143 research outputs found

    Improved method for image security based on chaotic-shuffle and chaotic-diffusion algorithms

    Get PDF
    In this paper, we propose to enhance the security performance of the color image encryption algorithm which depends on multi-chaotic systems. The current cryptosystem utilized a pixel-chaotic-shuffle system to encode images, in which the time of shuffling is autonomous to the plain-image. Thus, it neglects to the picked plaintext and known-plaintext attacks. Also, the statistical features of the cryptosystem are not up to the standard. Along these lines, the security changes are encircled to make the above attacks infeasible and upgrade the statistical features also. It is accomplished by altering the pixel-chaotic-shuffle component and including another pixel-chaotic-diffusion system to it. The keys for diffusion of pixels are extracted from the same chaotic arrangements created in the past stage. The renovation investigations and studies are performed to exhibit that the refreshed version of cryptosystem has better statistical features and invulnerable to the picked plaintext and known plaintext attacks than the current algorithm

    Image watermarking based on the space/spatial-frequency analysis and Hermite functions expansion

    Get PDF
    International audienceAn image watermarking scheme that combines Hermite functions expansion and space/spatial-frequency analysis is proposed. In the first step, the Hermite functions expansion is employed to select busy regions for watermark embedding. In the second step, the space/spatial-frequency representation and Hermite functions expansion are combined to design the imperceptible watermark, using the host local frequency content. The Hermite expansion has been done by using the fast Hermite projection method. Recursive realization of Hermite functions significantly speeds up the algorithms for regions selection and watermark design. The watermark detection is performed within the space/spatial-frequency domain. The detection performance is increased due to the high information redundancy in that domain in comparison with the space or frequency domains, respectively. The performance of the proposed procedure has been tested experimentally for different watermark strengths, i.e., for different values of the peak signal-to-noise ratio (PSNR). The proposed approach provides high detection performance even for high PSNR values. It offers a good compromise between detection performance (including the robustness to a wide variety of common attacks) and imperceptibility

    An Adaptive Spread Spectrum (SS) Synchronous Data Hiding Strategy for Scalable 3D Terrain Visualization

    No full text
    International audienceThe diversity of clients in today's network environment compels us to think about solutions that more than satisfy their needs according to their resources. For 3D terrain visualization this translates into two main requirements, namely the scalability and synchronous unification of a disparate data that requires at least two files, the texture image and its corresponding digital elevation model (DEM). In this work the scalability is achieved through the multiresolution discrete wavelet transform (DWT) of the JPEG2000 codec. For the unification of data, a simple DWT-domain spread spectrum (SS) strategy is employed in order to synchronously hide the DEM in the corresponding texture while conserving the JPEG2000 standard file format. Highest possible quality texture is renderable due to the reversible nature of the SS data hiding. As far as DEM quality is concerned, it is ensured through the adaptation of synchronization in embedding that would exclude some highest frequency subbands. To estimate the maximum tolerable error in the DEM according to a given viewpoint, a human visual system (HVS) based psycho-visual analysis is being presented. This analysis is helpful in determining the degree of adaptation in synchronization

    Watermarking technique for wireless multimedia sensor networks: A state of the art

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are an emerging type of sensor network which contain sensor nodes equipped with microphones, cameras, and other sensors that produce multimedia content. These networks have the potential to enable a large class of applications ranging from military to modern healthcare. Multimedia nodes are susceptible to various types of attack, such as cropping, compression, or even physical capture and sensor replacement. Hence, security becomes an important issue in WMSNs. However, given the fact that sensors are resource constrained, the traditional intensive security algorithms are not well suited for WMSNs. This makes the traditional security techniques, based on data encryption, not very suitable for WMSNs. Watermarking techniques are usually computationally lightweight and do not require much memory resources. These techniques are being considered as an attractive alternative to the traditional techniques, because of their light resource requirements. The objective of this paper is to present a critical analysis of the existing state-of-the-art watermarking algorithms developed for WMSNs

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    Copyright protection of scalar and multimedia sensor network data using digital watermarking

    Get PDF
    This thesis records the research on watermarking techniques to address the issue of copyright protection of the scalar data in WSNs and image data in WMSNs, in order to ensure that the proprietary information remains safe between the sensor nodes in both. The first objective is to develop LKR watermarking technique for the copyright protection of scalar data in WSNs. The second objective is to develop GPKR watermarking technique for copyright protection of image data in WMSN

    Implementation of Otsu’s Method in Vein Locator Devices

    Get PDF
    Abstract—In finding the position of the vein for injection process can bring any difficulty particularly for the patient who has too deep vein position under the skin. Sometimes it causes the nurses do several injections to find the right vein position. This problem will make the patient uncomfortable. The objective of this research tries to solve that patients scaring through modifying normal IR CCTV camera to become a biomedical device in order to visualize vein location on a human hand. The normal IR CCTV camera is modified by removing the IR cut filter to allow mid-infrared wavelengths. In order to find the vein location, a few stages must be done such as remove the background, extracting into the single color plane, reversing the image, filtering, thresholding with Otsu’s method and eroding. This system was named with Vein Scanner System (VSS) which have function look like a scanner. To utilize the scanner recording process, this research used a stepper motor that has a function to perform scanning by moving the camera gradually along the desired point of the human hand. In controlling approach was used raspberry Pi as the core of the VSS to do image processing and to control camera position. Then, the Vein Locator Device was used to compare with the VSS to make sure the right vein. Finally, the VSS has succeeded to visualize the vein on hand

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims
    • …
    corecore