzero eigenvalue A, and y = Ux for some x, then multiplying both sides of
the following equation by U7:

U(S?+ ul) 7 U Sy = My,
we have

(22 4 uI)"UT S, (Uz) = NXUT (Uz) = M.
Thus, computing the eigenvalue decomposition of (S} +ul)_1§b is reduced to com-
pute the eigenvalue decomposition of (X2 + pI) 'UTS,U. To further reduce the
computational cost, denote U,>,V, as the SVD of i_%UTI:[b, where 3 = %2 + wl,
U, € R and V;, € R*** are orthogonal, and ¥, € R7**. Then we have
STTSU =S 2 (S UT /) (S 2UT)T
= (D720 (S720,) 7L

That is, f}_%Ub diagonalizes matrix f]‘lUTSbU. Thus, the columns of f]_éUb form
the eigenvectors of S-1UTS,U.

The algorithm of RLDA is shown in the following:

Algorithm 4.2. (RLDA)

Input: Data matriz A € R"™ ™ with cluster label, cluster number k, reqularization
parameter p.

Output: Optimal transformation G € R™**
Step 1. Construct H, € R™* and H, € R™" from (4.5).
Step 2. Compute the reduced SVD of H, as
H, =Usv",
where U € R™7, X e R, V e R, v = rank(ﬁt).
Step 3. £ =2+ ul.
Step 4. Compute SVD of f)_%UTHb as
S 2UTH, = UV, U, € R7F, 1, e R, © e RMF,

Step 5. G = US1/2,.

4.3 Regularized Discriminant Analysis (RDA) 112

4.3 Regularized Discriminant Analysis (RDA)

Different from SCRDA and RLDA, Friedman[34] proposed a compromise between
LDA and quadratic discriminant analysis(QDA), called regularized discriminant
analysis(RDA), which allows one to shrink the separate covariances of QDA toward
a common covariance as in LDA by employing regularization techniques. However,
the computational cost of the model selection in [34] is high, especially, when the
dimensionality m is large. In [105], Ye et. al., extended the applicability of RDA
to high dimensional, low sample size data.

Consider the data matrix A = [al an] € R"™" defined in Chapter 1,
the notations S’w, S't, Sb and I:Ib are the same as RLDA in section 4.2. Denote S;

as the covariance matrix of the i-th cluster, i.e.,

1 T
S = n Z(%’ —¢)(a; —a),
JEN;
then the regularized class covariance matrix,

~

Si=B(rSi+ (1 =7)8) + (1=)1

was used in [105] to overcome the singularity problem. A data point x is classified

to class ¢* if

#* = arg min d;(z), (4.7)
where
di(z) = (x — ;)7 STz — &) + log | Si, (4.8)

| - | denotes the matrix determinant.

Let H, = USVT be the reduced SVD of H,, where U € R™ and V € R"*7
are column orthogonal, ¥ € R is diagonal and v = rank(H,) = rank(S,).

Denote U+ € R™*(™=7) ag the orthogonal complement of U, then

2

~

Si= v U] 1% UL}T

4.3 Regularized Discriminant Analysis (RDA) 113

is the eigenvalue decomposition of S,. By knowing that (U+)TS; = 0, S; can be
expressed as

i

$i=v v v Ulr, (4.9)

(1 - B)Imf"{

where

M; = B(tUTS;U + (1 — 7)¥2) + (1 — B)L,. (4.10)

Then the discriminant function in (4.8) is changed to be:

di(z) = (z — &))" UM U™ (2 — ¢;) + log | M;| + log((1 —)™7)

+ (1= B) o —)T UHUH (2 —). (4.11)

Since (UL)TS, = 0, i.e., (UH)TH, = 0, the last term of d;(x) in (4.11) is a constant

for different ¢. Therefore, the classification rule in (4.7) is equivalent to

ko . AA
i" = arg min d;(z),

where

di(z) = (v —¢c)'UMU (z — ¢;) + log | M|

7

with £ = UTz, and ¢; = U”¢;. Denote

N 1 A

where A; = UT A;, A; is the data set of the i-th class, we have

UTS,U = H;H!.
Denote 2,5 = (1 — 7)8%% + (1 — 8)I, then M; in (4.10) becomes
A A 1 1
M; = BrH;H 4+ .5 = 22,(X; X[+ 1,)X2,,

where X; = /78% 7 H;. Tt follows from Sherman-Woodbury-Morrison formula[38]
that

1 _1
M7t =% 3 (1, — Xi(L, + X[X3) ' X[)87 (4.13)

(2

4.3 Regularized Discriminant Analysis (RDA) 114

Thus, the first term of d;(z) can be computed as
(& —)M (3 — &)
(= 6T 6 — &) — (& — &) (XL, + XTX) ' XD)T (@ - 6,
and in the second term,

Mi| = | X X[+ L|[Srs] = | X X + L, |55 (4.14)

Like SCRDA in section 4.1, there is no explicit expression of optimal trans-
formation matrix, in the following RDA algorithm, the output is classification

accuracy. Likewise, we use notation cl(-) to denote the class label of data sample.

Algorithm 4.3. (RDA)

Input: Training set A € R™ ™ with cluster label, test set B € R™™ with cluster
label cl(3) (7 =1,---,n), cluster number k, reqularization parameters ([3,7).

Output: accuracy.
Step 1. Construct local centroids ¢; (i =1,--- k) and H, of A.
Step 2. Compute the reduced SVD of H, as
H=UxV",

where U € R™, V € R™ and ¥ € R7*7, v = rank(H,).
Step 3. A=UTA, B=U"B, ¢, =U%¢; (i=1,--- k).
Step 5. Form H; (i=1,--- k) by (4.12)
Step 6. Y5, = (1 —3)r2%+ (1 —71)I.
Step 7. Compute

1
X =/B1E5 Hi, | M| = (X7 X; + 1,

Zﬁﬂ'|7 2217 7k7

_1 _1
M’_l = 2,8,12'(]7 - Xz(jm + XzTXz)_leT)Zﬁj-v 1=]-a e 7k-

)

Step 8. Compute
d(],Z) - (B<7])_62)M7,_1<B(7.])_61)+10g|Mz|7] =]-7' o 7ﬁ7 1= 17' t)k-

Step 9. Obtain clyax(j) = arg max d(j,4), j=1,--- 7.

Step 10. Compute accuracy by comparing cl with clyax

Chapter

New Regularized OLDA

Classical linear discriminant analysis (LDA) is not applicable for small sample
size problems due to the singularity of the scatter matrices involved. Regularized
LDA as a well-known extension of the classical LDA provides a simple strategy
to overcome the singularity problem by applying a regularization term. The great
advantage of regularized LDA over some other extensions of classical LDA is that
it captures essential features of the training data without discarding some useful
information, thus usually obtaining a higher classification accuracy given an ap-
propriate regularization parameter. Although regularized LDA has been studied
by some researchers as shown in Chapter 4, it is still lack of a mathematical theory
for selecting an optimal regularization parameter. The work in this chapter is to
fill this gap.
We first characterize all solutions of orthogonal LDA (OLDA):

G = arg max trace((GTS,G)PGTS,Q), (5.1)

GeRm*l, GTG=I

and all solutions of regularized OLDA (ROLDA):

G= trace((GT(S, + ADG) ' GT$,G -
argGeRmrﬁf%éTG:I race((G' (S; + A\I)G) ,G), (5.2)

for some A > 0, then establish the intrinsic relationship between OLDA and
ROLDA. Based on this relationship we find a mathematical criterion for select-

ing the regularization parameter A in ROLDA and consequently develop a new

115

5.1 Preliminaries 116

regularized orthogonal linear discriminant analysis method, in which no candidate
set of regularization parameter is needed.

The rest of this chapter is organized as follows. Some useful supporting lemmas
that are critical for subsequent discussions are given in Section 5.1. Theoretical
analysis of our new proposed OLDA and ROLDA methods is shown in Section
5.2 and algorithm depiction of both methods is shown in Section 5.3. Numerical

results and conclusions are presented in Section 5.4 and Section 5.5, respectively.

5.1 Preliminaries

Lemma 5.1. Let X, Z € R*** be symmetric positive definite. Let W &€ R**V
and W # 0. Then
trace(WTXW) P (WTZW)) < trace(X12),

and the equality holds if and only if

rank(W) = p.
. . (1, 0
Proof. We can assume without loss of generality that W = , g = rank(W).
0 O
Denote __
X1 X AR
Y ;1 1,2 7= 17:1 1,2 7
X172 X2,2 Z172 Z2,2_

where X1, Z11 € RMXM | Xy, Zyy € RW#)X(=1) Then,
trace(WIXW)DWTZW)) = trace(X1 1 Z1,1),
and
trace(X ' 2)

-1

X1,1 X1,2
T
X1,2 X2,2

ARRAR:

= trace .
Z1,2 Z2,2

= trace(X11 Z1,1) + trace((Zao — X1 9X11Z12 — Z{ X171 X120 + X{ X171 211 X1 1 X12)

X (XQ’Q — X,11j2X17’11X172)71),

5.1 Preliminaries 117

where the second equality holds due to the same method as in (3.1). Note that X
and Z are pOSitiV@ deﬁnite, and ZQ,Q_X11:2X1_711Zl,Q_Z%:QXl_,llX172+XE2X1_711Zl,lXille,Q
is the principal submatrix of

AREPAR:
T
Zig Zag

I —X;}Xm]

1
—)(17:2)(1’711 I I

50 Xoo— X{,X 11 X1 0 and Zop— X{0X 11 Z10— 21, X1 X1 o+ X1 X1 1 211 X141 X1 2
are positive definite if they are not vanish, that is, if ;> p;. This yields that

trace((Zao — X{9X11 212 — Z1{ 5 X11 X120 + X1, X1 211 X1 X12)

X (Xop — X1, X11X12)71) >0

it > py.

Therefore we obtain
trace(WTXW)HWTZW)) < trace(X12),
and the equality holds if and only if

= py, ie., rank(W) = p.

Lemma 5.2. Let X € R"*7 Y € R**Y and Z € R**Y, then
X
rank [XTX YTY] = rank [Y] ;

and
X

rank [XTX YTY + ZTZ} =rank |V
Z

Proof. Note that

XTX yTY| = X7 v7]

5.1 Preliminaries

118

SO
X
rank [XTX YTY} < rank [Y])

and the other side inequality directly follows from

rank [XTX YTY} > rank(X7 X + YY) = rank ([XT YT]

)

X
Y

= rank

The second equality can be derived similarly. O

Lemma 5.3. Let scatter matrices Sy and Sy be defined in (1.1). Then
trace(S\1S,) = max trace((GT S,G)PGTS,G) = max trace((GTS,G)PGTS,Q),

and

trace((S; + A)71S,) = max trace((GT (S, + M\)G)*GT S,Q)

= max trace((GT(S; + A\)G) 'GP S,G), VA > 0.
Proof. By applying GSVD [72] in Lemma 3.5 to matrices H, € R™** and H,, €

R™*" defined in (1.3), we have

78,0 = dTHUUTH @

Iy

@2

Oy—p—s

and

®'S,® =o"H,UUTH®

Op

(1]
%)

Y—p—s

5.1 Preliminaries 119

where ® € R™*™ is nonsingular, U € R*** and V € R™" are orthogonal, © =
diag(fy,--- ,05) € R and = = diag(&, -+ ,&) € R**® are diagonal as defined
in Lemma 3.5, with v = rank [Hb Hw] = rank(S;), p = v — rank(H,), and
s = rank(H,) + rank(H,,) — 7.
Next, from equality
St = Sw + Sh,

we have

I
dTS,d = TS, + &1S, P = [K .] .
m—y

Thus, by the nonsingularity of @, the following equality holds:

I
trace(St(+)Sb) — trace((®75,®) PP’ S, ®) = trace [P

=p+203.
=1

@2

For any G € R™*!, we have

I
G'S,G=GT"o 175,007 'G =G7 [K] g,
m—y

_Ip i
Q?
G756 = GTo BT 5,0071G = G” g,
0y—p—s
O

where G = & 1G € R"™*!. Let

G

g — gQ : gl c Rle, gQ c Rsxl’ g3 c R('yfpfs)xl’ g4 c R(mfv)xl,

Us

be the partition of G. It follows that
T
G G1

GTStG: QQ g2)
Gs Gs

5.1 Preliminaries 120

and
a) [1 g
GG =T |7 .
Ga O Ga
Hence, Lemma 3.1 and Lemma 5.1 result in
trace((GT 8,G) P GT S,@)
- 2T ¢ - +) T 0
—trace gl gl + gggg gl p gl
G| (6] : 0] |G,
- 4T - o\ (P T / :
<trace Gi| |9 G1 p G
G| (6] Gy 02| |G,
I
<trace P
@2
34 (5.3)
i=1
Let
I ;
g — e RmX
0

with [> p+ s, then G = ®G = P, is the optimal transformation matrix such that
trace(Ser)Sb) = trace((GT S,G) P GTS,Q),
where ®; € R™*! is the submatrix of ® that consists of its first [columns.
Compute the economic QR factorization of ®; as

®1 = \IllRa

where ¥; € R™*! is column orthogonal and R € R™! is upper triangular and

nonsingular, then G = W, is the optimal column orthogonal transformation matrix.

For the regularized optimization problem, since
Si+ M =5,+ 5, + A

:mﬂ+hﬂﬁﬂhuﬁfj

= HyH! + H,HY,

5.1 Preliminaries 121

where H,, = [[—[w \/XI}, we can apply GSVD to matrices H, and H,, then the
results will be obtained. The proof for regularized optimization problems just

follows the above process, we omit it here. O

Lemma 5.3 implies that G € R™*! is an optimal solution of OLDA (5.1)
if trace((GTS,G)DGT S,G) achieves its maximum value trace(S\"S,), and G* €
R™*!is an optimal solution of ROLDA (5.2) if trace(((GM)T (Si+AI)G)~H(GMTS,G?)
achieves its maximum value trace((S; + AI)~%S,). This lemma is crucial for the

general solution acquisition in OLDA and ROLDA.

Lemma 5.4. Let X € RM*V Y € R**Y | then

(

X
rank = rank(X) + rank(Y),

Y (5.4)
\rank(X) = U1,
18 equivalent to
X _ Zin 22 F
Y 0 Zso

where Z;; € RM*M 7 5 € R’“X(”_’“), Lo € Ry2xv=m) [c RV s orthogonal

and rank(Z11) = p.

Proof. Decompose Y7 as,
0

T
32,2

yT=F" : (5.5)

where 7 € R¥* is orthogonal, Z5, € R#2*® is of full column rank, s is the rank

of Y. Then
X

Y

Zin Zi2
0 Zo

F,

if we denote

[31,1 31,2} = X}—T,

5.1 Preliminaries 122

where Z;; € Ryax(v=s) Z 5 € RF*%. Therefore,
X
rank [Y] = rank(Z; 1) + rank(2,2) = rank(Z; ;) + rank(Y),

which together with (5.4) yields that rank(Z;;) = p;. Permute the columns of
matrix Z;; such that the first p; columns are linearly independent and adopt the
corresponding matrix row permutation to F, which results in the new decomposi-

tion as
X Zia L

Y 0 Zas

where Z;; € R*"* is nonsingular, Z; 5 € Ryax(v—m), Zyo € Rr2x(v=m) - and

F

Y

F € R"*" is orthogonal.
The other direction is trivial, we omit it here. O

Remark 5.1. The decomposition of YT in (5.5) can be accomplished in the same

way as QR factorization except that columns are annihilated above the diagonal.

Lemma 5.5. Let X € R*** be an orthogonal matrixz that has partition

X X
¥ - 1,1 1,2 7
Xo1 Xoo

where X11 € RV Xy, € RV, X;5 € REXE) gnd Xy € RV Jf

Xo1 ts nonsingular, then X o is nonsingular, and vice versa.

Proof. Suppose X3 ; is nonsingular, but X 5 is singular. There exists a nonzero
vector z € R#*™ such that X; 9z = 0. Thus, follows from the orthogonality of X,

we have

5.1 Preliminaries 123

which results in

X2722 7£ 0. (56)

Xia2| .
, 1.e.,
X2

XITJXLQ + nglXQ,z =0,

X
Since [b

| is column orthogonal to
Xo1

multiplying z on both sides of the above equality yields
X351 X002 =0,

which contradicts nonequality (5.6) as X»; is nonsingular.

Similarly, we can prove that if X 5 is nonsingular, then X5 ; is nonsingular. [J

Lemma 5.6. [81] Let X, X € R**" with rank(X) = rank(X) = v and
X, 1x = &, < 1.

Let

be the economic QR factorizations of X and X, respectively, where R, R € R"*¥
are upper triangular with all diagonal elements being positive, and), Q € R**Y

are column orthogonal, i.e.,
QTQ=90"2=1

Then
[X,

Q- Qlp <1+ \/5)1 “IX O, X = X,

X = Xlp, (5.7)

where X) denotes the Moore-Penrose inverse of X.

Remark 5.2. The perturbation inequality (5.7) for QR factorization also holds
when R and R are two lower triangular matriz with all diagonal elements being

positive.

5.2 Theoretical Basis 124

5.2 Theoretical Basis

In this section, we develop a new regularized orthogonal linear discriminant analysis
method (ROLDA), in which no parameter selection is needed. Before we embark
on the development of new ROLDA, based on the above preliminaries, we first
characterize all solutions of OLDA (5.1) and ROLDA (5.2) with regularization
parameter X\. These characterizations will play critical role for establishing the
relationship between optimization problems OLDA (5.1) and ROLDA (5.2) in the

later development.
5.2.1 Characterization of All Solutions to OLDA

In this section, we characterize all solutions of optimization problem OLDA (5.1)

by the following theorem.

Theorem 5.7. Let Ay € R™* 1 and Ay € R™ K pe determined by (5.6).
Let orthogonal matriz () € R™ ™ be such that

Rii Rip
A2 4| =Q| 0 Ruol. (5.8)
0 0

where Ry € R*k=1) gnd Rys € RO—0x(=k) gre of full row rank. Next, let the

economic QR factorization of R2T72 be
R}, =ViR},, (5.9)

where V; € RO=X(=9) s column orthogonal, Rago € RO—9*0=9 s lower trian-

gular with all diagonal elements being positive. Finally, let

Ri2 = Ry 2V, (5.10)

. Riz2
and the QR factorization of be
Raa
R
[Pl=v|], (5.11)
Ro2

0

5.2 Theoretical Basis 125

where I1 € RO=9*0=9 45 ypper triangular with all diagonal elements being positive,
V e R is orthogonal,

Vii Vip
Var Voo

V:

)

Vie € R?1 4s lower triangular with all diagonal elements being non-negative and

Vo € RO—9x0—9) Then Via and Va1 are nonsingular,
= rank(S,), v = rank(S;),

and all solutions G € R™ of OLDA (5.1) are parameterized by

Vie 0 0| | I —VihWes — W3,
G=Q|Vay I 0] 0 W [b I] W, (5.12)
0 0 I||Ws, Wi

where W € R is orthogonal, Wy, € R is nonsingular, Wz, € Rm=7x4
Va1 Wap2
] Wi and W39 are column

‘ I
and Wsyo € RO-9x(=9) gpe arbitrary,
W37:1W372

3,1

orthogonal.

Proof. By (5.8), the following hold

R, Ry
A2 = Q 0) A3 = Q R2,2)
0 0

so, follows from the new expression of scatter matrices in (3.7), i.e.,
. T
Si=MAL, 5 =4 A4 Al

Riqn Rip

~v = rank
0 R272

= rank [A2 Ag} = rank(S;) and ¢ = rank(R; ;) = rank(As) =

R
rank(Sy). According to (5.11), the QR factorization of [R1’2] :
2,2

Rap = Vaull,

5.2 Theoretical Basis 126

with R and IT are nonsingular, we have V5 ; is nonsingular, which together with

that
Vig Via

Vi Vap

V:

is orthogonal and Lemma 5.5 yields that V} 5 is also nonsingular .

Let V, € R("#)*(+a=k=7) he guch that [Vl VQ] is orthogonal, and denote
Rl,:} = 31,2V2,
then together with (5.9) and (5.10), we have
T T
R2,2 - [Rz,z 0} [Vl VQ]) RI,Z - [R1,2 R1,3} [V1 VQ] . (5‘13)

After some straightforward manipulation, it can be seen that

T
Vig 0 0 ‘GgRl,l
Q ‘/2,2 I AQ: 0)
0 0 I 0
and
T
Vig 00 0 V1,T2R1,3
Q|Vop I 0 Az [Vl Vz} = [Rap 0 ;
0 0 I 0 0

where the second equation is deduced from (5.13) and the QR factorization (5.11),

ie.,
VIyRio2 + ViyRas = 0.
Hence
T T
Via 0 0 Via 00 VILRy | [V R
Q|Vop I 0 Sp | @ [Vap I 0| | = 0 0 ;

0 0 I 0 0 I 0 0

5.2 Theoretical Basis

and
T
Vis 0 0 Vis 0 0
Q (Voo I 0 St |Q [Vae I 0
0 0 1[I 0 0 1[I

T
VihRip 0 VLRis| [VIBRi: 0 VAR
= 0 RQ,Q 0 0 RQ,Q 0
0 0 0 0 0 0

Furthermore, by the nonsingularity of V; 5 and @), it holds that:

trace(S{)
T (+)
Vie 00 Vie 00
=trace Q|Vay I 0 S| Q [Vaa I 0
0 0 I 0 0 I
T
Vie 00 Vie 0 0
XQV2,2]0 Svaz,QIO
0 0 I 0 0 I
7\ —1
VLR, 0 VLR [VhRi 0 VAR
=trace
0 Ra2 0 0 Ra2 0
‘GTQRI,IR{J/LQ 0
0 0
-1
—trace ‘/11,12(R1,1R1T71+R1,3R1T73)V1,2 Vngl,lRlT,lVl,z 0
:trace((Rl,lRfl + R173R£3)_1<R171R{1)). (514)
For any G € R™! let
-1
Via 0 0 Wi

Voo I 0] Q'G=W= |W,| eR™
0 0 I Ws

5.2 Theoretical Basis 128

with W, € R W, € RO-9%0 117, € R(m=9)*! Then
T

Vo 0 0] [w Ve 0 0] [w,
GTS,G=1Q Voo I Of | W S| Q| Voo I 0O W,
0 0 I| |[Ws 0 0 I [Ws
- T T
Wi VibRiy 0 VALRis| |VIBRi: 0 VihRys Wi
- W2 0 RQ,Q 0 0 RQ,Q 0 W2
_W3 0 0 0 0 0 0 Ws
i R \ViaW
= [WIVLRL WiRa WIVERL| | REW
RT,ViaW,

=W VIL(R1aRT | + RisRI)VigWi + Wi Ro Ry, W,

and
T
Vie 0 O] W Vie 0 O] W
GTS,G=|Q Voo I Of |[Wy Sp | Q@ |Vae I 0Of [Ws
0 0 I [Ws 0 0 I [Ws

T T
T T
Wil [VLRL [VER] [

— WQ 0 0 WQ
| W 0 0 Ws
— WlTVvlgRl,lRflel,le .

Thus, by Lemma 3.1 and Lemma 5.1,
trace((GT5,G) P (GTS,Q))
=trace((W]{ V{5 (Ri 1 RL, + RisRT5)ViaWh + Wa Ra RS W)
x WI ViR R ViaW))

<trace((W] V5 (Ri1R] | + RisR5)ViaW) D W VI Ry R Vo))
<trace((Ri11 R} | + Ri3R{5) " (Ri1R],)). (5.15)

By using lemma 5.3 and equality (5.14), G is a solution of OLDA (5.1) if and only
if the two inequalities in (5.15) hold at equality. Lemma 3.1 implies that the second

5.2 Theoretical Basis 129

equality in (5.15) holds if and only if

rank W1TVY1T2<R171R{1 + R1,3R{3)VY1,2W1 WQTRQQR;QWQ
= rank(W] V{',(Ri1R] | + Ri3R{ 5)Vi2W1) + rank(W) Ro 2R3, Ws),

which is further equivalent to

rank [W1] = rank(W;) + rank(W), (5.16)

W,

by applying Lemma 5.2, whilst Lemma 5.1 implies that the third equality in (5.15)
holds if and only if

rank(W;) = ¢. (5.17)

4%
Lemma 5.4 together with (5.16) and (5.17) leads to the expression of [V\/l] as
2

)4% Wia W I W W
1 1,1 12| — 1,2 1,1 W (5.18)
WQ 0 W272 0 W272 I
where W € R!*! is orthogonal, W;; € R9* is of full rank, W, € R?*(=9 and
Waso € RO-9x(=9) gre arbitrary. Let

-1

[W3,1 W3,2] = WsWT [WM [])

with W3, € Rm=% Wy, € RM=)*(=9 We have that

Vi, 0 0] [Wm Vie 0 0| [1 W]
G=Q Voo I 0| [Wa|=Q[Vas I 0| | 0 Way [b]]W (5.19)
0 0 I||w 0 0 I| Wi Wi

5.2 Theoretical Basis 130
is column orthogonal if and only if
— T _
Vig 00 I Vie 00 I
I = Voo I 0O 0 | Wis Voo I 0 0 | Wis
i 0 0 I |Ws, i 0 0 I| [Ws,
[T IV o0 I
= 0 | Wia Voo I O 0 | Wi
_W371 0 0 I W371
T
I I
= W171 W171 y (520)
Wi Wi
T
‘/LQ 0 0 I VYI,2 0 0 WI,Q
0= |Vay I O 0 | Wi Voo I 0] |Wap
0 0 I Wg’l 0 0 I W3,2
- T
ViaWia ViaWis
= | Vo oWig Vo oWio + Wops
Ws 1 Wi Wi
= W17:1<W1,2 + ‘/27:2W2,2 + W331W3,2);
ie.,
WLQ + %TQWQQ -+ W§1W372 == 0, (521)
and
T
Vieg 0 0] |Wig Vieg 0 0f |Wig
I = Voo 1T 0f |Wae Voo I 0f |Wape
0 0 I W372 0 0 I W3,2
- T
VioWia VioWis
= (Voo Wio+ Wy Voo Wi+ Was
i Wi Wi

=W (Wia + ViyWas) + Wio(VaoaWia + Waa) + Wi, Wi
=— W1T72W§1W3,2 + ng(—vmvgngz — V2,2W37;1W3,2 + Wayo) + W§2W3,2
=— Wi+ ‘/22W2,2)TW;37:1W3,2 + W2T72V2,1V2?1W2,2 + W§;2W3,2

5.2 Theoretical Basis 131

=Wy, Ws 1 Wiy Ws o + Wi, Va1 Vol Wa o + Wi, Ws s

T
‘/27:1 W2,2 ‘/27:1 W2,2
= W372 Wg}g y (522)
W3?711W3,2 W37;1W3,2

where the fourth and sixth equalities in (5.22) use the results in (5.21).

Therefore, (5.12) directly follows from (5.19), (5.20), (5.21) and (5.22). O

Remark 5.3. Orthogonal matriz V' in Theorem 5.7 can be computed as follows:

R
e Compute QR factorization of b2
Raz2
RLQ :V II ’
R272 0

where 11 € RO=DX0=9) s ypper triangular with all diagonal elements being

positive and V € R is orthogonal. Denote

- [Vin Vi
- ~ 9
Var Vap

where Vi, € R*09 |V, € RO-9x(-9), ‘7172 € R, \7272 c RO—9xq.
e Compute the QR factorization of VlT2
Vi'y =TA,

where A € R 4s upper triangular with all diagonal elements being non-

negative and I' € R?*? is orthogonal. Then

Vi AT
V- 1,1 -
Vou Vool

1s the orthogonal matrix satisfying conditions in Theorem 5.7.

5.2.2 Characterization of All Solutions to ROLDA

In this section we characterize all solutions of optimization problem ROLDA (5.2),

the results are shown in Theorem 5.8.

5.2 Theoretical Basis 132

Theorem 5.8. Let Ay, A3 be determined by (3.6), Q, Ri1, R12 and Ryo be deter-
T
mined by (5.8) and X\ > 0. Let the economic QR factorization of [R%? \/X[]

be
R%—ZZ
VI

where V) € RMH=k=0x0=9) s column orthogonal, 72372 € ROU=9%0=9 s lower

=Vi(R32)" (5.23)

triangular with all diagonal elements being positive. Let

Ry = [R1,2 0] %8 (5.24)

o Ris
and the QR factorization of N be

2,2

Ria| oo

where II* € RO~D*0=9 s upper triangular with all diagonal elements being posi-

H)\

.k (5.25)

tive, V> € RY*7 is orthogonal,

A A
Vin Wiy
A A
Vii Vi,

VA =

?

Vl”\Q € R 4s lower triangular with all diagonal elements being non-negative and
V3 e RO-9*(=9) Then V3Y and VY, are nonsingular, and all solutions G* €

R™ ! of ROLDA (5.2) are parameterized by

Viy 0 0f (1 —(V3y)"W3y
GP=Q |V, I 0| |0 W2, W, (5.26)
0o o I||o W2,

where W» € R™! s orthogonal, W2A,2 e RO-9x(-9) W;:z e Rm=0x(=9) gnd
(Va) Wi
W3,

] 18 column orthogonal.

Proof. First, by directly calculating (5.25),

AT T
Rz,z—vuna

5.2 Theoretical Basis 133

R5, and II* are nonsingular, so, V3, is nonsingular. Which, in return, together

with that
Vv Vi

A A
Vir Vi

VA =

is orthogonal and Lemma 5.5 gives that V), is also nonsingular.

Next, let V3 be such that [Vf Vﬂ is orthogonal and denote
Ri\,?) = [RI,Q 0] V2>\a
then together with (5.23) and (5.24), we have

(Roo VAL = [RY, o] [0 W] . [Rie 0] =[R2, =2 [0]

(5.27)
By the definition of @ in (5.8), new expression of S; in (3.7) and (5.27),
QT (S: + \)Q
. T
—Q" |4, Ay VM| |4y 44 VAI| Q
- 1 r AT
Rin Rip VAT 0 0 Rip Rip VA0 0
=1 0 Ry 0 VA 0 0 Ry 0 VI 0
00 0 0 VAM]|O 0 0 0 V]
- . 4T

Rip RY, VAI Ry 0 Rip Ry, VAL Ry 0
=0 Ry, 0 0 0 0 Ry 0 0 0
0 0 0 0 VA|][O0O 0 0 0 Vil

Thus, similar to the proof of Theorem 5.7, we have
T

7y 000 iy 000
Q|Vsy, I 0 (Se+AD [Q|vzy, I 0
0 0 I 0 0 I
(Vi) (RiaRTy + RY5(Ri5)T + ANV 0 0
= 0 R§,2(R§\,2)T 01,
I 0 0 A

where the second equation is deduced from the QR factorization (5.25), i.e.,

(‘/1/}2)TR?,2 + (‘/Qf\Q)TRé\,Q =0,

5.2 Theoretical Basis 134

and
T
Vi 00 Vi, 00 (Vi%)"RuR{;Vyy 0 0
Q|Vsy I 0 Sy | Q|Vsy I of | = 0 0 0},
0 0 I 0 0 I 0 0 0

which together with the nonsingularity of Vf2 and @) gives

trace((S; + AI)~'Sy)

- T
Vi, 00 Vi, 00
=trace Q|Vyy I 0 (Se+A) | Q|Vyy T 0
0 0 I] 0 0 I
T
Vi, 00 Vi, 00
x| Q|Vsy I 0 Sp|Q|Vsy I 0
0 0 [0 0 I
-1
(ViR (Rua BTy + RY5(Ris)T + AV, 0 0
~trace 0 Ria(Ra)" 0
0 0 A
(V2y)"Ri R, VY, 000
X 0 0 0
0 00
=trace((R11 R} | + Ry 5(Rys)" + M) (Ri1RY). (5.28)
For any G* € R™*!| let
-1
Vi, 00 12%
0 0 I W;

with W € R Wt € RO=9XI W2 € R Then

T
Wi | (Vi) Rua R, Vi, 00 R
(GMTS,GY = | W) 0 0 0] |Wy
Ws 0 0 0] Wy

= (Wl/\)T<V1),\2)TRLlR1T,1V1/,\2W1)\>

5.2 Theoretical Basis

135
and
(GMT(S, + MG
T
4% (‘/1§2)T(R1,1R1T,1 + Ri\,S(Ris)T + A[)Vl):Q 0 0] W
= Wé\ 0 R§\72(R§’2)T 0 Wi\
2% 0 0 M| Wy
=W (V)T (RiaRY, + R5(R5)T + ADVIRWE 4+ (W3) R35(R32) Ws
+ AW Wy,
Thus, Lemma 3.1 and Lemma 5.1 lead to
trace{((G*)*(S; + \X[)G*)"HGM T S,G*}
=trace{ (W) (V{%)" (Ri1 Ry + Ry5(RYs)T + ADVI,WE + A(WV3) W3
+ (W3) T Ry(Ra) Wy) T O T (Vi) Ria R, VisWL'}
Straee{((W?)T(V&)T(Rl,lRil + Ri\,?,(Ri\,s)T +)\I)‘G/}QWI\)A(W{\)T(VQ)T
X Rl,lRflvf,BWf\}
<trace((R11 R} | + Ry5(Rys)" + M) "Ri1RY). (5.29)

Hence, by using lemma 5.3 and equality (5.28), G* is a solution of ROLDA (5.2)
if and only if both of the last two equalities in (5.29) hold. According to Lemma
3.1 and the nonsingularity of Vlf‘z, the second equality in (5.29) holds if and only if

rank [(W)T(V2y) T (RiaRT, + R (R)T + ADVAWY (W)W,
+W3) RS 5(Ra) W5
= rank((W{\>T(V1),\2)T(R1,1R1T,1 + Ri\,z))(Ri\,s)T +)‘])‘/1/,\2)/\}1/\) + rank(/\(Wg‘)TW?:\

+ (W) R, (R3)" W),

which, by Lemma 5.2, is equivalent to

wy "
rank | W) | = rank(W}) +rank | 2| (5.30)
) Wy
Ws

5.2 Theoretical Basis 136

And Lemma 5.1 yields that the third equality in (5.29) holds if and only if
rank(W;) = ¢. (5.31)
Note that, by Lemma 5.4, conditions (5.30) and (5.31) are equivalent to that

A
Wil = (o w| | M I] W,

wi I WP, [
2% 0 W3,

where W* € R is orthogonal , W, € R? is nonsingular, W}, € R~

W3, € RO=x(=0) and W3, € R(™=*(=9)_ Furthermore, we have

Vi, 0 0] [Vi, 0 0] |1 Wiy \
=0 |va I N N LS Wr (5.32
- 2,2 0 Wy =Q V2,2 I 0 0 W2,2 I ()
0 0 I||W; 0 0 I |0 W3,
is column orthogonal if and only if
A A r A A
V1,2 0 0 Wl,l V1,2 0 0 Wl,l
I=1|Vsy T 0] O Vay I 0] 0
0 0 I|] O 0 0 1Il|oO
= (W)WY, (5.33)

T
Vi, 0 0] |y Vi, 0 0] |y
0= Vs I o] 0 Ve, 10| W3y
0 0 1I|]| o0 0 0 I]||W

= (Wl/\,l)T(Wl):Q + (Vz/}z)TWQ/\,z)»

Le.,
WPy = —(Vay) Way, (5.34)
and .
‘/1),\2 00 Wf: 2 Vﬁ\g 0 0 Wl): 2
I=1|Vsy I 0] W3, Vay I W2,

e}

0 0 I| W 0 W3,

5.2 Theoretical Basis 137
=(Wo) T (Wis + (Vo) Was) + (W) T (Vs Wiy + Wa) + (Waly) T W3y
:(W2>:2)T(‘/2>,\2W1>:2 + WQ)\Q) + (Ws/\,Q)TW?iz
:(WQ/\,2)T(_V2A,2(V2/,\2)TW2/\,2 + W2/\2) + (W§2)TW§\,2
:<W2/\,2)TV2/,\1(V2),\1)TW2/\,2 + (W2,):2)TW3:\,2' (5-35)

Notice that, the third and the fourth equalities in (5.35) hold due to the fact in
(5.34). Let

W)
WA:[bt]] WA, (5.36)

then W? is orthogonal, and consequently Theorem 5.8 follows from (5.32)-(5.36).
[l

Orthogonal matrix V* with special form in Theorem 5.8 can be computed

similarly as V' shown in Remark 5.3.

5.2.3 Relationship between OLDA and ROLDA

The major issue of the regularized LDA is how to choose an appropriate regu-
larization parameter. In the existing regularized LDA methods, they all select
the “best” regularization parameter from given parameter candidate set by us-
ing cross-validation for classification. To the best of our knowledge, there is no
concrete method available in selecting an appropriate regularization parameter in
practical applications. To concur this limitation in regularized LDA, we first reveal
the intrinsic relationship between optimization problems OLDA (5.1) and ROLDA
(5.2) in this section, such relationship will lead to a new mathematical criterion
for choosing regularization parameter for ROLDA in the next section.

Before we study the relationship between the optimal solutions G of OLDA
(5.1) and G* of ROLDA (5.2), the distance between two orthogonal matrices V in
Theorem 5.7 and V* in Theorem 5.8 is obtained based on the perturbation theory

of QR factorization, see Lemma 5.6 in Section 5.1.

5.2 Theoretical Basis

138

Lemma 5.9. With the notations in Theorems 5.7 and 5.8, the following holds:

[Rasll, Vi =a+ [Ri2Ras])
F= AR, O+ [RuaR33)

Vv, < 1 V3
provided X > 0 satisfies
ARzl (1 + [RiaR3d],) < 1.
Proof. According to (5.13) and (5.11), we have
RysRy) = RooRy,, RoaRiy =RooRi,,

T T . —TT -1
‘/1,2731,2 + ‘/2,2R2,2 =0, Le, — R2,2 R1,2 = V2,2V1,2)

R
_ [1,2] R§2 _

where H'R;2 is upper triangular with all diagonal elements being positive and

Vi

and
T
R1,2R2,2

(IIR3,), (5.37)
R2,2R£2

2,1

is column orthogonal, which means (5.37) is an economic QR factorization

Vau
. |Ri2R3, :
of matrix B It is easy to see that
R2,2R272
I I Vi
m o | = et | = |y | Vies (539)
—(RepR55) ' RapR, —R32Ri, Voo
—1 - ‘/1,2 .
where Vi, is a lower triangular with positive diagonal elements and - is
2,2

column orthogonal, so (5.38) is an economic QR factorization of

. I
, le., .
—R;g’R{Q

Similarly, resulting from (5.27) and (5.25), the following hold,

1
- (RQ,QRQT,Q)_IRZQR{Q

RopRys + M = Ry5(R3,)", Roaliy =R3,(Riy)"

(‘/1?2)717?’%,2 + (VvQ),\2>TR§\,2 - 07 i‘e'a - (RS,Q)_T<R;2)T = ‘/2>,\2<‘/1),\2)_17

5.2 Theoretical Basis 139

and

(I (R3)"), (5.39)

RLQR%:Q — Ri\,Q (R)\)T — ‘/1),\1
RosRY, + NI Ry, o

where (IT'(R3,)") is upper triangular with all diagonal elements being positive and

v)\
12| is column orthogonal, which implies (5.39) is an economic QR factorization

Vsy
of matrix
R1,2R£2
RooRY, + NI |
Besides,
I] I]
_(RZ,2R£2 +)\[)_132,2R1T,2 __(R§7Q(R§\,Q>T)_1R§\,2(Ri\,z)T
| 1]
—(R35) " (Ry)"
U
= | Pyt (5.40)
Vay|

is an economic QR factorization of

1
—(R272R§2 +)\I)_le,gR{Q

i.e [!]
o _(Ré\,z)_T(Rig)T 7

A
Viy

A
Vi

since (‘/1’7\2)_1 is a lower triangular with positive diagonal elements and is

column orthogonal.

By applying QR perturbation theory, Lemma 5.6, to QR factorizations (5.37)
and (5.39), we have

(+)
R1,2R£2
T
VA~ Vi, Ryo Ry,
‘ N <(1+vV2)v7—q e
Vi — Vau F 1 R1,2R2Tg

T
R2,2R2,2

2

5.2 Theoretical Basis 140

1—A ’
R22R5 5)
RiaR5 "
(732,2735,2) ! [1721_ 2’2]

2
|R23;
< (1+v2)yn—¢ =120, (5.41)
1=\ |Raal,

in which the last inequality follows from

Cy
[R172R272] o 1

— <1,
I R12R35
2 Omin '
I

where o, (+) denotes the minimum singular value of a matrix, provided

()
R1,2R£2

T
RyoR;

A <1. (5.42)

Similarly, by applying Lemma 5.6 to QR factorizations (5.38) and (5.40), and

under the condition

r 1)
I A A \—I\T —I\T
L= (RS [(RY,(R35) ™D = (R12R33)"],

- e
I

= (s R |(Ro2R3) ' RoaRYy — (RooRyo + M) ' Rya R, |,

L 1,2/%22) |

- ()
I

| —(R12R35)"

2

2

2
X H(leg2 + AJ)*((RQ,QRZT,2 + AI)(RQ,QRQ)t — I)RQ,QRlT, 2”2

5.2 Theoretical Basis 141
- 7 (+)
=\ [(RooRy 5 + M) (RooRy) Rao Ry, ||
__(RLQRQ_,;)T_) ’ 7 o
- 7 (+)
=\ e |(R22R3 o+ A1) (R12R55) |, (5.43)
| —(R12R45)" | ,
we have
1 ‘/1)7\2 - V1,2
L+ V2 || [V — Vool | .
- (+)
| _—(RMRQ_,%)T])
- 7 4 ()
1 - (R 2(R32)™)T — (R12Ra)T
[—<R1,2n2,5>T_ 2 (et o
X [(RY2(R52) 1" = (R12R5:)" |
(+)
I
‘ [—(RLQRE,%)T])
7 (+)
1—)\ (RoaREy + M) (R12R55)T
[-(RLQRZ%)T] , ” 5) ”2
X [(Re2RE, + A1) (R12Ry5) || A
(+)
[—(RMR;&)T] ,
7 (+)
1—A |(R22RY,)H(R12R53)T
[—(Rmm;)f’] 2 | | 'l
x [(R22Ry5) " (R12Ryn) | A
[(R22R72) ™ (R12R22)" ||,
T 1= A [[(R22R3,)H(Ri2R2:)"
1112 _
HRQEHQ HRl’zRQéHF (544)

- —112 -1 ’
L=A HR272H2 HRL?RZ,QHQ

5.2 Theoretical Basis 142

where the second inequality in (5.44) follows from

|(R22R30 + M) (R12R52)" ||, < [(R22R32) ™ (R12R55)"

>
[(Ro2Ras + A (R12Ran) | < [[(Ro2Ra)™ (RaaRad)

and the third inequality follows from

(+)
1
[—mmszT]

Moreover, since

1
= <1

Omin CINT
—(R12R55)
R (+)
— |R5% [R1’2] <
2,2)

RysR3,
[/ (+)
|(RasR3o + A1) (R12R55)" ||
_ R-1 T] s e 2
(R12R5)5) ,

= ”(RzzR;z +)\I)_l(RlﬂRi%)Tnz

(+) (+)
Ri2RY, [RLQR{Q]

T
R22R5 5

2

and

< [Razl; 1R12R24] .
for A satisfying
ARl 1+ [ReaRss],) <1

both (5.42) and (5.43) hold, an upper bound of the distance of V' and V* derived
from (5.41) and (5.44) is given by

VA =V]r
Vi = Via Vi = Vig
<[], lr 1. s |r
Vi = Vaa Vip = Vap

R 1R 2R
P R . YT
DY 22”2 1= A Rzz; [R12R2:

R e o8, R
)‘HRMH (1+ [R12R2),)

5.2 Theoretical Basis 143

By Theorem 5.8, the optimal solution G* to optimization problem ROLDA
(5.2) is of the form
Viy 0 0f |1 —(V3y)"W3,
G=Q |V, I 0|0 Wiy w, (5.45)
0 0 Il 10 Wg\,Q
where W* € R is orthogonal, VVQ’\72 e RO-a)x(-a) W?f:Q e Rm=x(=9) and
(V3) Wiy

] is column orthogonal. Let

W3):2
Vig 0 0| [I —=VE5 (Vo "(V3y)TW3Yy)
G=Q |Voo I 0|0 Vi T(VN)TW3, | W (5.46)
0 0 If]o W3y
where

T
Vi 00 [=V (Vor (Vi) W3y) Vig 00
Vo 10 Var (Vi)' W3y Voo 10
0 0 I W2, 0 0 I
—Vab (Vo (V3) W3)
X Vo (Vi) W3y

W3,
— T -~
Vi Vol (Vo (V) TW3y) Va2 Vol (Vo (V3h)TW3y)
= ‘/2,1(‘/2/}1)TW2):2 V2,1(V2),\1)TW2A,2
Wi, Wy

r T
Via(Va)TWas) | [Via(Vah) T Way)
= | Vo (Va))T W3, Va1 (Vo) W3y | (since VioVoly + V11V = 0)

L W3A,2 WBA,?
T

Vi Vi
. (V)W V] |
- ‘/2,1 W)‘ ‘/2,1 W}\ —

I 3,2] I 3,2
T - T
Vie 0 0] |1 Vie 0 0] |1 Vi2 Vi2
V2,2 I 0 0 V2,2 I 0 0 = V2,2 V2,2 =1,
0 0 If]0 i 0 0 If]0 0 0

5.2 Theoretical Basis 144

and
T
Via 0 0f |1 Via 0 0| |=ViS(Vay (Vy)TW3y)
Voo I 0] |0 Voo 10 Vo (V)T W3,
0o 0 I |0 0 0 I W3,
- T
Vio Vig 0 0| |=VE5(Val (Vi) TW3y,)
= | Voo Voo 1 0 ‘/2,_1T(V2/,\1)TW2):2
| 0 0 0 I W3,
] —Vil (Vi (Va)TW3Y)
=1 VQT2 0} V21(V>W =0,
W3,2

it follows directly from Theorem 5.7 that G € R™! in (5.46) is a solution of the
optimization problem OLDA (5.1).

The relationship between the two solutions (5.46) and (5.45) of optimization
problems OLDA (5.1) and ROLDA (5.2), respectively, are shown as follows:

Theorem 5.10. With notations in Theorems 5.7 and 5.8, for any solution G* €
R™! of the optimization problem ROLDA (5.2) with X\ > 0 satisfying

AMRo[, (1 + [ReaRs],) < 1

there is a solution G € R™ ! of the optimization problem OLDA (5.1) such that

e A i S

-G V-V
H l-<| |- < >‘HR22H 1+HR12R22H

(5.47)

Proof. As shown above, the optimal solution G* to ROLDA (5.2) is of the form

Vi 0 0| [T —(Vay) Way
=Q |V, I of |0 W2, W,
0 o0 I|]o W2,
and
Vig 0 0| [T —Vi5(Vo " (V) W)
G=Q|Vap I O |0 Vi T(Vd)Twg, | WA
0 0 I|]o W2,

5.2 Theoretical Basis 145

is a solution of the optimization problem OLDA (5.1), where W* € R is or-
(V) TW3,

thogonal, VV2’\72 e RO-ax(-9) W§2 e Rm=x(=9) and T
3,2

] is column

orthogonal. We have

QTG =W

VY 0 0] (1~] [Vie 0 0] [T —Vh (Ve (Va) Way)
= ‘/2)‘2 I 0110 W2):2 — (Va2 I O |0 ‘/2,_1T(V2>,\1)TW2):2
|0 0 I]]o0 Wiy 0 0 I||0 W3,
(VY VLW [Vie —ViaVilh Vel (V) W2,
= |V5y VRNV gy | — [Vae Vo (V)" W3y
K w2, 0 w2,
V2~ Vie (=V2y(Va)" + ViaVih Vol (V) 1) W2,
= ‘/2),‘2_‘/2,2 (%?1(‘/2),‘1)T_‘/2,1(‘/2),‘1)T)W2):2)
| 0 0
in which,

(=Va(Va)" + ViaVihVay (V)T W3y
(VL (V)T = Vau(Vah)) Way
—Vi(Vey)" = Via(V3y)"

(V3 = Vo) (Vay)"

WQ):Q (since VMVQT1 + VLQVQI;Q =0)

_ _‘/1),\2 _Vlal (VQ/}Q)T A
0V Ve [T
Thus,
QTGN = G)(WMHT
Vi =Viag =Vpy —Viu I /
- ‘/2)\2 — Voo 0 ‘/2/\1 — Va1 (‘/2)\2>T A\]
ANT W2,2
0 0 0 (Vay)
Vi =Vip 0 VP =W, I I I
= V2/\2 — Va2 O ‘/2)\1 —Vau| + |0 0 0 (‘/2),\2)TW2/\,2
0 0 0 0 0 0 (1/2’7\1)TVV2A72

5.2 Theoretical Basis 146

V= Via 0 V= Vau| [1

= ‘/2)\2 —Vap O Vz’\l — Va1 (‘/Qi\z)TWQ):Q (since ‘/1/\2(‘/2)\2)T = _‘/1/,\1(‘/'2),\1)T)
|0 0 0 | (VB Wy
Vi = Vin Viy = Vip 0] |0 (V3y)TW3y,
= | V3 = Vaq Vi — Voo 0Of |1 0
i 0 0 0] [0 0 |
Note that matrix
(Vay)TWay
W3,
is column orthogonal, we have
Vi =Vig Wy =Vip 0 0 (V3) Wsy
[G* =Gl < | |V = Veu Vi —=Vao Of| |[|I 0
0 0 0 0 0
F 2
A
<[vr=vi,

R332 (Vi =g+ [Ri2R33|)
L=\ Rzl (1 + |R1oR34],)

§(1+\/§)‘

]

LDA is a technique for data dimensionality reduction, it seeks an optimal
linear transformation of the data to a low dimensional subspace, preferably the
dimension of the reduced space is as small as possible. Hence, a solution of the
optimization ROLDA (5.2) with minimum dimension is of particular interest. For

such minimum solutions, the bound (5.47) can be simplified as follows:

Theorem 5.11. With notations in Theorems 5.7 and 5.8, for any A > 0, any
solution G* of the optimization problem ROLDA (5.2) with minimum dimension
1s of the form
Vi Vi
Gr=Q |V | WA =Q(,1:n) [V | W, (5.48)
0 0

5.2 Theoretical Basis 147

where WA € R is orthogonal. Moreover, for any such a minimum solution,
there is a solution G € R™*9 of the optimization problem OLDA (5.1) such that
12 _
[Razl; [R12Roa]
12 _
L=A HR2%H2 HRL?RQEHQ

|G* - G|, < (1+Vv2) (5.49)

provided
MRz |l; R 2Ras], < 1.

Proof. By Theorem 5.7,

‘/1,2 ‘/172
G=Q | Voo | W = Q(,1:n) Vo | WP € R
0 0

is a solution of the optimization problem OLDA (5.1) with minimum dimension.
For such G* and G, the inequality (5.49) follows directly from (5.44) in the proof

of Lemma 5.9, provided
)‘||R2_;||g||R12R2_%H2 <1
O

Remark 5.4. In numerical computing, Q(:,1 : n) in Theorem 5.11 can be com-

puted efficiently as follows:
o Compute the economic QR factorization of A:
A =R,
where Q1 € R™ ™ is column orthogonal, R € R™™ is upper triangular;

o Compute
Hy

R R]
Hy,
with Ry € R™, Ry € R Ry € R where H; (i = 1,--- k),
H and P are defined in Chapter 3;

5.2 Theoretical Basis 148

o Compute QR factorization of [RQ Rg] with column pivoting as

Ry Ry

|:R2 Rg] =@ 00

where Q2 € R™™ is orthogonal, Ry, € RVE-D gnd Ry € R with
v = rank [R2 R3} .
e Compute QR factorization of Ry as

Ry
0

Ry = Qs

9

where Q3 € R is orthogonal and Ry, € RV with ¢ = rank(Ry).

Denote

Ry

= Q?;Ri%
Ry

where Ry 5 € R (=k) gnd Ry» € RO—9)x(n—k)

e Then
Riy Rip
[AQ A3} =Q| 0 Ryal,
0 0

where Q(:,1:n) = Q102 [QB I])

This economic QR factorization of A can largely reduce computational cost in
numerical experiments when m >> n, of which most large size undersampled data

satisfy.
5.2.4 A New Regularized OLDA

In this section, we derive a mathematical criterion for choosing the regularization
parameter A in ROLDA and consequently we develop a new regularized orthogonal
linear discriminant analysis method, in which no candidate set of regularization

parameter is needed.

5.2 Theoretical Basis 149

Theorem 5.10 implies that for any G* € R™*! of the optimization problem
ROLDA (5.2) there is a solution G € R™*! of the optimization problem OLDA
(5.1) such that

01y Rl T+ [RuR3)

IG* =G| <
L=A HRMH (1+ [R12R2:,)

when
MRas]5 0+ [RieRa3,) <1

Thus, for any given small € > 0,
1G> = Gllr < e (5.50)
provided that

VA< Ve
[Ra30, /e + [RiaRa3],) + (L + VDV =a+ |[RizRa3])
Ve . (5.51)

] o o) 0B],

In particular, if I = ¢, Theorem 5.11 implies that for any G* € R™*! of the op-
timization problem ROLDA (5.2) there is a solution G € R™*! of the optimization
problem OLDA (5.1) such that

1112 -1
HR272H2 HRL?RMHF
1112 -1 ’
—A HR272H2 ”RL?RMHQ

[=6l < 1+ v2)-
with
MRzl [RiaRa [, < 1.
then (5.50) holds provided

Ve
[R330, /e [R1aRa3], + (1 + V) [RusR53|

< ve . (5.52)
| | RiarS |+ v2) | RiaRSE|

V<

+
RYY)

2

5.2 Theoretical Basis 150

Let NV, denote a column orthogonal matrix whose columns span the null space

of HI', and N;- denote its orthogonal complement. Then we have
|m2], = 1ad)0,

and

27

|z

L= NG Huy (NG H)™|

|z

= [T H) P

As a result, inequalities (5.51) and (5.52) are reduced to

VA< Ve :
[T H) Dy (L m)e + (L4 V2 (V=g +m2)

and

VA < Ve ,
[NGH) Ol yfem + (14 v2)ns

respectively, where

m = [T Hu N H) P, 1= [N Hu (N H)

Now, we are ready to present our new ROLDA:

New ROLDA method:

e For a given small € > 0, select the regularization parameter A by

VA < Ve :
[H) O, (L m)e + (1 + V2 (V=G + 1)

if [> ¢ = rank(S,) = rank(H,); otherwise, select the regularization parame-

ter A by

VA < Ve ,
(N H) Dy fem + (1 -+ V2

e Compute a solution G* € R™*! of the optimization problem ROLDA (5.2).

5.3 Algorithms 151

5.3 Algorithms

5.3.1 Algorithm for OLDA

An implementation of optimization problem OLDA has been given in [96], this
implementation computes the optimal linear transformation G of OLDA by com-
puting some eigen-decompositions and involving some matrix inversions. However,
the eigen-decomposition is computationally expensive [38], at least much more ex-
pensive than QR factorizations especially when the data size is very large, and the
involvement of matrix inverses may lead to that the methods are not numerically
stable if the related matrices are ill-conditioned [38]. In this section, we give the al-
gorithm of computing an optimal solution G of optimization problem OLDA (5.1),

which needs QR factorizations only.

Theorem 5.7 leads to the following implementation of the OLDA:

Algorithm 5.1. (Implementation 1 of OLDA)

Input: Data matrix A € R™*™ with cluster label, cluster number k.
Output: Column orthogonal transformation matriz G € R™*!,

Step 1. Compute factorization

Riqn Rip
[Ay A3s]=Q | 0 Raol,
0 0

where Q € R™™, Ry, € RV R, € R*"h gnd Ry, € RO-OX(—H)
with ¢ = rank(Ay), v = rank [Ay Aj].

Step 2. Compute the economic QR factorization of RQT’2 as
R}, =VIR,,

where YV, € R(m—Fx(—a) Ropo € RO-9x(=9) 45 lower triangular with positive
diagonal elements, and compute Ry = Ry V.

Step 3. Compute the QR factorization of {%1’21 as

)

Rig| _ |Vig Vig| |11
Ra2 Voi Vool |0}

5.3 Algorithms 152

by Remark 5.3, where I1 € RO~9X0=9 s upper triangular with positive
diagonal elements, Vi o € R7*? is lower triangular with non-negative diagonal
elements.

Step 4. Compute G € R™! by

Vig 0 0 I —ViiWao — Wi Wiy W
G=Q|Vao I O 0 W [bt [] w,
0 0 I [Ws, W3

where W € R™! is orthogonal, W1, € R¥*? is nonsingular, Wy € Rm=7)x4,

7 Vo W
Wy € RO-9)x(=q) [W } Wi1 and W9 are column orthogonal.
’ W??;l W372

In Theorem 5.7, the economic QR factorization of R;Q and [1’2] are of special

Ras
structures. For comparing our new ROLDA with OLDA, these special structures

are important. However, for practical applications, these special structures are not
need. We present another implementation of OLDA for the case [= ¢, which is

much more simple than the above algorithm.

Algorithm 5.2. (Implementation 2 of OLDA)

Input: Data matrix A € R™*™ with cluster label, cluster number k.
Output: Column orthogonal transformation matriz G € R™*4.

Step 1. Compute factorization

Rl,l R1,2
[AQ A3] = Q(Z, 1: n) 0 RQ’Q y
0 0

by Remark 5.4, where @Q € R™™, Ry, € Ra*(k=1) Ry, € Rk gnd
Rgo € RODX(M=R) with q = rank(Ay), v = rank [Ay Aj).

Step 2. Compute the economic QR factorization of RQT72 as
R}, =VIR,,

where V; € R—Fx(—a) Rao € RO=9%0=9 and compute Ria2= Ri2Vi.

5.3 Algorithms 153

Step 3. Compute the QR factorization of {glj as

7] = [b
Rao Vaogr Vaal [0
where TT € RO-9X0=9) gnd V, , € R,

Step 4. Compute G € R™*9 by
Via

Voo
0

G=Q(:1:n) w,

where W € R 4s orthogonal.

The optimal transformation matrix G is obtained easily by several QR fac-
torizations without computing any eigen-decomposition and matrix inverse, con-

sequently, our implementation is inverse-free and numerically stable [38].

5.3.2 Algorithm for ROLDA

In this section, we present the algorithm to compute an optimal solution G* of
ROLDA (5.2) based on Theorem 5.8, in addition, an improved version which is
faster and easier to implement is given.

Theorem 5.8 and the upper bound of A, (5.51) and (5.52), lead to the following

numerical implementation of the new proposed ROLDA:

Algorithm 5.3. (Implementation 1 of ROLDA)

Input: Data matriz A € R™ ™ with cluster label, cluster number k, and a small
e > 0.

Output: Column orthogonal transformation matriz G € R™*!.

Step 1. Compute factorization

Riqn Rip
[Ay As]=Q | 0 Raol,
0 0

where Q S Rmxm’ R171 S qu(k_l), RLQ € qu(n—k) and R2’2 € R('y—q)x(n—k)
with ¢ = rank(Ay), v = rank [Ay Aj].

5.3 Algorithms 154

Step 2. If | > g compute VX by
V< Ve
|R2], e+ [Rar2]) + 1+ vENV=a + [RuahSy)

Ifl = q compute VX by

VA <
431, -

Step 3. Compute the economic QR factorization of [RQ’Q \/X[]T as

)

NG
RACERE) HRLQR%)

Ri RS

F

Ry, A A \T
\/X’[=V (R2,2))

where V) € RFH1=0x0=4) gpng RQZ € RO=9*0=9 s lower triangular with

positive diagonal elements, and compute sz = [R12 O]V}

A
Step 4. Compute the QR factorization of {g%ﬁ} as
2,2

-
Rjs Vin Vip] [0}
by Remark 5.3, where II* € RO-9X0=9 45 ypper triangular with positive

diagonal elements, V{\2 € R 45 lower triangular with non-negative diagonal
elements.

Step 5. Compute G* € R™*! by

Yy 0 0] [T —(Vay) Way
G'=Q |Vgy I 0f |0 W3y W,
0 0 I]|0 Wi,

where W» € R™ is orthogonal, W2’\72 e RO-axl=9) W?iz e Rm—x(-q)
|:(‘/2/}1)TW2/\,2
W}\

3,2

and] s column orthogonal.

T
In Theorem 5.8, the economic QR factorization of [RQ,Q VI } and the QR

A

factorization of [are of special structures. Like OLDA, for practical appli-

R3s
cations of our new ROLDA, these special structures are not needed. We present

another implementation of ROLDA for the case that [= ¢ as follows.

5.3 Algorithms 155

Algorithm 5.4. (Implementation 2 of ROLDA)

Input: Data matriz A € R™ ™ with cluster label, cluster number k, and a small
e > 0.

Output: Column orthogonal transformation matriz G € R"™*4.

Step 1. Compute factorization

Rip Rip
[As As]=Q(:;;1:n)| 0 Rasl,
0 0

by Remark 5.4, where @Q € R™™, Ry, € qu(’f—l), R,y € R*X(=k) 4nd
Rgo € RODX(=F) with q = rank(Ay), v = rank [Ay Aj).

Step 2. Compute VX by

VA< Ve
|2, el mantz], + 4+ va [raniz],

Step 3. Compute the economic QR factorization of [Rz,g \/X]]T as

Ry, XA \T
\/j[=V (R2,2))

where Vf‘ e Rvktr=ax(v=9) gpq Rég S R(V*q)x(%q), and compute R?g =
[Ri2 O \Z0

A
Step 4. Compute the QR factorization of [g}\ﬂ as
2.2

Ris| _ [Viy Wiy [
Ris| [Van Vin| [0]
where 1" € RO~0x0—a), Vi, € RO¥4

Step 5. Compute G* € R™* by

where WA € R9%? is orthogonal.

5.4 Numerical Experiments 156

5.4 Numerical Experiments

In this section we perform extensive experiments to evaluate the efficiency of our
new proposed ROLDA by comparing with OLDA and three existing regularized
LDA methods SCRDA [39], RLDA [104, 54] and RDA [105].

Experimental Platforms' The experiments were conducted by using com-
puter in Computer Center with 2.67GHz CPU and 16GB memory, National Uni-
versity of Singapore.

Experimental Data Sets: Our experiments were performed on the following

15 real-world data sets from three different sources, including face image and gene

Table 5.1: Data Structures

Type Data m n k
total | training | test

Brain 5597 | 42 21 21 |5
Colon 2000 | 62 31 31 |2

Clene Expression Leukemia 3571 | 72 37 35 |2
Lymphoma 4026 | 62 32 30 |3
Prostate 6033 | 102 | 51 51 | 2
SRBCT 2308 | 63 32 31 |4
AR50x40 2000 | 1680 | 840 840 | 120
AR50x45 2250 | 1680 | 840 840 | 120
Feret 6400 | 1000 | 600 400 | 200
ORL3ox32 1024 | 400 | 200 200 | 40

Face Image ORLgsxes 4096 | 400 | 200 200 | 40
Palmprint 4096 | 600 | 300 300 | 100
Picturesgsxes | 4096 | 565 | 290 275 | 55
Yalesaxso 1024 | 165 | 90 7 |15
Yalegsxea 4096 | 165 | 90 7 |15

!The computer processor in the experiment of this thesis is different from the one used in [19],

thus the experimental results are different, especially the CPU time.

5.4 Numerical Experiments 157

expression. The structures of these data sets are summarized in Table 5.1, where
m is the dimension of data set, n is sample size and k is the total class number.

For more description and sources of these datasets, please refer to Appendix C.

For all data sets used here, we performed our study by repeated random split-
ting into training and test sets using the following algorithm: within each class,
we randomly reorder the data and then for each class with size n;, the first [0.5n;|
data are used as the training data and the others are used as test data,whereby
[-] is the ceiling function. The splitting was repeated 10 times, and the average

results are recorded.

K-Nearest Neighbor method (K-NN) [30] with K = 1, based on the Euclidean
distance, is used as the classification algorithm in this experiment. MATLAB

command cputime is used to record the execution time of each algorithm.

5.4.1 Comparison with OLDA

In this subsection we compare our new ROLDA (Algorithm 5.3) with OLDA (Al-
gorithm 5.1) from the perspective of classification accuracy. The distance between

solutions of ROLDA and OLDA is also evaluated in terms of different tolerance e.

As LDA seeks an optimal linear transformation of the data to a low dimensional
subspace, preferably the dimension of the reduced space is as small as possible.
In all our experiments for comparing our new ROLDA with OLDA and three
existing regularized LDA methods SCRDA [39], RLDA [104] and RDA [105], we
take | = ¢ = rank(Sy), and thus, for any given small € > 0, V) is given by

Je
R

RACERE) HRLQRQQ
and a solution G* € R™*? of optimization problem ROLDA (5.2) is reduced to

| RS2 Ry ,RSY)

F

5.4 Numerical Experiments 158

Consequently,
Vig
G=Q(,1:n) |Vyy| € R™
0
is an optimal solution of optimization problem OLDA (5.1).

For the comparison with OLDA, we set € with five different values, that is
e=|1 107" 1072 1073 10—4] :

The resulting 1-NN average accuracies of OLDA (Algorithm 5.1) and ROLDA
(Algorithm 5.3) with different parameter €’s as well as the distances between the

solutions of OLDA and ROLDA are summarized in Table 5.2 below.

The main observations from Table 5.2 are:

e Our new proposed ROLDA produces similar classification accuracies for € =
[1 1071 1072 1073 10—4], thus, it is robust with parameter e. Hence, in

practical application, we can take, for example, e = 1072,

e ROLDA and OLDA yield similar classification accuracies. Therefore, our
new ROLDA is comparative with OLDA.

e When € decreases, the distance between the solutions of ROLDA and OLDA
decreases adaptively, which coincides with our theoretical analysis about the

relationship of ROLDA and OLDA.

5.4 Numerical Experiments

159

Table 5.2: Comparison with OLDA

Standard

Data Method € HG’\ — GHF Accuracy o
Deviation

OLDA - - 86.19 6.88

1.0E0 1.11F — 1 85.71 6.73

1.0F—1]| 1.61E -2 86.19 6.88

Brain

ROLDA || 1.0OEF -2 | 1.69F — 3 86.19 6.88

1.0F -3 | 1.70F — 4 86.19 6.88

1.0F —4| 1.70E -5 86.19 6.88

OLDA - - 84.84 4.09

1.0E0 5.69F — 2 85.48 4.39

1.0F —1| 847F —3 85.16 3.87

Colon

ROLDA | 1.0E -2 | 891F —4 84.84 4.09

1.0F -3 | 8.96F —5 84.84 4.09

1.0F —4| 897FE —6 84.84 4.09

OLDA - - 97.14 1.81

1.0E0 6.96F — 2 97.14 1.81

1.0F —1| 1.06E —2 97.14 1.81

Leukemia

ROLDA | 1L.0E—-2| 1.11E -3 97.14 1.81

1.0F -3 | 1.12F —4 97.14 1.81

1.0F —4| 1.12E -5 97.14 1.81

OLDA - - 100.00 0.00

1.0E0 5.70FE — 2 100.00 0.00

1.0F —1| 821F —3 100.00 0.00

Lymphoma

ROLDA | 1.0E —2 | 859F — 4 100.00 0.00

1.0F —3 | 8.63FE —5 100.00 0.00

1.0F —4 | 8.64FE —6 100.00 0.00

OLDA - - 90.78 2.64

1.0E0 3.81F —2 90.98 3.06

1.0F—1]| 5.60FE —3 90.98 2.93

Prostate

ROLDA | 1.0E —2 | 5.88E —4 90.98 2.93

Continued on next page

5.4 Numerical Experiments

160

Table 5.2 — continued from previous page

Standard
Data Method € HG’\ — GHF Accuracy o
Deviation

1.0EF -3 | 591E -5 90.78 2.64
1.0EF -4 | 5.92E —6 90.78 2.64
OLDA - - 99.03 1.48
1.0E0 5.92F — 2 99.03 1.48
1.0E -1 859E —3 99.03 1.48

SRBCT
ROLDA || 1.0OE -2 | 9.00F — 4 99.03 1.48
1.0 -3 | 9.04E -5 99.03 1.48
1.0E -4 | 9.05E—6 99.03 1.48
OLDA - - 97.58 0.41
1.0E0 1.54F — 2 97.61 0.43
1.0E—-11] 1.83E -3 97.58 0.41

AR50><40
ROLDA || 1.0OE—-2| 1.86FE —4 97.58 0.41
1.0FE -3 | 1.8FE —5 97.58 0.41
1.0E—-4| 1.86E —6 97.58 0.41
OLDA - - 83.92 0.64
1.0E0 1.20E — 2 83.92 0.64
1.0FE —1| 145FE —3 83.92 0.64

AR50><45
ROLDA || 1.0E —2 | 1.48FE —14 83.92 0.64
1.0EF -3 | 148E -5 83.92 0.64
1.0F —4| 148FE —6 83.92 0.64
OLDA - - 85.95 1.76
1.0E0 5.10FE — 2 86.05 1.75
1.0EF -1 5.71E -3 85.97 1.74

Feret

ROLDA | 1.0E -2 | 5.78E —4 85.95 1.76
1.0E—-3| 5.78E —5 85.95 1.76
1.0EF -4 | 5.78E —6 85.95 1.76
OLDA - - 96.25 1.71
1.0FE0 4.43F — 2 96.25 1.71

Continued on next page

5.4 Numerical Experiments

161

Table 5.2 — continued from previous page

Standard
Data Method € HG’\ — GHF Accuracy o
Deviation
1.0F —1| 5.13FE -3 96.25 1.71
ORL32y32 ROLDA | 1.0E —2 | 5.21E —4 96.25 1.71
1.0F -3 | 5.22FE -5 96.25 1.71
1.0F —4| 522FE —6 96.25 1.71
OLDA - - 96.85 1.05
1.0E0 2.56F — 2 96.85 1.05
1.0F —1| 3.06F —3 96.85 1.05
ORLgsxes
ROLDA | 1.0E -2 | 3.11E —4 96.85 1.05
1.0F -3 | 3.12E -5 96.85 1.05
1.0F —4| 3.12E —6 96.85 1.05
OLDA - - 98.10 0.83
1.0E0 3.17TE — 2 98.10 0.83
1.0F—1| 3.80FE -3 98.10 0.83
Palmprint
ROLDA || 1.0E —2 | 3.88E — 4 98.10 0.83
1.0E -3 | 3.8FE —5 98.10 0.83
1.0F —4| 3.88FE—6 98.10 0.83
OLDA - - 93.02 1.29
1.0E0 1.89F — 2 93.02 1.29
1.0F —1| 2.25FE —3 93.02 1.29
Picturesgaxea
ROLDA | 1.0E —2 | 2.30F —4 93.02 1.29
1.0F -3 | 2.30E -5 93.02 1.29
1.0F —4| 2.30FE —6 93.02 1.29
OLDA - - 82.93 3.52
1.0E0 4.19F — 2 83.07 3.82
1.0F —1]| 5.16FE —3 82.93 3.52
Yalesawso
ROLDA | 1.0E —2 | 5.28FE — 4 82.93 3.52
1.0 —3| 5.29F —5 82.93 3.52
1.0F —4| 529F —6 82.93 3.52
Continued on next page

5.4 Numerical Experiments 162

Table 5.2 — continued from previous page

Standard

Data Method € HG’\ — GHF Accuracy o
Deviation

OLDA - - 89.07 3.31

1.0E0 2.93F — 2 89.20 3.29

1.0FE—-1| 3.61FE—3 89.07 3.31

Yalegaxea

ROLDA || 1.0E -2 | 3.69FE —4 89.07 3.31

1.0 -3 | 3.70E -5 R9.07 3.31

1.0FE —4| 3.70FE —6 89.07 3.31

5.4.2 Comparison with Some Existing Regularized LDA

In this subsection we compare our new ROLDA with three existing regularized
LDA: SCRDA [39], RLDA [104, 54], and RDA [105] (which improves the RDA in
[34]). We apply 5-fold cross-validation for parameter selection for SCRDA [39],
RLDA [104, 54] and RDA [105]. For the parameter candidate sets, we take

-a:@020406080%%PMA:ﬁ)123:45bﬂamA
[39];

ouzbgm01151ﬂMRwAm¢w;

° T = [0 :0.0333 : 1] and = [0 :0.0333 : 1] for RDA [105];

To compare the efficiency with other regularized LDA, we use Algorithm 5.4
for ROLDA here. The computation of the regularization parameter is a core part
of algorithms SCRDA[39], RLDA [104, 54] and RDA[105]. For Algorithm 5.4,
the regularization parameter is computed in its Step 2, so Algorithm 5.4 also
includes the computation of regularization parameter. Thus, the CPU times of

SCRDA[39], RLDA [104], RDA[105] and our new ROLDA (Algorithm 5.4) include

5.4 Numerical Experiments 163

the computation of the regularization parameter. The comparisons of average
accuracy and CPU time of SCRDA[39], RLDA [104] and RDA[105] with our new
ROLDA (Algorithm 5.4) with ¢ = 1072 in 15 experiments are presented in Table
5.3.

The following observations can be made from Table 5.3:

e ROLDA does not need a candidate set of regularization parameter, this in-
dicates that ROLDA is much faster than SCRDA [39], RLDA [104, 54], and
RDA [105].

e ROLDA always produces reasonable classification accuracies.

e RLDA [104] is very fast compared with SCRDA [39] and RDA [105] since it

requires only a single SVD for each fold cross validation.

e The classification performances of SCRDA [39], RLDA [104], and RDA [105]
depend on the given candidate set of regularization parameter. If the given
candidate set of regularization parameter is appropriate, they may achieve
higher classification accuracies, but, if these candidate sets are not appropri-

ate, they may lead to relative lower accuracies.

e [t is still not clear how to choose an appropriate candidate set of regulariza-
tion parameter for SCRDA [39], RLDA [104], and RDA [105]. In general, in
order to obtain an appropriate regularization parameter for them, a larger
candidate sets of regularization parameters can be chosen. However, for
larger candidate sets, the computational complexities would increase signifi-

cantly.

5.4 Numerical Experiments 164

Table 5.3: Comparison with existing regularized LDA

Standard
Data Method | CPU-time(s) | Accuracy o
Deviation
SCRDA 1403.66 80.95 7.68
RLDA 0.15 83.33 4.88
Brain
RDA 2.57 84.76 7.00
ROLDA 0.02 86.19 6.88
SCRDA 137.27 85.48 5.45
RLDA 0.09 85.81 4.61
Colon
RDA 2.04 84.19 5.09
ROLDA 0.01 84.84 4.09
SCRDA 425.60 97.43 1.54
RLDA 0.18 97.14 1.81
Leukemia
RDA 2.31 96.57 3.08
ROLDA 0.01 97.14 1.81
SCRDA 576.20 99.00 1.53
RLDA 0.16 | 100.00 0.00
Lymphoma
RDA 2.60 99.00 1.53
ROLDA 0.02 | 100.00 0.00
SCRDA 2058.34 90.98 2.93
RLDA 0.45 90.59 2.75
Prostate
RDA 4.14 90.39 3.66
ROLDA 0.05 90.98 2.93
SCRDA 239.85 98.06 2.96
RLDA 0.10 98.71 1.58
SRBCT
RDA 3.49 98.06 2.14
ROLDA 0.01 99.03 1.48
SCRDA 240.88 97.70 0.44
RLDA 32.40 98.79 0.28
AR50x40
RDA 36607.92 30.11 44.72
ROLDA 5.09 97.58 0.41
Continued on next page

5.4 Numerical Experiments

165

Table 5.3 — continued from previous page

Standard
Data Method | CPU-time(s) | Accuracy o
Deviation
SCRDA 310.87 88.95 0.81
RLDA 33.89 88.54 0.88
AR50><45
RDA 41647.55 0.83 0.00
ROLDA 5.69 83.92 0.64
SCRDA 3827.75 88.50 1.46
RLDA 34.80 74.38 1.41
Feret
RDA 31955.04 77.78 2.46
ROLDA 4.12 85.95 1.76
SCRDA 41.29 96.25 1.71
RLDA 1.30 94.80 1.40
ORL3zx32
RDA 455.88 95.05 1.27
ROLDA 0.33 96.25 1.71
SCRDA 1240.89 96.85 1.05
RLDA 2.75 94.35 1.36
ORLexea
RDA 515.53 95.20 1.49
ROLDA 0.32 96.85 1.05
SCRDA 1078.46 98.53 0.98
RLDA 5.93 99.07 0.51
Palmprint
RDA 2290.12 98.83 0.82
ROLDA 0.67 98.10 0.83
SCRDA 989.05 92.73 1.47
RLDA 4.80 90.33 0.98
Picturesegaxea
RDA 1240.21 82.07 26.76
ROLDA 0.77 93.02 1.29
SCRDA 34.55 82.53 4.11
RLDA 0.41 78.00 4.27
Yalesaxso
RDA 32.46 76.00 6.37
ROLDA 0.13 82.93 3.52
Continued on next page

5.5 Conclusions

166

Table 5.3 — continued from previous page

Standard

Data Method | CPU-time(s) | Accuracy o
Deviation

SCRDA 1253.69 88.93 3.32

RLDA 0.75 92.27 2.44

Yalegsxes
RDA 29.47 92.13 2.34
ROLDA 0.08 89.07 3.31

5.5 Conclusions

In this chapter, the regularized orthogonal linear discriminant analysis has been
studied. All solutions of optimization problems OLDA (5.1) and ROLDA (5.2),
which are the aims and objectives in establishing OLDA and ROLDA, are explic-
itly characterized in Theorem 5.7 and Theorem 5.8. The mathematical relationship
between the orthogonal linear discriminant analysis and the regularized orthogo-
nal linear discriminant analysis is presented in Theorem 5.10 and Theorem 5.11.
Based on this relationship, a mathematical criterion for choosing the regularization
parameter in ROLDA is obtained and consequently a new regularized orthogonal
linear discriminant analysis method has been proposed. The effectiveness of our

new regularized orthogonal linear discriminant analysis has been demonstrated and

confirmed by some real-world data sets.

Chapter

Conclusions and Future Work

Linear discriminant analysis (LDA) can be beneficial to reduce the dimension of
the data not only for reasons of computational efficiency but also because it can
improve the accuracy of the analysis. In this thesis, we have considered the theory,

implementation, and applications of linear discriminant analysis.

Original LDA requires that a complete dataset for training is given in advance,
and learning is carried out in one batch. To conquer this problem, incremental
learning is studied in this thesis. Incremental methods have proven to enable
efficient training if not all data is available in advance or if large amounts of training
data have to be processed. This thesis provides a novel LDA-based incremental
dimensionality reduction algorithm, called ILDA/QR, of which the batch version,
LDA/QR, is a new proposed, simple and efficient implementation of LDA. As a
fast LDA algorithm, LDA/QR is illustrated by several real-world datasets to be
comparative with ULDA/QR from the perspective of classification accuracy with
lower cost. The ILDA/QR algorithm has an equivalent power to batch algorithm
LDA/QR in terms of dicriminability. More importantly, the ILDA/QR algorithm
has the promising feature that all processed data can be discarded and that the
update is less time and memory consuming than LDA/QR. This is desirable for
large datasets. In addition, our new incremental algorithm ILDA/QR can easily

handle not only the case that only one new sample is inserted but also the case

167

168

that a chunk of new samples are added. Experimental results show that ILDA/QR
achieves high accuracies with low complexity in both time and space compared
with other LDA-based incremental algorithms: IDR/QR, ILDA/SSS, LS-ILDA
and ICLDA.

Classical LDA is not applicable to the singularity problem (or the undersam-
pled problem). A generalized method of LDA, regularized orthogonal linear dis-
criminant analysis is proposed to overcome this limitation. In our method, no
parameter candidate set is needed and therefore preprocessing technique, such as
cross-validation, for parameter selection is no longer required. All solutions of
two optimization problems: orthogonal linear discriminant analysis and regular-
ized orthogonal linear discriminant analysis, were explicitly characterized. Then
the mathematical relationship between the orthogonal linear discriminant analysis
and the regularized orthogonal linear discriminant analysis was presented. Based
on this relationship, a mathematical criterion for choosing the regularization pa-
rameter in ROLDA was obtained and consequently a new regularized orthogonal
linear discriminant analysis method has been proposed. Compared with some other
regularized discriminant analysis algorithms, SCRDA, RLDA, and RDA which
need to choose an appropriate regularization parameter by cross-validation, our
algorithm is much faster and produces reasonable classification accuracies. An ap-
propriate parameter was determined by the data matrix, while the classification
performances of SCRDA, RLDA and RDA depend on the given parameter candi-
date set of regularization. With appropriate given candidate set, they may achieve
higher classification accuracies, but, if these candidate sets are not appropriate,

they may lead to relatively lower accuracies.
There are several challenging directions for future work:

In Chapter 3, ILDA/QR is proposed for efficient and incremental dimension-
ality reduction. The incremental LDA algorithm can also be incorporated into a

classic semi-supervised learning framework and applied to many other problems

169

in which LDA-like discriminant components are required. It would be interest-
ing to extend the incremental algorithm to semi-supervised or even unsupervised

learning.

ILDA/QR is not applicable to the training samples that are linearly dependent.
As mentioned in Section 3.5, to address this problem, regularization of the data
matrix is a good approach. In the future, we aim to investigate some other methods

to conquer the linearly independency of the data set.

In Chapter 5, we applied regularization method to linear discriminant analy-
sis. The problem of generalizing LDA to provide more flexible discrimination by
“kernelizing” the formulation has received much attention in recent years [42]. One
key advantage of these kernel methods over other approaches is that they avoid the
need to work explicitly in very high, possibly infinite, dimensional feature spaces,
instead leading to problems whose “size” is bounded by the sample size. In ad-
dition, kernels can be defined to deal with much more general data types than
those that are simply represented in a vector of numbers, e.g. sequences, trees,
graphs and more general data. Because of the intrinsic raise in dimension of sam-
ples, essentially all problems in kernelized discriminant analysis become singular.
Thus, it is common to introduce regularization terms to overcome the singularity
problem. The importance of the related work is therefore more acute since there
are additional parameters including kernel parameter(s) to be optimized. Hence,
it is worthy to generalize the idea used in the present work to obtain mathemati-
cal criterions for choosing the regularization parameter(s) and develop appropriate

regularized methods for kernelized discriminant analysis.
In addition, motivated by our numerical results in Table 5.2 of Chapter 5 and
the fact that for any data items x and vy,

&2 = @y, — 16z = Gyl < |G = Gl (ol + Iy,

which indicates |G*z — G*y| » is a good approximation of |Gz — Gy|, provided
that G* is close to G, we assume implicitly that if the regularization parame-

ter is selected by calibrating the solution of ROLDA to the solution of OLDA,

170

ROLDA can achieve a satisfactory classification performance similar to OLDA.
For this assumption, it would be an interesting future research topic why a good
approximation to the OLDA solution is a good criterion for the selection of the
regularization parameter for ROLDA. Furthermore, if the solution of OLDA is a
deficient one, can the corresponding selection of the regularization parameter pro-
duce a better solution of the ROLDA? These are interesting issues for our future

research.

Bibliography

[1]

A. A. Alizadeh, et al. Distinct Types Of Diffuse Large B-Cell Lymphoma
Identified by Gene Expression Profiling, Nature, 403:503-511, 2000.

U. Alon, N. Barkai, D. Notterdam, K. Gish, S. Ybarra, D. Mack, and A.
Levine, Broad Patterns of Gene Expression Revealed by Clustering Analysis
of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays, Proc

Natl Acad Sci USA, 96:6745-6750, 1999.

E. Alpaydin, Introduction to Machine Learning, second edition, MIT Press,
2010.

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, editors, Tem-
plates for the solution of Algebraic Eigenvalue Problems: A Practical Guide.
SIAM, Philadelphia, 2000.

7. Bai, J. Demmel, and M. Gu, An Inverse Free Parallel Spectral Divide
and Conquer Algorithm for Nonsymmetric Eigenproblems, Numer. Math.,

76:279-308, 1997.

P. Baldi, and G. W. Hatfield, DNA Microarrays and Gene Expression: From

FExperiments to Data Analysis and Modeling, Cambridge, 2002.

171

Bibliography 172

[7] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, Eigenfaces vs. Fisher-
faces: Recognition using Class Specific Linear Projection, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 19(7):711-720, 1997.

[8] M. Brand, Fast Low-rank Modifications of the Thin Singular Value Decom-
position, Linear Algebra and its Applications, 415:20-30, 2006.

[9] R. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University
Press, 1961.

[10] P. Benner, and R. Byers, An Arithmetic for Matrix Pencils: Theory and New
Algorithms, Numer. Math., 103:539-573, 2006.

[11] P. Benner, and R. Byers, Evaluating Products of Matrix Pencils and Collaps-
ing Matrix Products, Numerical Linear Algebra with Applications, 8:357-380,
2001.

[12] M. W. Berry, S. T. Dumais, and G. W. O’Brien, Using Linear Algebra for
Intelligent Information retrieval, SIAM Review, 37:573-595, 1995.

[13] S. A. Billings, and K. L. Lee, Nonlinear Fisher Discriminant Analysis using
a Minimum Squared Error Cost Function and the Orthogonal Least Squares

Algorithm, Neural Network, 15:263-270, 2002.
[14] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[15] D. Boley, M. Gini, R. Gross, E. Han, K. Hastings, G. Karypis, V. Kumar, B.
Mobasher, and J. Moorey, Document Categorization and Query Generation on
the World Wild Web using WebACE, Journal Artificial Intelligence Review
- Special issue on data mining on the Internet , 11:365-391, 1999.

[16] D. Boley, M. Gini, R. Gross, E.H. Han, K. Hastings, G. Karypis, V. Kumar,
B. Mobasher, and J. Moore, Partitioning-based Clustering for Web Document

Categorization, Journal Decision Support Systems - Special issue on WITS

97 , 27(3), Dec. 1999.

Bibliography 173

[17] D. Cai, X. He, J. Han, and H. Zhang Orthogonal Laplacianfaces for Face
Recognition IEEE Transactions on Image Processing, 15(11):3608-3614, 2006

[18] L. Chen, H. M. Liao, M. Ko, J. Lin, and G. Yu, A New LDA-based Face
Recognition System Which Can Solve the Samll Sample Size Problem, Pattern
Recognition, 33:1713-1726, 2000.

[19] W. K. Ching, D. L. Chu, L. Z. Liao, and X. Y. Wang, Regularized Orthogonal
Linear Discriminant Analysis, Pattern Recognition, 45(7):2719-2732, 2012.

[20] D. L. Chu, S. T. Goh, A New and Fast Orthogonal Linear Discriminant
Analysis on Undersampled Problems, SIAM Journal on Scientific Computing
archive, 32(4):2274-2297, 2010.

[21] D. L. Chu, and S. T. Goh, A New and Fast Implementation for Null Space
Based Linear Discriminant Analysis, Pattern Recognition, 43:1373-1379, 2010.

[22] D. L. Chu, S. T. Goh, and Y. S. Hung, Characterization of All Solutions for
Undersampled Uncorrelated Linear Discriminant Analysis Problems, STAM.

J. Matriz Anal. and Appl., 32:820-844, 2011.

(23] D. L. Chu, L. De. Lathauwer, and B. De. Moor, A QR-type Reduction for
Computing the SVD of a General Matrix Product/Quotient, Numer. Math.,
95:101-121, 2003.

[24] D. Q. Dai, and P. C. Yuen, Regularized Discriminant Analysis and its Appli-
cation to Face Recognition, Pattern Recognition, 36:845-847, 2003.

[25] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonaliza-
tion and Stable Algorithms for Updating the Gram-Schmidt QR Factorization,
Mathematics of Computation, 30:772-795, 1976.

[26] M. Dettling, BagBoosting for Tumor Classification with Gene Expression
data, Ozford Journals. Life Sciences. Bioinformatics, 20(18):3583-3593, 2004.

Bibliography 174

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

M. Dettling, and P. Bhlmann, Supervised Clustering of Genes, Genome
Biology, 3(12):research0069.1-0069.15, 2002.

L. Duchene, and S. Leclerq, An Optimal Transformation for Discriminant and
Principal Component analysis, IEEFE Transactions on Pattern Analysis and

Machine Intelligence, 10:978-983, 1988.

S. Dudoit, J. Fridlyand, and T. P. Speed, Comparison of Discrimination
Methods for the Classification of Tumors using Gene Expression Data, Journal

of the American Statistical Association, 97:77-87, 2002.

R. Q. Duda, P. E., Hart, and D. G. Stork, Pattern Classification, second
edition, John Wiley and Sons, Inc., 2001.

B. Efron, and R. Tibshirani, Improvements on Cross-Validation: The .632 +
Bootstrap Method, Journal of the American Statistical Association 92 (438):
548-560, 1997.

D. H. Foley, and J. W. Sammon, An Optimal Set of Discriminant Vectors,
IEEFE Transactions on Computers, 24(3):281-289, 1975.

W. B. Frakes, and R. Baeza-Yates, Information Retrieval: Data Structures

and Algorithms, Prentice Hall PTR, 1992.

J. H. Friedman, Regularized Discriminant Analysis, Journal of the American

statistical association, 84:165-175, 1989.

K. Fukunaga, Introduction to Statistical Pattern Recognition, second edition,

Academic Press, Inc., 1990.

A.S. Georghiades, P.N. Belhumeur and D.J. Kriegman, From Few to Many:
[Nlumination Cone Models for Face Recognition under Variable Lighting and

Pose IEEE Trans. Pattern Anal. Mach. Intelligence, 23(6):643-660, 2001

Bibliography

37]

[38]

[39]

[41]

[42]

[43]

[44]

[45]

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P.
Mesirov, H. Coller, M.L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloom-
field, and E. S. Lander, Molecular Classification of Cancer: Class Discovery
and Class Prediction by Gene Expression Monitoring, Science, 286(5439):531-
537, 1999.

G. H. Golub, and C. F. Van Loan, Matriz Computations, third edition, The
Johns Hopkins University Press, Baltimore, Maryland, 1996.

Y. Guo, T. Hastie, and R. Tibshirani, Regularized Linear Discriminant Anal-

ysis and Its Application in Microarray, Biostatistics, 8:86-100, 2007.

P. Hall, J. S. Marron, and A. Neeman, Geometric Representation of High
Dimensional, Low Sample Size Data, J. Royal Statistical Society Series B,
67:427-444, 2005.

E. H. Han, D. Boley, M. Gini, R. Gross, E. Han, K. Hastings, G. Karypis, V.
Kumar, B. Mobasher, and J. Moorey, WebACE: A Web Agent for Document

Categorization and Exploration, 2nd Intl. Conference on Autonomous Agents.

408-415, 1997.

R. F. Harrison and K. Pasupa, Sparse Multinomial Kernel Discriminant Anal-

ysis (sSMKDA), Pattern Recoginition, 42:1795-1802, 2009

R. F. Harrison, and K. Pasupa, Sparse Multinomial Kernel Discriminant

Analysis (sSMKDA), Pattern Recognition, 42:1795C1802, 20009.

T. Hastie, A. Buja, R. Tibshirani, Penalized Discriminant Analysis, Annals
of Statistics, 23:73C102, 1995.

T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, Springer, 2001.

175

Bibliography 176

[46] W. Hersh, C. Buckley, T. J. Leone and D. Hickam, OHSUMED: An Interactive
Retrieval Evaluation and New Large Test Collection for Research. Proc. ACM
SIGIR, pp. 192-201, 1994.

[47] G. Hinton, T. J. Sejnowski, Unsupervised Learning: Foundations of Neural
Computation, MIT Press, 1999.

[48] P. Howland, M. Jeon, and H. Park, Structure Preserving Dimension Reduction
for Clustered Text Data based on the Generalized Singular Value Decompo-

sition, SIAM J. Matriz Anal. Appl., 25:165-179, 2003.

[49] P. Howland, and H. Park, Generalizing Discriminant Analysis Using the Gen-
eralized Singular Value Decomposition, IEEFE Transations on Pattern Analysis

and Machine Intelligence, 26:995-1006, 2004.

[50] P. Howland, and H. Park. Two-stage Methods for Linear Discriminant Anal-
ysis: Equivalent Results at a Lower Cost, Technical Report GT-CSE, 2009.

[51] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning:

Data Mining, Inference, and Prediction, 2nd edition, Springer, 2009.

[52] R. Huang, Q. Liu, H. Lu, and S. Ma, Solving the Small Smaple Size Problem
of LDA, In Proc. International Conference on Pattern Recognition, pp.29-32,
2002.

[53] A. K. Jain, and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall,
1988.

[54] S. Ji, and J. Ye, Generalized Linear Discriminant Analysis: A Unified Frame-
work and Efficient Model Selection, IFEE Transations on Neural Networks,
19:1768-1782, 2008.

[55] Z. Jin, J. Y. Yang, Z. S. Hu, and Z. Lou, Face Recognition based on the Un-
correlated Discriminant Transformation, Pattern Recognition, 34:1405-1416,

2001.

Bibliography

[56]

[57]

[58]

[59]

[60]

[63]

[65]

Z.Jin, J. Y. Yang, Z. M. Tang, and Z. S. Hu, A Theorem on the Uncorrelated
Optimal Discriminant vectors, Pattern Recognition, 34:2041-2047, 2001.

I. T. Jolliffe, Principal Component Analysis, second edition, Springer-Verlag,
New York, 2002.

M. Jrgens, Index Structures for Data Warehouses, 1st edition, Springer, 2002.

J. Khan, J. Wei, M. Ringner, L. Saal, M. Ladanyi, F. Westermann, F.
Berthold, M. Schwab, C.R. Antonescu, C. Peterson, and P. Meltzer, Clas-

sification and Diagnostic Prediction of Cancers Using Expression Profiling

and Artificial Neural Networks, Nature Medicine, 7:673-679, 2001.

H. Kim, P. Howland, and H. Park, Text Classification using Support Vector
Machines with Dimension Reduction, Proceedings of Text Mining Workshop
of the 3rd SIAM International Conference on Data Mining, San Francisco,
CA, 2003.

http://www.iis.ee.ic.ac.uk/”~ tkkim/code.htm

T. K. Kim, S. F. Wong, B. Stenger, J. Kittler, and R. Cipolla, Incremental
Linear Discriminant Analysis using Sufficient Spanning Set Approximations.
In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, Minneapolis, MN, 2007.

T. K. Kim, B. Stenger, J. Kittler, and R. Cipolla, Incremental Linear Dis-
criminant Analysis using Sufficient Spanning Sets and its Applications, Inter-

national Journal of Computer Vision, 91(2):216-232, 2011.

T. G. Kolda and D. P. O’Leary, A Semidiscrete Matrix Decomposition for
Latent Semantic Indexing in Information Retrieval, ACM Trans. Inf. Syst.,
16:322-346, 1998.

G. Kowalski, Information Retrieval Systems: Theory and Implementation,

Kluwer Academic Publishers, 1997.

177

Bibliography 178

[66] K. C. Lee, J. Ho, and D. Kriegman, Acquiring Linear Subspaces for Face
Recognition under Variable Lighting, IEEE Trans. Pattern Anal. Mach. In-
telligence, 27(5):684-698, 2005.

[67) A. Lendasse, V. Wertz, and M. Verleysen, Model Selection with Cross-
Validations and Bootstraps - Application to Time Series Prediction with
RBFN Models, Artificial Neural Networks and Neural Information Processing,
573-580, 2003.

[68] C. Li, The Study on Indexing Techniques in Data Warehouse, Key Engineering
Materials, Vols. 439 - 440, pp. 1505-1510, 2010.

[69] L. P. Liu, Y. Jiang, and Z. H. Zhou, Least Square Incremental Linear Dis-
criminant Analysis, Proceeding ICDM 09 Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining, pp. 298-306, 2009.

[70] G. F. Lu, J. Zou, and Y. Wang, Incremental Learning of Complete Linear
Discriminant Analysis for Face Recognition, Knowledge Based Systems, 31:19-

27, 2012.

[71] L. Nanni, and A. Lumini, Orthogonal Linear Discriminant Analysis and Fea-
ture Selection for Micro-array Data Classification, Fxzpert Systems with Ap-

plications, 37(10): 7132-7137, 2010.

[72] C. C. Paige, and M. A. Saunders, Towards a Generalized Singular Value
Decomposition, SIAM J. Numer. Anal., 18:398-405, 1981.

(73] H. Park, B. Drake, S. Lee, and C. Park, Fast Linear Discriminant Analysis
Using QR Decomposition and Regularization, Technical Report GT-CSE-07-
21, 2007.

[74] H. Park, M. Jeon, and J. B. Rosen, Lower Dimensional Representation of
Text Data based on Centroids and Least Squares, BIT, 43:1-22, 2003.

Bibliography 179

[75] C. H. Park, and H. Park, A Relationship between Linear Discriminant Anal-
ysis and the Generalized Minimum Squared Error Solution, SIAM J. Matriz
Anal. Appl., 27:474-492, 2005.

[76] R. Polikar, L. Udpa, and V. Honavar, Learn ++: An Incremental Learning
Algorithm for Supervised Neural Networks, IEEE Trans. Syst., Man, Cybern.,
31(4):497-508, 2001.

[77] S. Pomeroy et al. Prediction of Central Nervous System Embryonal Tumor

Outcome Based on Gene Expression, Nature, 415:436-442, 2002.

[78] B. Scholkopf, and A. J. Smola, Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond, MIT Press Cambridge,
2001.

[79] H. Shinnou, and M. Sasaki, Spectral Clustering for a Large Data Set by Re-
ducing the Similarity Matrix Size, Proceedings of the Sizth International Lan-
guage Resources and FEvaluation (LREC’08), European Language Resources
Association (ELRA), 2008.

[80] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, A Com-
prehensive Evaluation of Multicategory Classification Methods for Microarray

Gene Expression Cancer Diagnosis, Bioinformatics, 2004.

[81] J. G. Sun, Perturbation Bounds for the Cholesky and QR Factoriztion, BIT
31:341-352, 1991.

[82] L. Sun, B. Ceran, and J. Ye, A Scalable Two-Stage Approach for a Class
of Dimensionality Reduction Techniques, Proceeding KDD ’10 Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 313-322, 2010.

Bibliography

[83]

[84]

[85]

[90]

[91]

[92]

[93]

D. L. Swets, and J. Weng, Using Discriminant Eigenfeatures for Image Re-
trieval, IEFEE Transations on Pattern Analysis and Machine Intelligence,

18:831-836, 1996.
TREC, Text Retrieval Conference, http://trec.nist.gov/, 1999.

T. Tibshiranai, T. Hastie, B. Harashimhan and G. Chu, Class Prediction by
Nearest Shrunken Centroids, with Applications to DNA Microarrays, Statis-
tical Science, 18:104-117, 2003.

S. Theodoridis, and K. Koutroumbas, Pattern Recognition, Academic Press,

New York, 1999.

K. Torkkola, Linear Discriminant Analysis in Document Classification, In

IEEE ICDM Workshop on Text Mining, 2001.

C. F. Van Loan, Generalizing the Singular Value Decomposition, SIAM J.
Numer. Anal., 13:76-83, 1976.

L. Wang, and X. Shen, On L;-norm Multicalss Support Vector Machines:
Methodology and Theory, Journal of the American Statistical Association,
102:583-594, 2007.

X. Wang, and X. Tang, Random Sampling LDA for Face Recognition, In
CVPR (2), pp. 259-265, 2004.

X. Wang, and X. Tang, Random Sampling for Subspace Face Recognition,
International Journal of Computer Vision, 70:91-104, 2006.

D. S. Watkins, Fundamentals of Matriz Computations, Second Edition, New
York, 2002.

Whitehead Institute Center for Genomic Research: cancer genomics

[http://www-genome.wi.mit.edu/cancer].

180

Bibliography 181

[94] W. Yang, D. Dai, and H. Yan, Feature Extraction and Uncorrelated Discrim-
inant Analysis for High-Dimensional Data, IEEFE Transactions on Knowledge

and Data Engineering, 20(5):601-614, 2008.

[95] J. Yang, J. Y. Yang, Why can LDA be Performed in PCA Transformed Space?
Pattern Recognition, 36(3):563-566, 2003.

[96] J. Ye, Characterization of a Family of Algorithms for Generalized Discriminant

Analysis on Undersampled Problems, J. Mach. Learn. Res., 6:483-502, 2005.

[97] J. Ye, Least Squares Linear Discriminant Analysis, In Proceedings of the 2/th
International Conference on Machine Learning, pp. 1087-1094, Corvallis, OR,
2007.

98] J. Ye, R. Janardan, Q. Li, and H. Park, Feature Extraction via Generalized
Uncorrelated Linear Discriminant Analysis, In The Twenty-First International

Conference on Machine Learning, pp. 895-902, 2004.

[99] J. Ye, R. Janardan, C. H. Park, and H. Park, An Optimization Criterion
for Generalized Discriminant Analysis on Undersampled Problems, I[EFE

Transations on Pattern Analysis and Machine Intelligence, 26:982-994, 2004.

[100] J. Ye, and Q. Li, A Two-stage Linear Discriminant Analysis via QR-
Decomposition, IEEE Transations on Pattern Analysis and Machine Intelli-

gence, 27:929-941, 2005.

[101] J. Ye, T. Li, T. Xiong, and R. Janardan, Using Uncorrelated Discriminant
Analysis for Tissue Classification with Gene Expression Data, [EEE/ACM

Transactions on Computational Biology and Bioinformatics, 1(4):181-190,
2004.

[102] J. Ye, Q. Li, H. Xiong, H. Park, R. Janardan, and V. Kumar, IDR/QR: An
Incremental Dimension Reduction Algorithm via QR Decomposition, [EEFE

Transactions on Knowledge and Data Engineering, 17(9):1208-1222, 2005.

Bibliography 182

[103] J. Ye, and T. Xiong, Computational and Theoretical Analysis of Null Space
and Orthogonal Linear Discriminant Analysis, J. Mach. Learn. Res., 7:1183-
1204, 2006.

[104] J. Ye, T. Xiong, Q. Li, R. Janardan, and J. Bi, Efficient Model Selection
for Regularized Linear Discriminant Analysis, Proceeding CIKM ’06 Proceed-
ings of the 15th ACM international conference on Information and knowledge

management , 2006.

[105] J. Ye, and T. Wang, Regularized Discriminant Analysis for High Dimen-
sional, Low Sample Size Data. Proceeding KDD 06 Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data

mining, 20006.

[106] L. Zhang, L. Liao and M. Ng, Fast Algorithms for the Generalized Foley-
Sammon Discriminant Analysis, SIAM J. Matrix Anal. Appl., 31:1584-1605,
2010.

[107] W. Zhao, R. Chellappa, and P. Phillips, Subspace Linear Discriminant Anal-
ysis for Face Recognition, Technical Report CAR-TR-914, Center for Automa-
tion Research, University of Maryland, 1999.

[108] Y. Zhao, and G. Karypis, Criterion Functions for Document Clustering: Ex-
periments and Analysis, Technical Report TR 01-40, Department of Computer
Science, University of Minnesota, Minneapolis, MN, 2001.

[109] Y. Zhao, and G. Karypis, Empirical and Theoretical Comparisons of Selected
Criterion Functions for Document Clustering, Machine Learning, 55(3):311-

331, 2004.

[110] J. Zobel, A. Moffat, and R. Sacks-Davis, An Efficient Indexing Technique
for Full Text Databases, In Proceedings of 18th International Conference on

Very Large Databases, pp. 352-362, 1992.

Appendix A

Moore-Penrose Inverse and Trace

Operator

Moore-Penrose Inverse:
For a matrix X € R**¥, a Moore-Penrose inverse of X is defined as a matrix

X € RV*# satisfying all the following four criteria:

(2) (XXENT = X X&),
(3) XXX = X;
(4) XHXXH) = X)),

The Moore-Penrose inverse exists and is unique. For any matrix , there is precisely
one matrix , that satisfies the four properties of the definition. In the following,

we list some useful properties of Moore-Penrose inverse:

1. When X is nonsingular, X(¥) = X1

2. Let

183

184

be the singular value decomposition of X, then

where U € R*** and V € R”*" are orthogonal, ¥ € R"*7 is diagonal with

positive diagonal entries, and v = rank(X);

3. Let Y € R"*, then (XY)®) = Y X if and only if X is of full column

rank and Y is of full row rank.

Trace Operator:
The trace of matrix X = [z;;] € R*** is defined to be the sum of the elements on

the main diagonal of X i.e.,
I
trace(X) = Zx“
i=1
We list two useful properties of trace as follows:

L. trace(X) = Y%, Ai(X), where);(X) is the eigenvalue of X, ¢ =1,--- , p;

2. Let Y € R**¥ then trace(XY') = trace(Y X).

Appendix B

Computational Complexity

We summarize computational cost for some matrix computation that are used in

this thesis from [38, 4, 20, 70, 92] as follows:
1. Economic QR factorization of X € R**¥ (u > v) needs
4pv? — %1/3 flops;
2. Economic QR factorization of X € R**¥ (u > v) with column pivoting needs

) 4
2p7* = 2V 4 (dpvr = 2p*(p+ v) + 57°) flops, 7 = rank(X);

3. Eigenvalue decomposition of X € R*** needs about

28113 flops;

4. FEigenvalue decomposition of symmetric matrix X € R*** needs

1242 flops;

5. Generalized eigenvalue decomposition of (X,Y’) with X, Y € R*** are sym-
metric needs

1443 flops;

185

186

6.

10.

11.

Rank one updating of economic QR factorization QR € R**” with Q € R**¥
and R**”, Q(R + wv”) = QR, needs

1240 + 61/* flops;
where Q e R¥ R e R and w,v € R”.
QR-updating of economic QR factorization QR € R**¥ with) € R**¥ and
R [Q q} Li] = QR, needs

6/ + 302 flops.

where Q € R***, R € R", ¢ € R* is orthogonal to @ and 27 € R is the

new inserted row;

QR~updating of inserting one row to full QR factorization QR € R**" with
Q € R*** and R**V, [QR] = [Q] [R
T 1 ZT

z

= QR, needs

6. + 3v* flops.
where Q € RWHDxwtD) R e RUHADxr and 2T € R is the new inserted row.

QR-updating of inserting one column to full QR factorization QR € R**¥
with @Q € R*¥*# and R**V, [QR z} = QR, needs

6 + 3v% flops.
where Q € R**, R € R+ and z € R* is the new inserted column.

Solving X € R**" from the upper triangular system BX =Y with B € R**#

UXv

is upper triangular and Y € R**” needs

pv flops.
Solving X € R*** from the nonlinear system BX =Y with B, Y € R*#
by Gaussian elimination needs

7
3 13 flops.

Appendix

Datasets

In this thesis, we have used three different types of data to evaluate our algorithms,
including text document, face image and gene expression. For convenience and

future reference, we summarize the description and sources of these datasets here.

Text Document:

e Tr12, Tr23 these two datasets are derived from TREC collection [84]. The
processed datasets are also available at
http://shi-zhong.com /software/docdata.zip.

The categories correspond to the documents relevant to particular queries.

e Wap, K1b and Kla are from the WebACE project [15] [41] [16], where each
document corresponds to a web page listed in the subject hierarchy of Yahoo
(http://www.yahoo.com). The datasets kla and K1b contain exactly the
same set of documents but they differ in how the documents were assigned
to different classes. In particular, Kla contains a finer-grain categorization

than that contained in K1b.
Gene Expression:

e Brain tumor dataset, presented in [77], contains n = 42 microarray gene ex-

pression profiles from k& = 5 different tumors of the central nervous system,

187

188

that is, 10 medulloblastomas, 10 malignant gliomas, 10 atypical teratoid/
rhabdoid tumors (AT/RTs), 8 primitive neuro-ectodermal tumors (PNETS)
and 4 human cerebella. The raw data were originated using the Affymetrix
technology and are publicly available at [93]. The processed dataset is avail-
able at

ftp://stat.ethz.ch/Manuscripts/dettling /brain.rda.

Colon cancer dataset contains the expression levels of 40 tumor and 22 normal
colon tissues for 6,500 human genes that are measured using the Affymetrix
technology. A selection of 2,000 genes with highest minimal intensity across
the samples has been made in [2]. It was further processed in [27] and the
dataset is available at

ftp://stat.ethz.ch/Manuscripts/dettling/colon.rda.

Leukemia data set consists of samples from patients with either acute lym-
phoblastic leukemia (ALL) or acute myeloid leukemia (AML). See [37] for a
complete description of the data set. You can download the data set from

http://stat.ethz.ch/~dettling/bagboost.html.

Lymphoma is a data set of the three most prevalent adult lymphoid malig-
nancies. Which has been studied in [26]. The data set is available at
http://stat.ethz.ch/~dettling/bagboost.html.

Prostate cancer raw data are available at [93] and comprise the expression of

52 prostate tumors and 50 non-tumor prostate samples, obtained using the

Affymetrix technology. It was processed in [27] and the dataset is available at
ftp://stat.ethz.ch/Manuscripts/dettling /prostate.rda.

SRBCT (Small Round Blood Cell Tumor)[59] dataset has 2308 genes and
63 experimental conditions, 8 Burkitt Lymphoma (BL), 23 Ewing Sarcoma
(EWS), 12 neuroblastoma (NB), and 20 rhabdomyosarcoma (RMS). Which
can be downloaded from

http://www.stat.cmu.edu/~jiashun/Research/software/Data/SRBCT/.

189

Face Image:

e AR database consists of 4,000 color images corresponding to 126 people’s
faces (70 men and 56 women). Images feature frontal view faces with differ-
ent facial expressions, illumination conditions, and occlusions, second sessions
repeated same conditions. In our experiment, we selected pictures of 120 in-
dividuals (65 men and 55 women) in two sessions. 28 face images, 14 for
each session, were used for each individual. The face portion of each image
was cropped to 50 x 40 pixels for ARspx40 and 50 x 45 pixels for ARsgx45,
respectively. AR face dataset was available at

http://cobweb.ecn.purdue.edu/ " aleix/aleix_face_DB.html

e Feret face database contains 1564 sets of images for a total of 14, 126 images
that includes 1199 individuals and 365 duplicate sets of images. A duplicate
set is a second set of images of a person already in the database and was
usually taken on a different day. Which is available at

http://www.itl.nist.gov/iad /humanid /feret /feret_master.html.
A subset of Feret database was used in our experiment. This subset includes
1000 sets of images of 200 individuals each of which has 5 images. It consists
of the images marked with two lowercase character string: ba, bj, bk, be
and bf. The facial portion of each original image was cropped and resized to

80 x 80 pixels.

e ORL dataset contains a set of ten different images, each of which has 40 dis-
tinct subjects. For some subjects, the images were taken at different times,
varying the lighting, facial expressions and facial details. The database can
be retrieved from

http://www.cl.cam.ac.uk/Research /DTG /attarchive:pub/data/att_faces.tar.Z.
In our experiment, the size of each image is resized to 64 x 64 pixels for

ORLgyxes and 32 x 32 pixels for OR L3y 30, respectively.

e Palmprint database is available at

190

http://www4.comp.polyu.edu.hk/ biometrics/.
We selected 100 different palms from this database. Around 6 samples from
each of these palms were collected in two sessions, where 3 samples were
captured in the first session and the second session, respectively. All images

were compressed to 64 x 64 pixels.

Yale database Contains 165 grayscale images in GIF format of 15 individu-
als. There are 11 images per subject, one per different facial expression or
configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal,
right-light, sad, sleepy, surprised, and wink. Each image of data set Y alegoxss
was resized to 32 x 32 pixels, while each image of data set Yalegyngs was re-
sized to 64 x 64 pixels. Yale face data was available at

http://cve.yale.edu/projects/yalefaces /yalefaces.html.

YaleB database includes both of the original Yale Face Database B [36] with

10 subjects and the extended Yale Face Database B [36] with 28 subjects.
Each subject has 65 (64 illuminations + 1 ambient) images in a particular
pose. There were 47 of them of which the corresponding strobe did not go

off. All image data were manually aligned, cropped, and then re-sized to
168x192 images [66]. The database of YaleB is available at
http://vision.ucsd.edu/ leekc/ExtYaleDatabase/Yale%20Face%20Database.htm.

INCREMENTAL AND REGULARIZED
LINEAR DISCRIMINANT ANALYSIS

WANG XTAOYAN

NATIONAL UNIVERSITY OF SINGAPORE
2012

¢10c¢ NVAOVIX ONVM SISATVNY LNVNINITHOSIA HVHUNIT AdHZIdVINOHY ANV TVILNIHINIHONI

	Acknowledgements
	Summary
	List of Tables
	List of Figures
	1 Introduction
	1.1 Classical LDA
	1.2 Generalized LDA
	1.3 Incremental LDA
	1.4 Outline of the Thesis

	2 Existing Incremental LDA
	2.1 Incremental Dimension Reduction via QR Decomposition (IDR/QR)
	2.2 Incremental LDA using Sufficient Spanning Set (ILDA/SSS)
	2.3 Least Square Incremental LDA (LS-ILDA)
	2.4 Incremental Complete LDA (ICLDA)

	3 New Incremental LDA
	3.1 Preliminaries
	3.2 A New, Efficient and Simple LDA (LDA/QR)
	3.3 Incremental Implementation (ILDA/QR)
	3.3.1 Sequential Incremental Implementation
	3.3.2 Chunk Incremental Implementation

	3.4 Numerical Experiments
	3.4.1 Experiments for Sequential ILDA/QR
	3.4.2 Experiments for Chunk ILDA/QR

	3.5 Conclusions

	4 Existing Regularized LDA
	4.1 Shrunken Centroids Regularized Discriminant Analysis (SCRDA)
	4.2 Regularized Linear Discriminant Analysis (RLDA)
	4.3 Regularized Discriminant Analysis (RDA)

	5 New Regularized OLDA
	5.1 Preliminaries
	5.2 Theoretical Basis
	5.3 Algorithms
	5.3.1 Algorithm for OLDA
	5.3.2 Algorithm for ROLDA

	5.4 Numerical Experiments
	5.4.1 Comparison with OLDA
	5.4.2 Comparison with Some Existing Regularized LDA

	5.5 Conclusions

	6 Conclusions and Future Work
	Bibliography
	A Moore-Penrose Inverse and Trace Operator
	B Computational Complexity
	C Datasets

