2,725 research outputs found

    A study of early afterdepolarizations in a model for human ventricular tissue

    Get PDF
    Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium

    Spiral-wave Dynamics Depends Sensitively on nhomogeneities in Mathematical Models of Ventricular Tissue

    Get PDF
    Every sixth death in industrialised countries occurs because of cardiac arrhythmias like ventricular tachycardia (VT) and ventricular fibrillation (VF). There is growing consensus that VT is associated with an unbroken spiral wave of electrical activation on cardiac tissue but VF with broken waves, spiral turbulence, spatiotemporal chaos and rapid, irregular activation. Thus spiral-wave activity in cardiac tissue has been studied extensively. Nevertheless many aspects of such spiral dynamics remain elusive because of the intrinsically high-dimensional nature of the cardiac-dynamical system. In particular, the role of tissue heterogeneities in the stability of cardiac spiral waves is still being investigated. Experiments with conduction blocks in cardiac tissue yield a variety of results: some suggest that blocks can eliminate VF partially or completely, leading to VT or quiescence, but others show that VF is unaffected by obstacles. We propose theoretically that this variety of results is a natural manifestation of a fractal boundary that must separate the basins of the attractors associated, respectively, with VF and VT. We substantiate this with extensive numerical studies of Panfilov and Luo-Rudy I models, where we show that the suppression of VF depends sensitively on the position, size, and nature of the inhomogeneity.Comment: 9 pages, 5 figures

    Effects of early afterdepolarizations on excitation patterns in an accurate model of the human ventricles

    Get PDF
    Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before completion of the repolarization phase, which can result in ectopic beats. However, the series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhythmias are not well understood. Therefore, we aimed to investigate the influence of this single cell behavior on the whole heart level. For this study we used a modified version of the Ten Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D ventricle model including realistic fiber orientations. To increase the likelihood of EAD formation at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid delayed rectifier Potassium current and raising the L-type Calcium current. Varying these parameters defined a 2D parametric space where different excitation patterns could be classified. Depending on the initial conditions, by either exciting the ventricles with a spiral formation or burst pacing protocol, we found multiple different spatio-temporal excitation patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Calcium waves at the same time and in same tissue settings. In the parameter region governed by the B pattern, single cells were able to repolarize completely and different (spiral) waves chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibrillation type A patterns consisted of multiple small rotating spirals. Single cells failed to repolarize to the resting membrane potential hence prohibiting the Sodium channel gates to recover. Accordingly, we found that Calcium waves mediated these patterns. Third, a further reduction of the RR resulted in a more exotic parameter regime whereby the individual cells behaved independently as oscillators. The patterns arose due to a phase-shift of different oscillators as disconnection of the cells resulted in continuation of the patterns. For all patterns, we computed realistic 9 lead ECGs by including a torso model. The B and A type pattern exposed the behavior of Ventricular Tachycardia (VT). We conclude that EADs at the single cell level can result in different types of cardiac fibrillation at the tissue and 3D ventricle level

    Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics

    Get PDF
    Scroll waves are vortices that occur in three-dimensional excitable media. Scroll waves have been observed in a variety of systems including cardiac tissue, where they are associated with cardiac arrhythmias. The disorganization of scroll waves into chaotic behavior is thought to be the mechanism of ventricular fibrillation, whose lethality is widely known. One possible mechanism for this process of scroll wave instability is negative filament tension. It was discovered in 1987 in a simple two variables model of an excitable medium. Since that time, negative filament tension of scroll waves and the resulting complex, often turbulent dynamics was studied in many generic models of excitable media as well as in physiologically realistic models of cardiac tissue. In this article, we review the work in this area from the first simulations in FitzHugh-Nagumo type models to recent studies involving detailed ionic models of cardiac tissue. We discuss the relation of negative filament tension and tissue excitability and the effects of discreteness in the tissue on the filament tension. Finally, we consider the application of the negative tension mechanism to computational cardiology, where it may be regarded as a fundamental mechanism that explains differences in the onset of arrhythmias in thin and thick tissue

    Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue

    Get PDF
    Managing lethal cardiac arrhythmias is one of the biggest challenges in modern cardiology, and hence it is very important to understand the factors underlying such arrhythmias. While early afterdepolarizations (EAD) of cardiac cells is known to be one such arrhythmogenic factor, the mechanisms underlying the emergence of tissue level arrhythmias from cellular level EADs is not fully understood. Another known arrhythmogenic condition is fibrosis of cardiac tissue that occurs both due to aging and in many types of heart diseases. In this paper we describe the results of a systematic insilico study, using the TNNP model of human cardiac cells and MacCannell model for (myo) fibroblasts, on the possible effects of diffuse fibrosis on arrhythmias occurring via EADs. We find that depending on the resting potential of fibroblasts (VFR), M-F coupling can either increase or decrease the region of parameters showing EADs. Fibrosis increases the probability of occurrence of arrhythmias after a single focal stimulation and this effect increases with the strength of the M-F coupling. While in our simulations, arrhythmias occur due to fibrosis induced ectopic activity, we do not observe any specific fibrotic pattern that promotes the occurrence of these ectopic sources

    A K<sub>ATP</sub> channel opener inhibited myocardial reperfusion action potential shortening and arrhythmias

    Get PDF
    Low concentrations of certain K&lt;sub&gt;ATP&lt;/sub&gt; channel openers have been reported to exert a moderate inhibitory effect on arrhythmias during post-ischaemic early myocardial reperfusion, but the accompanying effects on the time course of changes in action potentials in intact hearts have not yet been studied. We report that in rat isolated hearts, reperfusion following 10 min of regional no-flow ischaemia was associated with both an acute, marked, but transient, shortening of ventricular repolarisation (by 63%) during reperfusion, and a high incidence (90%) of ventricular tachyarrhythmias. The K&lt;sub&gt;ATP&lt;/sub&gt; channel opener Ro 31-6930 [2-(6-cyano-2,2-dimethyl-2H-1-benzopyran-4-yl)-pyridine 1-oxide], delivered prior to ischaemia at a relatively low concentration (0.5 μM), significantly reduced the incidence and duration of reperfusion arrhythmias, and prevented the associated acute action potential shortening during reperfusion, each in a glibenclamide (1 μM)-sensitive manner (P&lt;0.05, &lt;i&gt;n&lt;/i&gt;=10–15 hearts). This was associated with a moderate and non-arrhythmogenic action potential shortening during ischaemia (a potentially “cardioprotective” effect). However, these data highlight the potential harm these drugs may cause, since a higher concentration of Ro 31-6930 caused marked shortening of action potentials and significant pro-arrhythmia during ischaemia
    • …
    corecore