135 research outputs found

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Computational Optimizations for Machine Learning

    Get PDF
    The present book contains the 10 articles finally accepted for publication in the Special Issue “Computational Optimizations for Machine Learning” of the MDPI journal Mathematics, which cover a wide range of topics connected to the theory and applications of machine learning, neural networks and artificial intelligence. These topics include, among others, various types of machine learning classes, such as supervised, unsupervised and reinforcement learning, deep neural networks, convolutional neural networks, GANs, decision trees, linear regression, SVM, K-means clustering, Q-learning, temporal difference, deep adversarial networks and more. It is hoped that the book will be interesting and useful to those developing mathematical algorithms and applications in the domain of artificial intelligence and machine learning as well as for those having the appropriate mathematical background and willing to become familiar with recent advances of machine learning computational optimization mathematics, which has nowadays permeated into almost all sectors of human life and activity

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Optimisation of a weightless neural network using particle swarms

    Get PDF
    Among numerous pattern recognition methods the neural network approach has been the subject of much research due to its ability to learn from a given collection of representative examples. This thesis is concerned with the design of weightless neural networks, which decompose a given pattern into several sets of n points, termed n-tuples. Considerable research has shown that by optimising the input connection mapping of such n-tuple networks classification performance can be improved significantly. In this thesis the application of a population-based stochastic optimisation technique, known as Particle Swarm Optimisation (PSO), to the optimisation of the connectivity pattern of such “n-tuple” classifiers is explored. The research was aimed at improving the discriminating power of the classifier in recognising handwritten characters by exploiting more efficient learning strategies. The proposed "learning" scheme searches for ‘good’ input connections of the n-tuples in the solution space and shrinks the search area step by step. It refines its search by attracting the particles to positions with good solutions in an iterative manner. Every iteration the performance or fitness of each input connection is evaluated, so a reward and punishment based fitness function was modelled for the task. The original PSO was refined by combining it with other bio-inspired approaches like Self-Organized Criticality and Nearest Neighbour Interactions. The hybrid algorithms were adapted for the n-tuple system and the performance was measured in selecting better connectivity patterns. The Genetic Algorithm (GA) has been shown to be accomplishing the same goals as the PSO, so the performances and convergence properties of the GA were compared against the PSO to optimise input connections. Experiments were conducted to evaluate the proposed methods by applying the trained classifiers to recognise handprinted digits from a widely used database. Results revealed the superiority of the particle swarm optimised training for the n-tuples over other algorithms including the GA. Low particle velocity in PSO was favourable for exploring more areas in the solution space and resulted in better recognition rates. Use of hybridisation was helpful and one of the versions of the hybrid PSO was found to be the best performing algorithm in finding the optimum set of input maps for the n-tuple network

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Enabling rapid iterative model design within the laboratory environment

    Get PDF
    This thesis presents a proof of concept study for the better integration of the electrophysiological and modelling aspects of neuroscience. Members of these two sub-disciplines collaborate regularly, but due to differing resource requirements, and largely incompatible spheres of knowledge, cooperation is often impeded by miscommunication and delays. To reduce the model design time, and provide a platform for more efficient experimental analysis, a rapid iterative model design method is proposed. The main achievement of this work is the development of a rapid model evaluation method based on parameter estimation, utilising a combination of evolutionary algorithms (EAs) and graphics processing unit (GPU) hardware acceleration. This method is the primary force behind the better integration of modelling and laboratorybased electrophysiology, as it provides a generic model evaluation method that does not require prior knowledge of model structure, or expertise in modelling, mathematics, or computer science. If combined with a suitable intuitive and user targeted graphical user interface, the ideas presented in this thesis could be developed into a suite of tools that would enable new forms of experimentation to be performed. The latter part of this thesis investigates the use of excitability-based models as the basis of an iterative design method. They were found to be computationally and structurally simple, easily extensible, and able to reproduce a wide range of neural behaviours whilst still faithfully representing underlying cellular mechanisms. A case study was performed to assess the iterative design process, through the implementation of an excitability-based model. The model was extended iteratively, using the rapid model evaluation method, to represent a vasopressin releasing neuron. Not only was the model implemented successfully, but it was able to suggest the existence of other more subtle cell mechanisms, in addition to highlighting potential failings in previous implementations of the class of neuron

    Towards a solution of the closure problem for convective atmospheric boundary-layer turbulence

    Get PDF
    We consider the closure problem for turbulence in the dry convective atmospheric boundary layer (CBL). Transport in the CBL is carried by small scale eddies near the surface and large plumes in the well mixed middle part up to the inversion that separates the CBL from the stably stratified air above. An analytically tractable model based on a multivariate Delta-PDF approach is developed. It is an extension of the model of Gryanik and Hartmann [1] (GH02) that additionally includes a term for background turbulence. Thus an exact solution is derived and all higher order moments (HOMs) are explained by second order moments, correlation coefficients and the skewness. The solution provides a proof of the extended universality hypothesis of GH02 which is the refinement of the Millionshchikov hypothesis (quasi- normality of FOM). This refined hypothesis states that CBL turbulence can be considered as result of a linear interpolation between the Gaussian and the very skewed turbulence regimes. Although the extended universality hypothesis was confirmed by results of field measurements, LES and DNS simulations (see e.g. [2-4]), several questions remained unexplained. These are now answered by the new model including the reasons of the universality of the functional form of the HOMs, the significant scatter of the values of the coefficients and the source of the magic of the linear interpolation. Finally, the closures 61 predicted by the model are tested against measurements and LES data. Some of the other issues of CBL turbulence, e.g. familiar kurtosis-skewness relationships and relation of area coverage parameters of plumes (so called filling factors) with HOM will be discussed also

    Dynamically reconfigurable bio-inspired hardware

    Get PDF
    During the last several years, reconfigurable computing devices have experienced an impressive development in their resource availability, speed, and configurability. Currently, commercial FPGAs offer the possibility of self-reconfiguring by partially modifying their configuration bitstream, providing high architectural flexibility, while guaranteeing high performance. These configurability features have received special interest from computer architects: one can find several reconfigurable coprocessor architectures for cryptographic algorithms, image processing, automotive applications, and different general purpose functions. On the other hand we have bio-inspired hardware, a large research field taking inspiration from living beings in order to design hardware systems, which includes diverse topics: evolvable hardware, neural hardware, cellular automata, and fuzzy hardware, among others. Living beings are well known for their high adaptability to environmental changes, featuring very flexible adaptations at several levels. Bio-inspired hardware systems require such flexibility to be provided by the hardware platform on which the system is implemented. In general, bio-inspired hardware has been implemented on both custom and commercial hardware platforms. These custom platforms are specifically designed for supporting bio-inspired hardware systems, typically featuring special cellular architectures and enhanced reconfigurability capabilities; an example is their partial and dynamic reconfigurability. These aspects are very well appreciated for providing the performance and the high architectural flexibility required by bio-inspired systems. However, the availability and the very high costs of such custom devices make them only accessible to a very few research groups. Even though some commercial FPGAs provide enhanced reconfigurability features such as partial and dynamic reconfiguration, their utilization is still in its early stages and they are not well supported by FPGA vendors, thus making their use difficult to include in existing bio-inspired systems. In this thesis, I present a set of architectures, techniques, and methodologies for benefiting from the configurability advantages of current commercial FPGAs in the design of bio-inspired hardware systems. Among the presented architectures there are neural networks, spiking neuron models, fuzzy systems, cellular automata and random boolean networks. For these architectures, I propose several adaptation techniques for parametric and topological adaptation, such as hebbian learning, evolutionary and co-evolutionary algorithms, and particle swarm optimization. Finally, as case study I consider the implementation of bio-inspired hardware systems in two platforms: YaMoR (Yet another Modular Robot) and ROPES (Reconfigurable Object for Pervasive Systems); the development of both platforms having been co-supervised in the framework of this thesis

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore