693 research outputs found

    Information-theoretic analysis of MIMO channel sounding

    Full text link
    The large majority of commercially available multiple-input multiple-output (MIMO) radio channel measurement devices (sounders) is based on time-division multiplexed switching (TDMS) of a single transmit/receive radio-frequency chain into the elements of a transmit/receive antenna array. While being cost-effective, such a solution can cause significant measurement errors due to phase noise and frequency offset in the local oscillators. In this paper, we systematically analyze the resulting errors and show that, in practice, overestimation of channel capacity by several hundred percent can occur. Overestimation is caused by phase noise (and to a lesser extent frequency offset) leading to an increase of the MIMO channel rank. Our analysis furthermore reveals that the impact of phase errors is, in general, most pronounced if the physical channel has low rank (typical for line-of-sight or poor scattering scenarios). The extreme case of a rank-1 physical channel is analyzed in detail. Finally, we present measurement results obtained from a commercially employed TDMS-based MIMO channel sounder. In the light of the findings of this paper, the results obtained through MIMO channel measurement campaigns using TDMS-based channel sounders should be interpreted with great care.Comment: 99 pages, 14 figures, submitted to IEEE Transactions on Information Theor

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures

    Indoor ultra-wideband channel modeling and localization using multipath estimation algorithms

    Get PDF

    Analysis of the sum rate for massive MIMO using 10 GHz measurements

    Get PDF
    Orientador: Gustavo FraidenraichTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Este trabalho apresenta um conjunto de contribuições para caracterização e modelagem de canais reais de rádio abordando aspectos relacionados com as condições favoráveis de propagação para sistemas massive MIMO. Discutiremos como caracterizar canais de rádio em um ambiente real, processamento de dados e análise das condições favoráveis de propagação. Em uma segunda parte, focamos na determinação teórica de alguns aspectos da tecnologia de massive MIMO utilizando propriedades de distribuições matriciais Wishart. Inicialmente, apresentamos uma contribuição sobre a aplicação do algoritmo ESPRIT, para estimar parâmetros de um conjunto de dados multidimensional. Obtivemos dados por varredura em frequência de um Analisador Vetorial de Rede e os adaptamos para o algoritmo ESPRIT. Mostramos como remover a influência do ganho de padrão de antenas e como utilizar um gerador de modelo de canal baseado nas medidas reais de canal de rádio. As medidas foram feitas na frequência de 10.1 GHz com largura de faixa de 500 MHz. Utilizando um gerador de modelo de canal, fomos além do universo das simulações por distribuições Gaussianas. Introduzimos o conceito de propagação favorável e analisamos condições de linha-de-visada usando arranjos lineares uniformes e arranjos retangulares uniformes de antena. Como novidade da pesquisa, mostramos os benefícios de explorar um número extra de graus de liberdade devido à escolha dos formatos de arranjo de antenas e ao aumento do número de elementos. Esta propriedade é observada ao analisarmos a distribuição dos autovalores de matrizes Gramianas. Em seguida, estendemos o mesmo raciocínio para as matrizes de canal geradas a partir de informações reais e verificamos se as propriedades ainda permaneceriam válidas. Na segunda parte deste trabalho, incluímos mais de uma antena no terminal móvel e calculamos a probabilidade de indisponibilidade para várias configurações de antenas e número arbitrário de usuários. Esboçamos inicialmente a formulação para a informação mútua e, em seguida, calculamos os resultados exatos em uma situação com dois usuários e duas antenas, tanto na estação base (EB) como nos terminais de usuário(TU). Visto que as formulações para a derivação exata dos casos com mais antenas e mais usuários mostrou-se muito intrincada, propusemos uma aproximação Gaussiana para simplificar o problema. Esta aproximação foi validada por simulações Monte Carlo para diferentes relações sinal/ruídoAbstract: This thesis presents a set of contributions for channel modeling and characterization of real radio channels delineating aspects related with the favorable propagation for massive MIMO systems. We will discuss about how to proceed for characterizing radio channels in an real environment , data processing, and analysis of favorable conditions. In a second part, we focused on determination of some theoretical aspects of the Massive MIMO technology using properties of Wishart distribution matrices. We initially present a contribution on the application of ESPRIT algorithm for estimating a multidimensional set of measured data. We have obtained data by frequency sweep carried out by a vector network analyzer(VNA) and adapted it to fit in the ESPRIT algorithm. We show how to remove antenna pattern gain using virtual antenna arrays and how to use a channel model generator based on radio channel measurements of real environments. The measurements were conducted at the frequency of 10.1 GHz and 500 MHz bandwidth. By using a channel model generator, we have explored beyond the simulation of Gaussian Distributions. We will introduce the concept of favorable propagation and analyze the line-of-sight conditions using ULA and URA array shapes. As a research novelty, we will show the benefits of exploiting an extra degree of freedom due to the choice of the antenna shapes and amount of antenna elements. We observe these properties through the distribution of the Gramian Matrices. Next, we extend the same rationale to channel matrices generated from real channels and we verify that the properties are still valid. In a second part of the research work, we included more than one antenna in the mobile terminals and calculated the outage probability for several antenna configurations and arbitrary number users. We introduce a formulation for mutual information and then we calculate exact results in a case with two users with two antennas in both Base Station (BS) and User Terminals (UT). Since the formulations to the exact derivation for cases with more antennas and users seems to be intricate, we propose a Gaussian approximation solution to simplify the problem. We validated this approximation with Monte Carlo simulations for different signal-to-noise ratiosDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétrica248416/2013-8CNPQCAPE
    corecore