3,226 research outputs found

    Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases

    Get PDF
    Iridoids, which have beneficial health properties, include a wide group of cyclopentane [c] pyran monoterpenoids present in plants and insects. The cleavage of the cyclopentane ring leads to secoiridoids. Mainly, secoiridoids have shown a variety of pharmacological effects including anti-diabetic, antioxidant, anti-inflammatory, immunosuppressive, neuroprotective, anti-cancer, and anti-obesity, which increase the interest of studying these types of bioactive compounds in depth. Secoiridoids are thoroughly distributed in several families of plants such as Oleaceae, Valerianaceae, Gentianaceae and Pedialaceae, among others. Specifically, Olea europaea L. (Oleaceae) is rich in oleuropein (OL), dimethyl-OL, and ligstroside secoiridoids, and their hydrolysis derivatives are mostly OL-aglycone, oleocanthal (OLE), oleacein (OLA), elenolate, oleoside-11-methyl ester, elenoic acid, hydroxytyrosol (HTy), and tyrosol (Ty). These compounds have proved their efficacy in the management of diabetes, cardiovascular and neurodegenerative disorders, cancer, and viral and microbial infections. Particularly, the antioxidant, anti-inflammatory, and immunomodulatory properties of secoiridoids from the olive tree (Olea europaea L. (Oleaceae)) have been suggested as a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. Thus, the purpose of this review is to summarize recent advances in the protective role of secoiridoids derived from the olive tree (preclinical studies and clinical trials) in diseases with an important pathogenic contribution of oxidative and peroxidative stress and damage, focusing on their plausible mechanisms of the action involved.España Ministerio de Economía y Competitivida

    Krüppel-like factors in cancer progression: three fingers on the steering wheel

    Get PDF
    Kruppel-like factors (KLFs) comprise a highly conserved family of zinc finger transcription factors, that are involved in a plethora of cellular processes, ranging from proliferation and apoptosis to differentiation, migration and pluripotency. During the last few years, evidence on their role and deregulation in different human cancers has been emerging. This review will discuss current knowledge on Kruppel-like transcription in the epithelial-mesenchymal transition (EMT), invasion and metastasis, with a focus on epithelial cancer biology and the extensive interface with pluripotency. Furthermore, as KLFs are able to mediate different outcomes, important influences of the cellular and microenvironmental context will be highlighted. Finally, we attempt to integrate diverse findings on KLF functions in EMT and stem cell biology to fit in the current model of cellular plasticity as a tool for successful metastatic dissemination

    Finding Common Ground to Treat Primary and Metastatic Cancer: The Potential of Targeting Tumor Stroma

    Get PDF
    Primary carcinomas and metastases are complex organ-like structures composed of malignant parenchymal epithelial tissues and a desmoplastic stroma formed by accumulation of hematopoietic cells, mesenchymal stromal cells and extracellular matrix. The crosstalk between malignant epithelial cells and tumor stroma is becoming increasingly appreciated as a key determinant in tumor development, progression and metastasis, as well as inducing resistance to various cancer treatments including chemotherapy, radiotherapy and immunotherapy. Mechanistic understanding of how the tumor-stromal interaction contributes to tumor progression and therapeutic resistance will advance cancer therapies and improve clinical management, especially for patients with metastatic disease. Fibroblast activation protein (FAP) is a membrane surface protease found overexpressed in cancer-associated stromal cells. Overexpression of FAP is associated with tumor progression, metastasis and recurrence, and predicts a poorer prognosis in many types of human tumors. The central goal of my thesis project is to investigate whether FAP protease and/or FAP protease-expressing stromal cells play essential roles in tumor progression and metastasis. In collaboration with Drs. Steven Albelda and Carl June’s groups, we generated chimeric antigen receptor (CAR) T cells redirected against FAP+ stromal cells to study their impact on tumor progression. Conditional depletion of FAP+ stromal cells by FAP-CAR T cells restrains tumor progression without causing severe toxicity. Mechanistic investigations revealed that FAP+ stromal cells promote tumor growth via immune suppression and immune-independent remodeling of the stromal microenvironment. Additionally, using FAP-deficient mice, I found that FAP protease promotes early malignant cell seeding and pulmonary metastatic outgrowth, possibly through regulating coagulation pathways and the inflammatory response, respectively. Finally, I observed that FAP protease promotes pancreatic cancer development, as its deletion delays the progression of preneoplastic lesions and tumor formation in a genetically engineered mouse model of pancreatic ductal carcinoma. FAP protease is also essential for inducing pancreatic cancer resistance to necrotic cell death and promoting metastasis and outgrowth in multiple target organs. Together, these findings demonstrate that molecular and cellular targeting of FAP represents a promising therapeutic approach for a variety of solid tumors

    Fibroblasts in the Tumor Microenvironment : Shield or Spear?

    Get PDF
    Tumorigenesis is a complex process involving dynamic interactions between malignant cells and their surrounding stroma, including both the cellular and acellular components. Within the stroma, fibroblasts represent not only a predominant cell type, but also a major source of the acellular tissue microenvironment comprising the extracellular matrix (ECM) and soluble factors. Normal fibroblasts can exert diverse suppressive functions against cancer initiating and metastatic cells via direct cell-cell contact, paracrine signaling by soluble factors, and ECM integrity. The loss of such suppressive functions is an inherent step in tumor progression. A tumor cell-induced switch of normal fibroblasts into cancer-associated fibroblasts (CAFs), in turn, triggers a range of pro-tumorigenic signals accompanied by distraction of the normal tissue architecture, thus creating an optimal niche for cancer cells to grow extensively. To further support tumor progression and metastasis, CAFs secrete factors such as ECM remodeling enzymes that further modify the tumor microenvironment in combination with the altered adhesive forces and cell-cell interactions. These paradoxical tumor suppressive and promoting actions of fibroblasts are the focus of this review, highlighting the heterogenic molecular properties of both normal and cancer-associated fibroblasts, as well as their main mechanisms of action, including the emerging impact on immunomodulation and different therapy responses.Peer reviewe

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship

    Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories

    Get PDF
    Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Although advances are being made towards earlier detection and the development of impactful targeted therapies and immunotherapies, the 5-year survival of patients with advanced disease is still below 20%. Effective cancer research relies on pre-clinical model systems that accurately reflect the evolutionary course of disease progression and mimic patient responses to therapy. Here, we review pre-clinical models, including genetically engineered mouse models and patient-derived materials, such as cell lines, primary cell cultures, explant cultures and xenografts, that are currently being used to interrogate NSCLC evolution from pre-invasive disease through locally invasive cancer to the metastatic colonization of distant organ sites

    Recent Approaches Encompassing the Phenotypic Cell Heterogeneity for Anticancer Drug Efficacy Evaluation

    Get PDF
    Despite the advancements in biomarker-based personalized cancer therapy, the inadequacy of molecular and genetic profiling in identifying effective drug combinations was defined in most cases. Drug resistance remains a major limitation of the current predictive oncology. Emerging reports indicate that the success of anticancer therapy is usually limited by intratumoral heterogeneity which is not captured by the existing cancer cell biomarker-based approaches. Cell heterogeneity, not only genetic but also phenotypic, is considered to be the root cause of resistance to anticancer treatment, cancer progression, and the presence of cancer stem cells. Therefore, functional testing of live cells representing various cell types within the tumor exposed to potential therapies is needed for identification of effective drug combinations. Here we look at the different existing model systems, including ex vivo models of the patient’s tumor cells, 2D/3D in vitro cultures/cocultures, patient-derived cellular organoids, single-cell models, ex vivo tumor platforms containing tumor microenvironment and extracellular matrix, etc., scoping at drug efficacy evaluation and solving the problem of cancer resistance

    EMT/MET at the crossroad of stemness, regeneration and oncogenesis. The Ying-Yang equilibrium recapitulated in cell spheroids

    Get PDF
    The epithelial-to-mesenchymal transition (EMT) is an essential trans-differentiation process, which plays a critical role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. It is the fundamental mechanism by which epithelial cells lose many of their characteristics while acquiring features typical of mesenchymal cells, such as migratory capacity and invasiveness. Depending on the contest, EMT is complemented and balanced by the reverse process, the mesenchymal-to-epithelial transition (MET). In the saving economy of the living organisms, the same (Ying-Yang) tool is integrated as a physiological strategy in embryonic development, as well as in the course of reparative or disease processes, prominently fibrosis, tumor invasion and metastasis. These mechanisms and their related signaling (e.g., TGF-β and BMPs) have been effectively studied in vitro by tissue-derived cell spheroids models. These three-dimensional (3D) cell culture systems, whose phenotype has been shown to be strongly dependent on TGF-β-regulated EMT/MET processes, present the advantage of recapitulating in vitro the hypoxic in vivo micro-environment of tissue stem cell niches and their formation. These spheroids, therefore, nicely reproduce the finely regulated Ying-Yang equilibrium, which, together with other mechanisms, can be determinant in cell fate decisions in many pathophysiological scenarios, such as differentiation, fibrosis, regeneration, and oncogenesis. In this review, current progress in the knowledge of signaling pathways affecting EMT/MET and stemness regulation will be outlined by comparing data obtained from cellular spheroids systems, as ex vivo niches of stem cells derived from normal and tumoral tissues. The mechanistic correspondence in vivo and the possible pharmacological perspective will be also explored, focusing especially on the TGF-β-related networks, as well as others, such as SNAI1, PTEN, and EGR1. This latter, in particular, for its ability to convey multiple types of stimuli into relevant changes of the cell transcriptional program, can be regarded as a heterogeneous "stress-sensor" for EMT-related inducers (growth factor, hypoxia, mechano-stress), and thus as a therapeutic target
    corecore