3,542 research outputs found

    Liquid Biopsy in Rare Cancers: Lessons from Hemangiopericytoma

    Get PDF
    Hemangiopericytoma (HPT) is a rare mesenchymal tumor of fibroblastic type and for its rarity is poorly studied. The most common sites of metastatic disease in patients with intracranial HPT are the bone, liver, and lung, suggestive for an hematogenous dissemination; for this reason, we investigated, for the first time, the presence of circulating tumor cells (CTCs) in hemangiopericytoma patient by CellSearch® and SceenCell® devices. Peripheral blood samples were drawn and processed by CellSearch, an EpCAM-dependent device, and ScreenCell®, a device size based. We found nontypical CTCs by CellSearch system and the immunofluorescence analysis performed on CTCs isolate by ScreenCell demonstrated the presence of single CTCs and CTC clusters. The molecular characterization of single CTCs and CTC clusters, using antibodies directed against EpCAM, CD34, cytokeratins (8, 18, and 19), and CD45, showed a great heterogeneity in CTC clusters. We believe that the present study may open a new scenario in the rare tumors: the introduction of the liquid biopsy and the molecular characterization of circulating tumor cells could lead to personalized targeted treatments and also for rare tumors

    Benign TdT-positive cells in pediatric and adult lymph nodes: a potential diagnostic pitfall

    Get PDF
    Benign TdT-positive cells have been documented in a variety of non-hematopoietic tissues. Scant data are however available on their presence in non-neoplastic lymph nodes. This study is aimed to: (i) characterize the presence/distribution of benign TdT-positive cells in pediatric and adult reactive lymph nodes; (ii) define the phenotype and nature of such elements. This retrospective study considered 141 reactive lymph nodes from pediatric and adult patients without history of neoplastic disease. TdT-positive cells were characterized by immunohistochemical and morphometric analyses and their presence was correlated with the clinical-pathological features. The nature of TdT-positive cells was investigated by: (i) double immunostaining for early lymphoid cell markers; and (ii) assessment of TdT expression in fetal lymph nodes. Sparse TdT-positive cells were documented in all pediatric cases and in most (76%) adult lymph nodes. TdT-positive cell density was higher in children than adults (15.9/mm2 versus 8.6/mm2; P<.05). TdT positivity did not correlate with any clinical and histological parameter and double immunostaining disclosed a phenotype compatible with early lymphoid precursors (positivity for CD34, CD10 and variable expression of CD7). A very high TdT-positive cell density (802.4/mm2) was reported in all fetal lymph nodes. In conclusion, TdT-positive cells are a common finding in pediatric and adult lymph nodes. The interstitial distribution and low number of such cells allows for the differential diagnosis with precursor lymphoid neoplasms. The high density in fetal lymph nodes and the phenotype of such cells suggest their belonging to an immature lymphoid subset gradually decreasing with age

    Hybrid bioprinting of chondrogenically induced human mesenchymal stem cell spheroids

    Get PDF
    To date, the treatment of articular cartilage lesions remains challenging. A promising strategy for the development of new regenerative therapies is hybrid bioprinting, combining the principles of developmental biology, biomaterial science, and 3D bioprinting. In this approach, scaffold-free cartilage microtissues with small diameters are used as building blocks, combined with a photo-crosslinkable hydrogel and subsequently bioprinted. Spheroids of human bone marrow-derived mesenchymal stem cells (hBM-MSC) are created using a high-throughput microwell system and chondrogenic differentiation is induced during 42 days by applying chondrogenic culture medium and low oxygen tension (5%). Stable and homogeneous cartilage spheroids with a mean diameter of 116 +/- 2.80 mu m, which is compatible with bioprinting, were created after 14 days of culture and a glycosaminoglycans (GAG)- and collagen II-positive extracellular matrix (ECM) was observed. Spheroids were able to assemble at random into a macrotissue, driven by developmental biology tissue fusion processes, and after 72 h of culture, a compact macrotissue was formed. In a directed assembly approach, spheroids were assembled with high spatial control using the bio-ink based extrusion bioprinting approach. Therefore, 14-day spheroids were combined with a photo-crosslinkable methacrylamide-modified gelatin (gelMA) as viscous printing medium to ensure shape fidelity of the printed construct. The photo-initiators Irgacure 2959 and Li-TPO-L were evaluated by assessing their effect on bio-ink properties and the chondrogenic phenotype. The encapsulation in gelMA resulted in further chondrogenic maturation observed by an increased production of GAG and a reduction of collagen I. Moreover, the use of Li-TPO-L lead to constructs with lower stiffness which induced a decrease of collagen I and an increase in GAG and collagen II production. After 3D bioprinting, spheroids remained viable and the cartilage phenotype was maintained. Our findings demonstrate that hBM-MSC spheroids are able to differentiate into cartilage microtissues and display a geometry compatible with 3D bioprinting. Furthermore, for hybrid bioprinting of these spheroids, gelMA is a promising material as it exhibits favorable properties in terms of printability and it supports the viability and chondrogenic phenotype of hBM-MSC microtissues. Moreover, it was shown that a lower hydrogel stiffness enhances further chondrogenic maturation after bioprinting

    The Chemical Form of Metal Species Released from Corroded Taper Junctions of Hip Implants: Synchrotron Analysis of Patient Tissue

    Get PDF
    The mechanisms of metal release from the articulation at the head cup bearing and the tapered junctions of orthopaedic hip implants are known to differ and the debris generated varies in size, shape and volume. Significantly less metal is lost from the taper junction between Cobalt-Chromium-Molybdenum (CoCrMo) and Titanium (Ti) components (fretting-corrosion dominant mechanism), when compared to the CoCrMo bearing surfaces (wear-corrosion dominant mechanism). Corrosion particles from the taper junction can lead to Adverse Reactions to Metal Debris (ARMD) similar to those seen with CoCrMo bearings. We used synchrotron methods to understand the modes underlying clinically significant tissue reactions to Co, Cr and Ti by analysing viable peri-prosthetic tissue. Cr was present as Cr2O3 in the corroded group in addition to CrPO4 found in the metal-on-metal (MoM) group. Interestingly, Ti was present as TiO2 in an amorphous rather than rutile or anatase physical form. The metal species were co-localized in the same micron-scale particles as result of corrosion processes and in one cell type, the phagocytes. This work gives new insights into the degradation products from metal devices as well as guidance for toxicological studies in humans

    Detection of involved margins in breast specimens with x-ray phase-contrast computed tomography

    Get PDF
    Margins of wide local excisions in breast conserving surgery are tested through histology, which can delay results by days and lead to second operations. Detection of margin involvement intraoperatively would allow the removal of additional tissue during the same intervention. X-ray phase contrast imaging (XPCI) provides soft tissue sensitivity superior to conventional X-rays: we propose its use to detect margin involvement intraoperatively. We have developed a system that can perform phase-based computed tomography (CT) scans in minutes, used it to image 101 specimens approximately half of which contained neoplastic lesions, and compared results against those of a commercial system. Histological analysis was carried out on all specimens and used as the gold standard. XPCI-CT showed higher sensitivity (83%, 95% CI 69–92%) than conventional specimen imaging (32%, 95% CI 20–49%) for detection of lesions at margin, and comparable specificity (83%, 95% CI 70–92% vs 86%, 95% CI 73–93%). Within the limits of this study, in particular that specimens obtained from surplus tissue typically contain small lesions which makes detection more difficult for both methods, we believe it likely that the observed increase in sensitivity will lead to a comparable reduction in the number of re-operations

    Detection of involved margins in breast specimens with X-ray phase-contrast computed tomography.

    Get PDF
    Margins of wide local excisions in breast conserving surgery are tested through histology, which can delay results by days and lead to second operations. Detection of margin involvement intraoperatively would allow the removal of additional tissue during the same intervention. X-ray phase contrast imaging (XPCI) provides soft tissue sensitivity superior to conventional X-rays: we propose its use to detect margin involvement intraoperatively. We have developed a system that can perform phase-based computed tomography (CT) scans in minutes, used it to image 101 specimens approximately half of which contained neoplastic lesions, and compared results against those of a commercial system. Histological analysis was carried out on all specimens and used as the gold standard. XPCI-CT showed higher sensitivity (83%, 95% CI 69-92%) than conventional specimen imaging (32%, 95% CI 20-49%) for detection of lesions at margin, and comparable specificity (83%, 95% CI 70-92% vs 86%, 95% CI 73-93%). Within the limits of this study, in particular that specimens obtained from surplus tissue typically contain small lesions which makes detection more difficult for both methods, we believe it likely that the observed increase in sensitivity will lead to a comparable reduction in the number of re-operations

    A Morphological and Ultrastructural Study of the Anterior Digestive Tract of Adult Nile Tilapia Oreochromis niloticus

    Get PDF
    Among the most-used fish species in aquaculture is the Nile tilapia, due to its rapid growth rate and its adaptation to a wide range of farming conditions. A careful description of the morphology of the digestive tract, particularly the esophagus and stomach, allows a better understanding of the relationship between structure and function. Combining scanning and light microscopy we highlighted the presence of five different zones in the stomach (1: esophagus-gastric lumen passage; 2: descending glandular portion; 3: fundic portion; 4: ascending glandular portion; 5: gastric-pyloric transition portion). Histochemical investigation showed a secretion of carboxylates mucopolysaccharides along the esophagus and sulphated complex carbohydrates in the stomach. These results suggest that mucins play a protective role of the epithelial lining, which is essential for a correct digestive process. Finally, the characterization of the main cellular structures may be inspiring for more advanced studies aiming to decipher the role of specific molecules, such as neuropeptides, involved in the physiological digestive process

    Short-term post-implantation dynamics of in vitro engineered human microvascularized adipose tissues

    Get PDF
    Engineered adipose tissues are developed for their use as substitutes for tissue replacement in reconstructive surgery. To ensure a timely perfusion of the grafted substitutes, different strategies can be used such as the incorporation of an endothelial component. In this study, we engineered human adipose tissue substitutes comprising of functional adipocytes as well as a natural extracellular matrix using the self-assembly approach, without the use of exogenous scaffolding elements. Human microvascular endothelial cells (hMVECs) were incorporated during tissue production in vitro and we hypothesized that their presence would favor the early connection with the host vascular network translating into functional enhancement after implantation into nude mice in comparison to the substitutes that were not enriched in hMVECs. In vitro, no significant differences were observed between the substitutes in terms of histological aspects. After implantation, both groups presented numerous adipocytes and an abundant matrix in addition to the presence of host capillaries within the grafts. The substitutes thickness and volume were not significantly different between groups over the short-term time course of 14 days. For the microvascularized adipose tissues, human CD31 staining revealed a human 3 capillary network connecting with the host microvasculature as early as 3 days after grafting. The detection of murine red blood cells within human CD31+ structures confirmed the functionality of the human capillary network. By analyzing the extent of the global vascularization achieved, a tendency towards increased total capillary network surface and volume was revealed for prevascularized tissues over 14 days. Therefore, applying this strategy on thicker reconstructed adipose tissues with rate-limiting oxygen diffusion might procure added benefits and prove useful to provide voluminous substitutes for patients suffering from adipose tissue loss or defects
    • …
    corecore