
RESEARCH ARTICLE

Effects of early afterdepolarizations on

excitation patterns in an accurate model

of the human ventricles

Enid Van Nieuwenhuyse1*, Gunnar Seemann2,3, Alexander V. Panfilov1,

Nele Vandersickel1

1 Department of Physics and Astronomy, Ghent University, Ghent, Belgium, 2 Institute for Experimental

Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany, 3 Faculty of Medicine,

University of Freiburg, Freiburg, Germany

* enid.vannieuwenhuyse@ugent.be

Abstract

Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before

completion of the repolarization phase, which can result in ectopic beats. However, the

series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhyth-

mias are not well understood. Therefore, we aimed to investigate the influence of this single

cell behavior on the whole heart level. For this study we used a modified version of the Ten

Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D

ventricle model including realistic fiber orientations. To increase the likelihood of EAD forma-

tion at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid

delayed rectifier Potassium current and raising the L-type Calcium current. Varying these

parameters defined a 2D parametric space where different excitation patterns could be clas-

sified. Depending on the initial conditions, by either exciting the ventricles with a spiral for-

mation or burst pacing protocol, we found multiple different spatio-temporal excitation

patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a

meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral

fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D

generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed

waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Cal-

cium waves at the same time and in same tissue settings. In the parameter region governed

by the B pattern, single cells were able to repolarize completely and different (spiral) waves

chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibril-

lation type A patterns consisted of multiple small rotating spirals. Single cells failed to repo-

larize to the resting membrane potential hence prohibiting the Sodium channel gates to

recover. Accordingly, we found that Calcium waves mediated these patterns. Third, a further

reduction of the RR resulted in a more exotic parameter regime whereby the individual cells

behaved independently as oscillators. The patterns arose due to a phase-shift of different

oscillators as disconnection of the cells resulted in continuation of the patterns. For all pat-

terns, we computed realistic 9 lead ECGs by including a torso model. The B and A type pat-

tern exposed the behavior of Ventricular Tachycardia (VT). We conclude that EADs at the
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single cell level can result in different types of cardiac fibrillation at the tissue and 3D ventri-

cle level.

Introduction

Cardiac contraction is initiated by electrical waves of excitation. Interruption of the normal

spreading of the excitation waves, can result in cardiac arrhythmias or sudden cardiac death

(SCD) [1]. As SCD is one of the main causes of death in the industrialized world, understand-

ing the mechanisms of cardiac arrhythmias is of great interest in cardiology. One of these

mechanisms is linked to the abnormal time course of the action potential (AP) of the cardiac

cells called early afterdepolarizations (EAD). An EAD is defined as a reversal of AP before the

completion of its repolarization phase [2–4] and emerges due to an imbalance of outwards

and/or inwards oriented currents in the plateau phase of the AP. This imbalance can be the

result of genetic defects such as the long QT syndrome [5–7], they can appear due to the action

of pharmacological agents [8, 9], or they can be present in several other conditions [10, 11]. So

far, EADs have been widely studied at the single cell level both experimentally and theoretically

[10, 12]. However, the most important question is how EADs result in cardiac arrhythmias

and it is important to study them at the tissue and 3D ventricles level. Studies in 2D have

shown that EADs can affect spiral wave dynamics [13–15] as they can cause meandering of the

spiral wave. It was also shown that EADs can cause purely focal activity [16–20]. In [21, 22] 2D

complex behavior due to EADs was studied in two different human ventricular models,

namely the Ten Tusscher Panfilov (TP06 [23, 24]) and the Ohara-Rudy model (ORD [25]

model) for a wide range of parameter values. Also in 2D heterogeneous tissue, EADs were

investigated [26–30].

However, EAD dynamics at the 3D ventricles was not yet properly addressed. In [16], spa-

tial EAD activity was studied in an anatomical model of a homogeneous rabbit heart. It was

found that EADs lead to ectopic activity whereby EADs locally cluster. These local clusters ran-

domly move in time and space thereby creating an ECG similar to that of polymorphic ventric-

ular tachycardia (PVT). EADs in anatomical models of human heart were presented only in

two papers. First, in [31] islands of M-cells were added based on sizes of Glukov et al. [32]. The

authors modeled conditions of the LQT3 syndrome by enhancing the late Sodium current and

obtained ECG similar to PVT of the Torsade de Pointes (TdP) type produced by a moving spi-

ral wave. In [30] the effect of EAD-prone heterogeneities was studied. It was found that reduc-

ing the RR in these heterogeneities in comparison with the surrounding tissue can lead to

ectopic activity in these heterogeneities, whereby these sources can be competing, leading to

TdP like ECGs. However, so far, there were no studies aiming to quantify and classify possible

excitation patterns which can occur at the 3D ventricles level in wide range of parameters, as

was done in 2D in [21, 22]. The patterns at the 3D ventricles level may differ substantially from

those in 2D as wave propagation in the 3D ventricles is a 3D process which occurs in aniso-

tropic tissue and has certain spatial limitations.

The aim of this paper was therefore to perform a detailed study of excitation patterns in the

TP06 model in an anatomical model of the human heart without electrophysiological hetero-

geneities. Similarly as in [21], we have induced EADs by gradually reducing IKr and increasing

ICaL, and performing a full 2D-parametric study. We also simultaneously computed realistic

9-lead ECGs in a torso model [33], which was used for the interpretation of the results.

Effects of EADs on excitation patterns in an accurate model of the human ventricles
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Materials and methods

Mathematical model for human endocardial ventricular tissue in 3D

For this study, we used a modified version of the TP06 model for human ventricular endocar-

dial cells [23, 24]. The single cell membrane potential is described by the ordinary differential

equation:

dVm

dt
¼ � Iion � Istim ð1Þ

where Vm is the voltage, t is time, Iion the sum of all trans membrane ionic currents in units of
pA
pF, Istim the externally applied stimulus current in units of

pA
pF and Cm the capacitance per unit of

surface area. Iion is given by:

Iion ¼ INa þ IK1 þ Ito þ IKr þ IKs þ ICaL þ INaCa þ INaK þ IpCa þ IpK þ IbCa þ IbNa ð2Þ

where INa is the Sodium current, IK1 the inward rectifier Potassium current, Ito the transient

Potassium outward current, IKr the rapid delayed rectifier Potassium current, IKs the slowly

delayed rectifier Potassium current, ICaL the L-type Calcium current, INaCa the Sodium-

Calcium exchanger current, INaK the Sodium-Potassium exchanger current, IpCa and IpK Cal-

cium and Potassium plateau currents and IbCa and IbNa Calcium and Sodium background cur-

rents. The behavior of these channels is based on a wide range of human-based

electrophysiological data. Specific details can be found in [23, 24].

The two currents which we varied in this study were ICaL and IKr. In the modified version of

the TP06 model, we implemented a twofold decrease of the f-gate time constant of the imple-

mentation of ICaL. This resulted in an increased probability of EAD formation [21, 34]. In

order to compensate for this change, we increased the default TP06 value of the maximal con-

ductance GCaL by 2, resulting in a single cell AP comparable to the original model. Hereafter,

our adapted model is called the default one.

The spatial-temporal evolution of the membrane potential Vm in a 3D tissue was governed

by the partial-differential equation (PDE)

@Vm

@t
¼ � Iion þ

X3

i;j¼1

@

@xi
Dij
@Vm

@xj
ð3Þ

The conductivity tensor Dij was calculated from the fiber orientation field using the formula

Dij ¼ Dldij þ ðDl � DtÞaiaj ð4Þ

where Dl ¼ 0:00154 cm2

ms accounts for the conduction in the longitudinal direction. We used a

2: 1—ratio for the conduction velocity anisotropy, based on experiments ([35]) and hence a

ratio of 4: 1 for Dl: Dt. With these values we obtain a maximum planar CV of around 70 cm/s

in the fiber direction, in agreement with experimentally reported values of the conduction

velocity in human ventricular tissue [35]. Based on these parameters and the integration of

Eq 3, we find a spatial constant around 555μm which is consistent with experimental values

[36]. Also, using this model, we simulated a pattern of normal propagation. We excited the tis-

sue in locations corresponding to regions of exit of the wave from the Purkinje system to the

ventricles [37]. The results are shown in S1 Fig. We can see that total excitation of the 3D ven-

tricles required 0.096 s which corresponds to experimentally found duration of the QRS com-

plex. Our results correspond to physiological changes by reducing/blocking the IKr current by

Effects of EADs on excitation patterns in an accurate model of the human ventricles
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e.g. Dofetilide, a IKr blocker. Large changes in increase of ICaL can be achieved by applying Iso-

proterenol, which can enhance the L-type Ca current in the range from 1.5- to 8-fold, see [34].

Numerical methods

To integrate the PDE (Eq 3), all calculations were run on a NVIDIA-CUDA GPU. We used a

finite difference numerical integration method with a time step of 0.02 ms and a space step of

400 μm. In most of our simulations we used a spatial discretization step of 0.4 mm. Although

such spatial resolution was previously used in several studies involving anatomically accurate

modeling [38, 39] it is rather coarse for most 2D studies involving ionic models of cardiac tis-

sue [40]. Therefore, in order to test the effect of the spatial discretization, we performed addi-

tional simulations for the A, B and O patterns with a space step of 200 μm and compared the

results with a space step of 400 μm in an anisotropic wedge preparation. The wedge repre-

sented a rectangular slab of cardiac tissue with dimensions 8 x 4 x 4 cm. We also included real-

istic fiber orientations from -60 degrees at the epicardium to 60 degrees at the endocardium.

The results of these simulations for representative values of the parameters are shown in the

S2 Fig. We see that the qualitative pattern of excitation for the spatial resolution of 0.2 mm and

0.4 mm are similar. In addition, also the temporal Fourier transform which was used as the

main determinant to distinguish different regimes, was similar for 0.2 mm and 0.4 mm spatial

resolution for both A and B patterns. Finally, we also tested the existence of phase waves, and

we found the same result for 0.2 mm and 0.4 mm spatial resolution for all A, B and O patterns.

Therefore, we conclude that our main results are not likely to be affected by using larger spatial

discretization step. All codes were programmed in c, c++ and Python. Similar to [21], 2 proto-

cols to induce the excitation patterns were used: burst pacing (multiple S1 pacings) and an

S1S2 protocol for the creation of a spiral (scroll) wave in the 3D ventricles [41]. First, for the

burst pacing protocol, each time a certain point was below -60 mV a new S1 pulse was applied,

this during the first 4 s of the simulation. Hence, the pacing frequency was determined by the

AP duration (APD). The amount of paces in these 4 s varied depending on the parameter val-

ues. The probed parameter range determined by a 6.0- to 14.0-fold of the default value of GCaL

corresponding with a physiological range of 3–7 times normal GCaL and a 0.0- to 1.0-fold of

the default value of GKr. Afterwards, another 2 s of each parameter value was simulated to let

the patterns evolve without further pacing. Second, for the same parameter range we initiated

a scroll wave with the S1S2 protocol. Sometimes the protocol failed and we created a spiral by

slowly changing the parameters from neighboring parameters which were successful for the

S1S2 protocol. In this way, we were able to cover the desired parameter range. Each S1S2 pat-

tern was simulated for 5s.

Filament detection with phase mapping

In conditions with a normal AP, the location of the filament or a scroll wave could be defined

by intersection of a certain isopotential line and the zero derivative line [42, 43]. However, in

this study, APs were often disturbed by EADs, making the AP derivative and the isovoltage

line ambiguous. To find filaments for EAD disturbed tissue, we used the techniques presented

in [44–47]. The basic idea was to find the phase singularities in the tissue. In order to create

the phase space in which we could find the topological defects, or singularities, we created a

second time series namely the Hilbert transform of the AP. At first, we smoothed our data by

using a 3rd order polynomial and a 102 ms time frame. Then, we calculated the relative min-

ima and maxima of the smoothed AP and connected those points with a piecewise cubic Her-

mite polynomial. The average of those two data sets was then subtracted from the AP in order

to get an AP course around a more localized equilibrium. From this modified AP, we

Effects of EADs on excitation patterns in an accurate model of the human ventricles
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calculated the Hilbert transform. Due to these modifications on the AP, angles could be

uniquely defined in the EAD-regions, as the equilibrium of both the Hilbert transform and the

modified AP now plays the role of attractor in phase space determined by AP and Hilbert

transform. The time-course of this angle was equal to the Hilbert transform and values ranged

from -π to π. To determine the singularities with the convolution kernels (Sobel operator) pre-

sented in [44–46], we sliced the 3D ventricles in 3 orthogonal directions every other 5 node

points of the 3D ventricles. Each of these sliced results was combined to cover the 3D ventricles

and every point differing from zero was considered as a phase singularity. The location of the

filaments could change over time, and hence the points were followed. As additional con-

straint, we defined it as a true filament only if a collective of points lived longer than one circu-

lation (200ms). The singularities were detected in the last second of the simulation but were

only followed in the interval [200ms, 800 ms] of this second to avoid any edge-effects of the

time series manipulations.

ECG calculations

ECGs were calculated using the lead field method. For this, a lower resolution tetrahedral

mesh of the 3D ventricles embedded in the torso was used. Independently, all elements of the

tetrahedral 3D ventricles mesh were set to a value of 1 and a field calculation based on the bi

domain theory was performed on the torso (details can be found in [33, 48]). The result for

each electrode position was stored in a vector. All resulting solution vectors are than combined

into the N x M lead field matrix consisting of N 3D ventricles elements and M lead positions.

For the simulations, the source component based on the gradient of the trans membrane volt-

age just have to be interpolated onto the lower resolution tetrahedral mesh and multiplied by

the lead field matrix to generate the ECG on the given lead positions.

Results

To generate the excitation patterns, we used two stimulation protocols: 1) the burst pacing

protocol in which complex patterns are self induced due to tissue properties and 2) the S1S2

stimulation protocol where an initial spiral wave was setup by a proper choice of initial condi-

tions. For both initial conditions, RR was gradually changed by variation of GCaL and GKr. In

this parameter regime, we observed several types of excitation patterns which are characterized

in detail in the next section. Here we just list them. For the burst pacing protocol, we found 4

different excitation patterns: spiral fibrillation type B (B), spiral fibrillation type A (A), an oscil-

latory excitation (O) and a spiral breakup region (SB), see Fig 1. If no EADs emerged, resulting

in no pattern formation, excitation ended (EE) after the last applied stimulus. In addition, for

the S1S2 protocol, we also found stable spirals (S) and meandering spirals (MS). In this paper

however, we focused on the B, A and O excitation patterns. S, MS and SB patterns will be

addressed in future study. The established patterns of excitation did not depend on the initial

conditions. In case after the 5 (s1s2) and 6 (burst pacing) seconds of simulation the patterns

still differed, we created longer simulations of 10 seconds. We observed that at end of our 10

second simulations the excitation patterns created by s1 pacing and s1-s2 stimulation for the

same parameter values were similar in visual examination and produced the same temporal

Fourier transform for B and A excitation patterns. Similar result was also shown previously in

[21] for 2D simulations.

Type of the excitation patterns

The three main excitation patterns which were considered in this paper are spiral fibrillation

type B, spiral fibrillation type A and the oscillatory type O. In all cases, upon reduction of RR,

Effects of EADs on excitation patterns in an accurate model of the human ventricles
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we first obtained B, then A, and then O excitation patterns (see Fig 1). Starting from a simula-

tion in a certain parameter range, we noticed that the development of the excitation patterns

started in the intense paced regions, at the edge of the applied S1 pulse or in the core of the

scroll wave. After further simulation, patterns spread across the 3D ventricles. Fig 2 illustrates

the voltage patterns from the endo- and epicardial view and the opening of the Sodium and

Calcium channel gates. To illustrate the opening of the gates of the Sodium current, this cur-

rent was not only plotted for a time instance, but also the integrated current is shown. Also, for

each pattern, a typical AP is drawn. The B type patterns were complex spatial-temporal pat-

terns sustained by many short-lived spirals, which did complete a 360 degree rotation and cha-

otic waves which burst onto each other. In normal conditions, excitation waves in cardiac

tissue are solely driven by Sodium mediated waves. However, from Fig 2 it was clear that the

3D ventricles was in a bi-excitable state where waves were not only mediated by Sodium, but

also by Calcium [19]. During the AP, the voltage still reached -60 mV (black line), which is

approximately the threshold for the Sodium channels to recover. However, the EADs did not

reach this threshold and therefore created purely Calcium-mediated waves. An illustration of

the B excitation patterns is shown in S1 Movie. The activation of the Sodium channels is illus-

trated in S2 Movie. Second, the spiral fibrillation type A was less chaotic than the B pattern,

due to multiple small rotating spirals and waves which individually excited smaller parts of the

3D ventricles (S3 Movie). The spiral waves were the result of multiple wave breaks and even if

the first break appeared in a complete different region of the 3D ventricles, the final state for

all patterns in the category of A were similar. Depending on the position in the parameter

domain of A, spirals were smaller in size (close to the parameter values of B) or larger (close to

the parameter values of O). Therefore, more spirals were visible at the B side of the parameter

range. Also compared to the B patterns, the 3D ventricles tissue in between the spirals

Fig 1. Results upon homogeneously reducing repolarization reserve in the 3D model. We reduced IKr and

increased ICaL for the two different protocols: burst pacing (left) and spiral wave induction (right) and observed

the different resulting excitation patterns. We found 6 different possible types: spiral fibrillation type B (B), spiral

fibrillation type A (A), Oscillatory type (O), spiral break-up (SB), meandering spiral (MS) and non-sustained

patterns (EE, excitation ended). Background colors refer to the single cell results. Yellow represents normal

action potential. Red denotes action potentials with EADs but in which the cells still recover to resting state

potential. Blue are regions in which single cells fail to repolarize and oscillate around a high voltage equilibrium.

https://doi.org/10.1371/journal.pone.0188867.g001
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repolarized less efficient, as could be seen by the less intensive blue colored regions in the A

patterns versus the B patterns. Therefore, the waves for the A excitation patterns were solely

mediated by Calcium-waves and thus the patterns are not formed due to the normal mecha-

nisms of excitation in which the Sodium channel gates open, followed by normal APs. Hence,

the Sodium and integrated Sodium-current (see Fig 2) showed no activity. Also, typical in the

A patterns was the alternating AP formed by small and large EADs. Finally, the O type pat-

terns have no repolarizing cells. Each AP oscillates around a higher state equilibrium resulting

in a very small amplitude of the voltage. These oscillations were very regular, in contrast to the

alternating APs of the B and A patterns. The O type patterns are constructed by repetitive

Fig 2. Electrophysiological behavior of different EAD regimes. In the first three rows, we illustrated the different

electrophysiological features of the three patterns. Parameter values for this figures are set to 0.6 * GKr and 4.0 * GCaL for the B-type

patterns, 0.6 * GKr and 6.0 * GCaL for the A-type patterns and 0.6 * GKr and 6.5 * GCaL for the O-type patterns. The voltage is shown

both for the epi- and endocardial view of the 3D ventricles. Next, the activity of the Calcium and Sodium channel gates, as well as the

integrated Sodium channel activity are presented. The bottom panel illustrated the corresponding APs for each pattern during the last

two seconds of the burst pacing simulation.

https://doi.org/10.1371/journal.pone.0188867.g002
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passing of the S1 pulse as if it is applied multiple times. However, this is the result of the oscil-

lating behavior of the cells as the threshold for a second pulse, S1 or S2, was never reached. A

movie of the oscillatory pattern is shown in S4 Movie. Qualitatively, we found the same fea-

tures as in 2D [21]. A quantitative analysis of the patterns was presented in the next sections.

In all cases, the formation of the patterns was due to EADs. Illustrated in Fig 3, we showed

the formation of B patterns for both protocols (Panel 1 and Panel 2). For the S1S2 protocol

(Panel 1, parameter values 2.1�GCaL and 0.0�GKr), the formation of additional EAD waves is

shown at the locations marked by (1) and (2). First, indicated by (1), a local EAD cluster

emerged in the tissue (t = 100 ms). As a result of the interaction of the original spiral wave with

these synchronized EADs, we saw the formation of an additional spiral, moving in the opposite

direction (t = 400 ms). At a different location in the 3D ventricles, marked by (2), another clus-

ter of EADs emerged clearly at t = 400 ms. Due to the asynchronous behavior of these EADs

Fig 3. Formation of new sources due to EADs. Panel A: Dynamics of a spiral wave after changing the parameter values from

0.0 * GKr, 2.0 * GCaL to 0.0 * GKr, 2.1 * GCaL. At the relative time instance of 100 ms, an EAD region is formed (denoted with (1)). A

second EAD region emerged at the relative time instance of 400 ms (2). Both EAD regions disturbed the spiral wave dynamics and

prohibited normal continuation of the wavefront. At 800 ms, the EAD regions created new sources of wave-formation and the B

excitation pattern started to form gradually. Panel B: Formation of an EAD region at the back of the propagating wavefront during the

burst pacing simulation at 2120 ms (3). The inserted graphs show electrical activity at points (1), (2) and (3).

https://doi.org/10.1371/journal.pone.0188867.g003
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on the spiral wave, the spiral started to break up in this region. Similarly, in the burst pacing

protocol, see Fig 3 (parameter values 0.6 � GKr and 4.0 � GCaL), we saw formation of multiple

EAD waves in the tail of the propagating wave (marked by (3)). APs in this tissue clearly

showed EADs with large amplitudes. The time instance at t = 2120 ms was shown and denoted

with the vertical line in the graph. Previous small EADs (e.g. at t = 1250 ms) did not form such

EAD excitation waves. As in the case of the S1S2 protocol, interaction of the EAD waves with

the initial waves formed new short lived spirals leading to the B pattern. Similarly, develop-

ment of A and O patterns was always the result of the interaction of primary waves with EADs.

Even though we homogeneously reduced the RR across the model, certain places were more

likely to develop EADs and not all EADs emerging in the tissue resulted into wave breaks.

Pattern characteristics

In the next sections, we characterized the observed patterns using several approaches.

Fourier transform. The first analysis we applied was the average Fourier transform. To

globally characterize the pattern, we computed the temporal Fourier transform of the AP of

2983 equidistant mesh nodes. The average Fourier transform for the burst pacing protocol is

shown in Fig 4. The S1S2 protocol resulted in qualitatively similar graphs. For O excitation

patterns (graph (3)), the β-peak was at 5 Hz corresponding to the period of 200 ms. For B exci-

tation patterns, we saw prominent peaks at 2 Hz (α) and 4 Hz (β) corresponding to a temporal

period of 250 and 500 ms. These periods agree with the average distance between two repolar-

ized APs and two smaller oscillations of the EADs shown in Fig 1 (lower panel, graph (1)).

These results resemble strongly the results of [21]. When the α-peak of the average Fourier

transform was more pronounced then the β-peak was classified as pattern B. This is because

the α-peak corresponds to the large amplitude AP characteristic of B patterns (Fig 1, lower

panel, graph (1)).

Fig 4. The average Fourier transform of transmembrane potential for the different activation patterns. The graph shows the

average Fourier transform intensity for recordings at 2983 points during the last second of the simulations. Excitation pattern of type B

was characterized by two main peaks: the larger peak β (agreeing with average distance between the APs) and smaller peak α
(agreeing with average distance between the EADs). For excitation pattern of type A, the α peak became more pronounced than the

β peak. For the excitation pattern O, the Fourier transform showed a clear α-peak at 5 Hz. Parameter values for above graphs are

(0.6 * GKr, 4.0 * GCaL) for the B, (0.6 * GKr, 6.0 * GCaL) for the A and (0.6 * GKr, 6.5 * GCaL) for the O excitation pattern.

https://doi.org/10.1371/journal.pone.0188867.g004
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Analysis of the AP. As shown in Fig 2, the main difference between A and B excitation

patterns is the absence of the Sodium current. Sodium is inactivated as the diastolic potential is

above the inactivation potential for Sodium channel gates which is approximately at −60 mV.

Hence to quantify the type of waves in the patterns, we introduced a statistical index η given

by:

Z ¼
x

2n
ð5Þ

with x, how often the AP passed the voltage line of (-60 ± 1 mV) during the last second of the

burst pacing simulations in the 2983 equidistant mesh nodes of the 3D ventricles. We divided

the result by 2 to take into account the upstroke and down stroke of one AP. If at each point,

the AP went below −60 mV, η corresponded with
timeframe

period . For example for 1 cell during 1 sec

simulation and 5 full normal APs, ηwas equal to 5. However for B patterns which completed

repolarization, a lower value of η indicated that not all cells are stimulated by Sodium mediated

waves and hence patterns also emerged due to Calcium mediated activation. A decrease of η
hence indicated the transition between a bi-excitable state, in which both Calcium and Sodium

waves mediated the pattern to a pure Calcium driven pattern. The overall data presented in

Fig 5 showed indeed a gradually change from B to A with a decrease in the RR (by either

increase of Calcium, or decrease of Potassium). Parameter values of O excitation patterns, pre-

sented in Fig 1, corresponded with a statistical average η of zero. For completeness, we present

the standard deviation on the statistical average in S1 Table.

Fig 5. Statistical index η as a function of ICaL for different values of IKr. The calculation of η for a threshold of -60 mV and the last

second of the burst pacing simulation. Different colors represent results for different values of IKr. The decrease of η corresponded to

the gradual shift of activity from Sodium to Calcium driven waves. A value η = 0 corresponds to the O-type excitation patterns, as is

illustrated by the dotted box. The solid line separates the B patterns from the A patterns.

https://doi.org/10.1371/journal.pone.0188867.g005
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Phase mapping. Apart from the AP features, which were visible at the cell level, the spatial

dynamics of the excitation patterns differed significantly. B type patterns were more chaotic

and spiral waves did not finish a 360 degree rotation. A patterns however, showed multiple spi-

rals with a clearly defined core. We counted the number of these (Calcium mediated) spirals

with the help of phase-mapping and tracked the found singularities in time. We calculated the

number (#) and lifetime (τ) of the filaments (A excitation patterns, burst pacing protocol, last

second of the simulation). The results were shown in both Fig 6 and in S2 Table. In Fig 6, we

noticed that for all values of IKr the lifetime of the spirals increased while the number of spirals

decreased with an increase of GCaL. As increase in GCaL decreases RR, we concluded that the

reduction of RR increased the stability of the pattern and reduced its complexity.

Fig 6. Number and lifetime of spirals in the A excitation patterns. The top panel illustrates the localization of the A excitation

patterns in 2D parametric space. The colors correspond to the single cell simulations of [21]: yellow denotes AP with complete

repolarization, red denotes AP with EADs but where repolarization still appears and blue denotes AP where there is no repolarization

and the AP oscillates around a higher equilibrium state. (1), (2) and (3) correspond to A excitation patterns for GKr equal to 0.1, 0.5

and 1.0 times default, respectively. In the left bottom panel, the lifetime τ of the filaments is illustrated. For each value of GKr an

increase of lifetime is visible with an increase of GCaL. The right bottom graph illustrates the corresponding decrease of the amount of

spirals when GCaL is increased at fixed GKr.

https://doi.org/10.1371/journal.pone.0188867.g006
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Phase waves. As in [21], we disconnected the tissue along orthogonal planes to distinct

between A and O patterns. These disconnections or impermeable walls prohibited diffusion

between neighbouring cells hence exposing the nature of the waves: phase waves or real waves.

Real waves are defined as conventional activation waves. They arise due to the interplay of the

excitability of the tissue and diffusion. Real waves travel with a velocity proportional to the

square root of the diffusion constant. At impermeable boundaries they are absorbed and do

not go through regions in which the tissue is in a refractory state [49]. Phase waves however

are determined by the pseudo-traveling character they possessed and often occur in oscillatory

media [49]. They do not depend on the diffusion constant and are not hindered by imperme-

able boundaries. The results of the simulations are shown in Fig 7. We saw that for the B and A

patterns, the excitation waves were hindered by the walls and eventually disappeared, and thus

were mediated by normal waves. However, as expected, in the oscillatory regime, the walls did

not affect wave propagation, and therefore patterns were mediated by phase waves. These sim-

ulations were run on the final state of the burst pacing and S1S2 protocol (after 6s and 5s simu-

lation time, respectively).

Including a torso model: Interpretation of the patterns using ECGs

After classification of the patterns, we calculated the realistic 9-lead ECGs. We simulated the

patterns for 20 seconds starting from the final state (after 6 or 5 seconds for burst pacing or

S1S2, respectively). With a gradual increase of GCaL, the amplitude of the ECG signal decreased

in accordance with the decreasing scale of APs. For comparison, we plotted the ECG II lead

signal for the stable spiral together with the ones for the B, A and O excitation type in Fig 8.

These patterns corresponded to parameter values of 1.0 � GKr and 0.5 � GCaL, 0.6 � GKr and

4.0 � GCaL, 0.6 � GKr and 5.5 � GCaL and 0.6 � GKr and 6.5 � GCaL, respectively. First, we saw that

a stable spiral gave rise to a VT, as is well known. Also the B type resembled a PVT while the A

Fig 7. Phase waves versus real waves. Decoupling of the tissue exposed the real wave nature of B and A type pattern, while the O

type patterns were clearly not effected by the impermeable walls, and are therefore consistent of phase waves. The indicated times

denote simulation time after applying the impermeable walls.

https://doi.org/10.1371/journal.pone.0188867.g007
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type was clearly related to VF. The oscillatory pattern gave a regular ECG, due to the regular

nature of all its APs. All 9 ECG leads for the B, A and O patterns were shown in S4, S5 and

S6 Figs.

Discussion

This study has focused on different spatial patterns due to EADs on an anatomically accurate

model of the human ventricles. It considered homogeneous ventricles with single cell equa-

tions of the Ten Tusscher Panfilov model [23, 24]. EADs were induced by reduction of the

repolarization reserve by either lowering the rapid delayed rectifier Potassium current IKr

and/or raising the L-type Calcium current ICaL. This created a 2D parametric space in which

the different patterns were located. We generated the patterns with two different protocols:

burst pacing and S1S2 pacing. As in 2D [21], we found three different types of patterns: spiral

fibrillation type B, spiral fibrillation type A and an oscillatory pattern. The B pattern showed

bi-stable waves, similarly to [19], indicating that the waves were Calcium- and Sodium medi-

ated and co-existed in the same medium. This pattern was chaotic, comprising multiple short-

lived spiral waves, illustrated in S1 Movie. The waves were actively propagating, as imperme-

able walls absorbed the waves. The average temporal Fourier transform of multiple mesh

nodes of the ventricles showed waves of large periods around 500 ms, corresponding to the

period of one complete de- and repolarization of one cell. Also a characteristic frequency of

4 Hz was found, corresponding to the 250 ms period generated by the EADs. This period devi-

ates strongly from the period found in [19]. In this study, the bi-excitability of the tissue

showed both Sodium and Calcium waves maintaining the spiral. In the Calcium mediated

core of that spiral, the period corresponded to around 500 ms.

Fig 8. Lead II of the ECG for the patterns of the stable spiral (1.0 *GKr, 0.5 *GCaL), B (0.6 *GKr, 4.0 *
GCaL), A (0.6 *GKr, 5.5 *GCaL) and O (0.6 *GKr, 6.5 *GCaL) excitation patterns. The stable spiral produced

a typical VT ECG. B excitation patterns produced ECGs resembling VT whilst A excitation patterns were clearly

VF. The oscillatory pattern showed a regular ECG with small amplitude, due to the regularity of the APs.

https://doi.org/10.1371/journal.pone.0188867.g008
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The A type was formed due to the interaction of multiple rotating spirals. In contrast to the

patterns of B, the A waves were mostly mediated by Calcium waves. Similarly, they were

absorbed by the impermeable walls. The probability of complete re-polarization after multiple

small EADs in the AP of the cells decreased upon reduction of RR. Also, the behavior of the

spirals changed when repolarization reserve was decreased: it resulted in less number of spirals

and their longer life-time. Finally, the oscillatory pattern in contrast to waves mediating the B

and A type, were phase waves. Impermeable walls did not hinder the observed wave dynamics.

We have also performed the calculation of realistic 9-lead ECGs. Here, we found that none of

the 3 described patterns showed the typical Torsade de Pointes (TdP) characteristics with the

common twisting of the ECG around the iso-electrical baseline [50]. The common TdP like

varying amplitude was only seen in the meandering spiral MS just before the spiral started to

break up. This interesting phenomenon will however be the topic of a subsequent study. For

current patterns, ECG signals showed the typical form of (p)VT for the B excitation patterns

and a VF signal for the A excitation patterns. Accordingly with the decreased amplitude of the

AP, the amplitude of the ECG signal of A excitation patterns was remarkably reduced. The

oscillatory pattern is not likely to occur spontaneously due to homogeneous and highly abnor-

mal values of the adapted gates and according ECG signals did not correspond to realistic

recordings. However, this latter pattern can be interesting, as it can be possible that a small het-

erogeneity in the 3D ventricles is in the parameter range of this pattern. In that case, this het-

erogeneity will emit ectopic beats and in presence of multiple heterogeneities of this type, they

can have complex interactions with each other and form the mechanism of TdP, perpetuated

by ectopic beats [30].

Even though it is well established that EADs are associated with an increased arrhythmo-

geneity, only one study previously investigated the effects of EADs in a homogeneous 3D ven-

tricles [16]. However, the underlying single cell dynamics was represented by a rabbit

ventricular model. In [16] it was found that EADs can locally cluster to form islands of EADs

which were locally synchronized and emitted new waves. The pattern found in that study

showed similarities with the B pattern of our study and the ECG created by these patterns

resembled the ECG of PVT like our B excitation pattern. Different is however that those pat-

terns stopped spontaneously, what we did not observe in the current study.

Limitations

During this research we have only used the TP06 model of the human ventricular cardiac cell

in a 3D ventricles with a certain anisotropy. Also the 3D ventricles did not include electrophys-

iological heterogeneities. It would therefore be interesting to study this further with different

cell models.

Secondly we remark that we only studied the patterns for homogeneous tissue. However,

realistic cardiac tissue is heterogeneous, with different types of cells like epi, endo and mid-

myocardial cells. The effect of heterogeneities was partially studied in [30], where the role of

small sized heterogeneities similar to those found experimentally by Glukhov et al. [32] was

investigated. In [30] it was found such heterogeneities can initiate ectopic activity and fibrilla-

tory patterns of excitation depending on the repolarization reserve at the heterogeneities and

at the surrounding tissue. However there were no detailed studies of effects of gradient hetero-

geneities on the organization of the excitation patterns in EAD prone tissue. it would be inter-

esting to perform such studies and investigate if presence of such heterogeneities will result in

additional complexity of the excitation patterns. It would also be interesting to study how pres-

ence of EADs affects defibrillation of the arrhythmias [51, 52]. Also, as arrhythmias occur at

different heart rates, we could also investigate the pacing dependency of the patterns on the
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applied S1 pulse. However in 2D [21], this was not the case and the final patterns were qualita-

tively the same. Finally, we did not study the effect of the Purkinje-His system on the pattern

formation. However, as is well known, the Purkinje cells exhibit EADs more easily [53, 54] and

could therefore add another layer of complexity to the development of the established patterns.

This question is however beyond the scope of the current paper as we wanted to study types of

patterns in the most basicsetup of homogeneous systems. We also study developed patterns of

arrhythmias which occur after all transient processes. Because the Purkinje cells have longer

refractory period [53, 54] it is less likely that they will affect established excitation patterns,

however they may be important at the initial stage of arrhythmia onset.

Future study

Using the S1S2 protocol, we found in the parameter regions before the B type patterns started

meandering spirals and upon further raising the L-type calcium current, spirals which broke

up slightly into two competing spirals. EADs were responsible for the meandering and the

break-up. We will therefore investigate these interesting patterns and their behavior on the

ECG which might resemble the signals of TdP in a subsequent study.

Supporting information

S1 Table. Values including the standard deviation of the statistical index η as a function of

G‘
CaL for different values of G‘

Kr, see also Fig 4. We increased L-type calcium in the different

columns: G‘
CaL ¼ a � GCaL. Different rows denote a different G‘

Kr ¼ b � GKr .

(PDF)

S2 Table. Filaments lifetime and corresponding standard deviation in ms for the A excita-

tion patterns, see also Fig 5. We increased L-type calcium in the different columns:

G‘
CaL ¼ a � GCaL. Different rows denote a different G‘

Kr ¼ b � GKr .

(PDF)

S1 Fig. Simulated Sinus Rhythm (SR) in the 3D model of the ventricles. In this figure, we

see that total excitation required 96 ms in accordance with detected duration of the QRS com-

plex in patients.

(PDF)

S2 Fig. Comparison of excitation patterns for a spatial resolution dx = 0.4 mm and dx = 0.2

mm for parameter values representative for the B, A and O excitation pattern in the heart

wedge preparation. First, the excitation patterns look similar for both integration steps. Second,

the temporal Fourier transform for the B and A patterns show the same characteristic α and β
peaks, which were used to differentiate between the B and A excitation patterns of the ventricles.

The decoupling of the tissue along orthogonal planes, results in a continuation of excitation for

the O pattern and disappearance of excitation for the A (and B) excitation patterns.

(PDF)

S3 Fig. Pattern evolution with an increase of GCaL at fixed GKr. The complexity of the spa-

tio-temporal pattern increased due to the increase of GCaL from 2.0-fold to 7.0-fold. The

meandering spiral at 2.0-fold broke up and eventually resulted into an B pattern for GCaL = 2.5,

3.0 times default. Further increase resulted in a continuously changing pattern from B into A

(for GCaL = 3.5, 4.0, 4.5 times default) to O (for GCaL = 5.0–7.0 times default). The number in

the figure denoted the increase GCaL-value, while GKr = 0.

(PDF)
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S4 Fig. ECG of B excitation pattern. 9 out of the standard 12 ECG leads for the B excitation

patterns. Result of a 10 second simulation after the 6 seconds simulation time in which pat-

terns were created and evolved. The parameter values were set to G‘
Kr ¼ 0:6 � GKr and

G‘
CaL ¼ 4:0 � GCaL. The ECG shows the signature of VT.

(PDF)

S5 Fig. ECG of A excitation pattern. 9 out of the standard 12 ECG leads for the A excitation

patterns. Result of a 10 second simulation after the 6 seconds simulation time in which pat-

terns were created and evolved. The parameter values were set to G‘
Kr ¼ 0:6 � GKr and

G‘
CaL ¼ 5:5 � GCaL. The ECG shows the signature of VF.

(PDF)

S6 Fig. ECG of O excitation pattern. 9 out of the standard 12 ECG leads for the O excitation

patterns. Result of a 10 second simulation after the 6 seconds simulation time in which pat-

terns were created and evolved. The parameter values were set to G‘
Kr ¼ 0:6 � GKr and

G‘
CaL ¼ 6:5 � GCaL. The regularity of the ECG is explained by the regular oscillatory nature of

the single cells.

(PDF)

S1 Movie. Movie of the B excitation pattern. Voltage pattern of the B excitation pattern.

(OGV)

S2 Movie. Movie of the B-sodium gates. Illustration of the activation of the Sodium gates of

the B excitation pattern.

(OGV)

S3 Movie. Movie of the A excitation pattern. Voltage pattern of the A excitation pattern.

(OGV)

S4 Movie. Movie of the O excitation pattern. Voltage pattern of the O excitation pattern.

(OGV)
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