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Every sixth death in industrialized countries occurs because of cardiac arrhythmias like ventricular
tachycardia (VT) and ventricular fibrillation (VF). There is growing consensus that VT is associated
with an unbroken spiral wave of electrical activation on cardiac tissue but VF with broken waves,
spiral turbulence, spatiotemporal chaos and rapid, irregular activation. Thus spiral-wave activity
in cardiac tissue has been studied extensively. Nevertheless, many aspects of such spiral dynamics
remain elusive because of the intrinsically high-dimensional nature of the cardiac-dynamical system.
In particular, the role of tissue heterogeneities in the stability of cardiac spiral waves is still being
investigated. Experiments with conduction inhomogeneities in cardiac tissue yield a variety of
results: some suggest that conduction inhomogeneities can eliminate VF partially or completely,
leading to VT or quiescence, but others show that VF is unaffected by obstacles. We propose
theoretically that this variety of results is a natural manifestation of a complex, fractal-like boundary
that must separate the basins of the attractors associated, respectively, with spiral breakup and
single spiral wave. We substantiate this with extensive numerical studies of Panfilov and Luo-Rudy
I models, where we show that the suppression of spiral breakup depends sensitively on the position,
size, and nature of the inhomogeneity.

PACS numbers:

I. INTRODUCTION

The challenge of understanding the dynamics of spi-
ral waves in excitable media is especially important in
cardiac tissue where such waves are implicated in life-
threatening arrhythmias such as ventricular tachycardia
(VT) and ventricular fibrillation (VF)[1–7] . Anatomical
reentry because of conduction inhomogeneities in cardiac
tissue, and functional reentry[3], which result from wave
propagation around transiently inexcitable regions, are
crucial for the initiation of RS (a single rotating spiral
wave) and the initiation and maintenance of ST (spiral
turbulence with broken waves). But the precise ways in
which spiral waves are affected by obstacles in ventricular
tissue is still not clear[8]. Spiral waves form when waves
of excitation circulate around an anatomical obstacle[9].
However, Allesie et al [10] have shown that spiral-wave
formation can also occur with a functionally determined
heterogeneity in the tissue. The interaction of such a
wave with an anatomical obstacle can be quite complex
especially in the spatiotemporally chaotic state associ-
ated with spiral turbulence. Indeed, experiments with
obstacles in cardiac tissue have yielded a variety of re-
sults. For example, some experiments[11] report that
small obstacles do not affect spiral waves but, as the size
of the obstacle is increased, such a wave can get pinned to
the obstacle. Various other experiments have discussed
the role of an anatomical obstacle as an anchoring site for
spiral waves, which can lead to the conversion of ST into
RS [12–14]. Davidenko et al [15] have found that, when
they induced spiral waves in cardiac tissue preparations
“... in most episodes, the spiral was anchored to small

arteries or bands of connective tissue, and gave rise to
stationary rotations. In some cases the core drifted away
from its site of origin and dissipated at the tissue bor-
der.” Other studies have shown [16–19] that an obstacle,
in the path of a moving spiral wave, can break it and lead
to many competing spiral waves. Recent experiments by
Hwang et al [20] have suggested that multistability of
spirals with different periods in the same cardiac-tissue
preparation can arise because of the interaction of spiral
tips with small-scale inhomogeneities.

Conduction inhomogeneities in the ventricle include
scar tissues, resulting from an infarction, or major blood
vessels. Some theoretical studies of the effects of tissue
inhomogeneities have been carried out by using model
equations for cardiac tissue; however, they have not ad-
dressed the issues we concentrate on. The interaction
of an excitation wave with piecewise linear obstacles has
been studied by Starobin et al [21] to understand the role
of obstacle curvature in the pinning of such waves. Xie
et al [22] have considered spiral waves around a circular
obstacle and given a plausible connection of the ST-RS
transition to the size of the obstacle. Panfilov et al [23–
25] have shown that a high concentration of randomly
distributed non-excitable cells can suppress spiral break
up. Conduction inhomogeneities can also play a very im-
portant role in pacing termination of cardiac arrhythmias
[26]; in particular, it is easier to remove a spiral wave once
it is pinned to an obstacle, as described in Refs. [27, 28],
than to control a state with spiral-turbulence.

Here we initiate a study that has been designed specif-
ically to systematize the effects of conduction inhomo-
geneities in mathematical models for cardiac arrhyth-
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mias. Our work shows clearly that ST can be suppressed
or not suppressed by obstacles of different sizes depend-
ing on where they are placed. As we argue below, this
sensitive dependence on the sizes and positions of obsta-
cles must be a manifestation of a complex, fractal-like
boundary [29, 30] between the domains of attraction of
ST and RS. We also show that inhomogeneities in param-
eters, which govern ratios of time scales, lead to similar
results. The models and numerical methods used by us is
described in section II. Section III contains results; and
we end with a discussion in Section IV.

II. MODELS AND NUMERICAL METHODS

We use the Panfilov [31, 32] and Luo-Rudy I [35, 36]
models for cardiac tissue in our studies; the former is
well suited for extensive numerical studies because of its
relative simplicity; the latter, being realistic, allows us to
check that the results we obtain are qualitatively correct
and not artifacts of the Panfilov model.

The Panfilov model [31, 32] consists of two coupled
equations, one a partial differential equation (PDE) and
the other an ordinary differential equation (ODE), that
specify the spatiotemporal evolution of the scaled trans-
membrane potential V (denoted by e in Refs. [31, 32])
and the recovery variable g, into which this model lumps
all the effects of the different ion channels:

∂V /∂t = ∇2V − f(V )− g;
∂g/∂t = ε(V, g)(kV − g). (1)

The initiation of action potential is encoded in f(V ),
which is piecewise linear: f(V ) = C1V , for V < e1,
f(V ) = −C2V + a, for e1 ≤ V ≤ e2, and f(V ) =
C3(V−1), for V > e2. The physically appropriate param-
eters given in Refs. [31, 32] are e1 = 0.0026, e2 = 0.837,
C1 = 20, C2 = 3, C3 = 15, a = 0.06 and k = 3. The
function ε(V, g) determines the dynamics of the recovery
variable: ε(V, g) = ε1 for V < e2, ε(V, g) = ε2 for V > e2,
and ε(V, g) = ε3 for V < e1 and g < g1 with g1 = 1.8,
ε1 = 0.01, ε2 = 1.0, and ε3 = 0.3. As in Refs. [31, 32], we
define dimensioned time T to be 5 ms times dimension-
less time and 1 spatial unit to be 1 mm. The dimensioned
value of the conductivity constant D is 2 cm2/s.

In spite of its simplicity, relative to the Luo-Rudy I
(LRI) model described below, the Panfilov model has
been shown to capture several essential features of the
spatiotemporal evolution of V in cardiac tissue [31–34].
As in the LR I model the Panfilov model also contains
an absolute and a relative refractory period. The ways
in which spiral patterns appear, propagate and break up,
and the methods by which they can be controlled are very
similar in these models. To make sure that the quali-
tative features we find are not artifacts of the Panfilov
model we show explicitly, in illustrative cases, that they
also occur in the realistic Luo-Rudy I model, which is
based on the Hodgkin-Huxley formalism and takes into

account the details of 6 ionic currents (e.g., Na+, K+,
and Ca2+) and 9 gate variables for the voltage-gated ion
channels that regulate the flow of ions across the mem-
brane [35]. The concentration difference of the ions, in-
side and outside the cell, induces a potential difference of
approximately -84 mV across the cell membrane in the
quiescent state. Stimuli, which raise the potential across
the cell membrane above -60 mV, change the conductiv-
ity of the ion channels and yield an action potential that
lasts typically for about 200 ms. Once an action potential
is initiated there is a refractory period during which the
same stimulus cannot lead to further excitation. Single
cells in the Luo-Rudy model are coupled diffusively; thus
one must solve a PDE for the transmembrane potential
V ; the time evolution and V dependence of the currents
in this PDE are given by 7 coupled ordinary differential
equations [35, 36] which we give in the Appendix.

We integrate the Panfilov model PDEs in d spatial
dimensions by using the forward-Euler method in time
t, with a time step δt = 0.022, and a finite-difference
method in space, with step size δx = 0.5 and five-point
and seven-point stencils, respectively, for the Laplacian
in d=2 and d=3. Our spatial grids consist of square
or simple-cubic lattices with side L mm, i.e., (2L)d grid
points; we have used L=200. Similarly for the LRI model
PDEs we use a forward-Euler method for time integra-
tion, with δt = 0.01 ms, a finite-difference method in
space, with δx = 0.0225 cm, and a square simulation
domain with 400 × 400 grid points, i.e., L=90 mm. We
have checked in representative simulations on somewhat
smaller domains that a Crank-Nicholson scheme yields
results in agreement with the numerical scheme described
above.

For both models we use no-flux (Neumann) bound-
ary conditions on the edges of simulation domain and on
the boundaries of obstacles. We introduce conduction
inhomogeneities in the medium by setting the diffusion
constant D equal to zero in regions with obstacles; in
all other parts of the simulation domain D is a nonzero
constant. The dimensioned value of D is 2 cm2/s for the
Panfilov model and between 0.5 cm2/s and 1 cm2/s for
the LRI model; we use D=0.5 cm2/s in the LRI simula-
tions we report here . In most of our studies the inhomo-
geneity is taken to be a square region of side l , with 10
mm ≤ l ≤ 40 mm; however, we have also carried out il-
lustrative simulations with circular or irregularly shaped
inhomogeneities. In our three-dimensional simulations
we use an obstacle of height 4 mm and a square base of
side 40 mm, i.e., 8 and 80 grid points, respectively (For
a detailed understanding of the three-dimensional case
we must also consider the effects of rotational anisotropy
of muscle fibers in cardiac tissue[37], but this lies outside
the scope of our study.) We also study inhomogeneities in
which ε1 in model (1) varies over the simulation domain
but D is constant.

The initial conditions we use are such that, in the ab-
sence of inhomogeneities, they lead to a state that dis-
plays spatiotemporal chaos and spiral turbulence. For
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FIG. 1: Panfilov-model spiral turbulence (ST): Transmembrane potentials for two dimension (pseudo-greyscale plots A-F)
and three dimension (isosurface plots G and H). Two-dimensions:200 mm ×200 mm domain and a 40 mm × 40 mm square
obstacle with left-bottom corner at (x, y). (A) no obstacle -ST; (B) (x = 160, y = 100) ST persists; (c) (x = 150, y = 100)
ST replaced by RS (one rotating anchored spiral); (D) (x = 140, y = 100) spiral moves away (medium quiescent). Three-
dimensional analogs of (B) and (C): (200 × 200 × 4) domain; an obstacle of height 4 mm and a square base of side 40 mm at
(E) (x = 140, y = 120, z = 0) and (F) (x = 140, y = 110, z = 0).

the Panfilov model we start with a broken-wavefront ini-
tial condition: For a system of linear size L at time t=0
we set g=2, for 0 ≤ x ≤ L and 0 ≤ y ≤ L

2 , and g = 0
elsewhere, and V = 0 everywhere except for y = L

2 + 1
and 0 ≤ x ≤ L

2 , where V = 0.9. From this broken wave-
front a spiral wave develops with a core in the centre of
the simulation domain and, in the absence of inhomo-
geneities, evolves to a state with broken spiral waves and
turbulence (Fig. 1A). The spirals continue to break up
even after 35000 ms for the parameters we use. For the
LRI model we start from the initial condition shown in
Fig. 2A which develops, without an obstacle, into the
spiral-turbulent state shown in Fig. 2B.

In the presence of an obstacle the spiral turbulence
(ST) state of Fig. 1A can either remain in the ST state
or evolve into a quiescent state (Q) with no spirals or
the RS state with one rotating spiral anchored at the
obstacle. We explore all these possibilities in the next
Section. Before we do so, we give the criteria we use to
decide whether a given state, of the system we consider,
is of type ST, RS, or Q. In the Panfilov model, if the
spiral wave continue to form and break up even up to

3500 ms, we identify the state as ST (Fig. 1B); if, by
contrast, a single spiral wave anchors to the obstacle and
rotates around it at least for ten rotations (' 3500 ms
for the Panfilov model with a 40 × 40 mm2 obstacle)
we say that an RS state (Fig. 1C) has been achieved (we
have seen that, once it anchors, this rotation of the spiral
wave continues even after 100 rotation periods); lastly, if
the spiral wave moves away from the simulation domain
and is absorbed at the boundaries within 3500 ms, we
conclude that the state is Q (Fig. 1D).

For the LRI model, if the spiral formation and break up
continues upto 2200 ms, we identify the state as ST (Fig.
2C); if the spiral wave gets anchored to the obstacle and
completes 4 rotation periods (' 2200 ms for the obstacle
we use) we identify the state as RS (Fig. 2D); and we
say that the state Q (Figs. 2E and 2F) is achieved if
the spiral wave moves away from the simulation domain
within 2200 ms.
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FIG. 2: Luo-Rudy-Model spiral turbulence: Pseudo-greyscale plots in a 90 × 90 mm2 illustrating how the initial condition
(A) evolves, in the absence of obstacles, to (B) via the generation of spiral waves and their subsequent breakup. In the presence
of a square obstacle of side l placed with its bottom-left corner at (x, y) we obtain the following: (C)l=18 mm and (x = 58.5
mm, y = 63 mm) ST persists; (D)l=22.5 mm and (x = 58.5 mm, y = 63 mm) RS (one spiral anchored at the obstacle); for
l=18 and (x = 54 mm,y = 63 mm) spirals disappear leaving the medium quiescent (E) at 800 ms and (F) at 1000 ms.

III. RESULTS

Cardiac tissue can have conduction inhomogeneities
at various length scales. Even minute changes in cell
or gap-junctional densities might act as conduction
inhomogeneities[20]; these are of the order of microns.
Scar tissues or blood vessels can lead to much bigger ob-
stacles; these are in the mm to cm range so they can be
studied effectively by using the PDEs mentioned above.
Here we focus on such large obstacles. As in the ex-
periments of Ikeda et al [11], we fix the position of the
obstacle and study spiral-wave dynamics as a function of
the obstacle size. For this we introduce a square obstacle
of side l in the two-dimensional (d = 2) Panfilov model
in a square simulation domain with side L=200 mm. We
find that, with the bottom-left corner of the obstacle at
the point (50 mm, 100 mm) spiral turbulence (ST) per-
sists if l ≤ (40 −∆) mm, a quiescent state (Q) with no
spirals is obtained if l= 40mm, and a state with a single
rotating spiral (RS) anchored at the obstacle is obtained
if l ≥ (40 + ∆) mm. To obtain these results we have
varied l from 2 to 80 mm in steps of ∆= 1 mm. Hence
there is a clear transition from spiral turbulence to stable

spirals, with these two states separated by a state with
no spirals.

The final state of the system depends not just on the
size of the obstacle but also on how it is placed with
respect to the tip of the initial wavefront. In our simu-
lations we find, e.g., that even a small obstacle, placed
close to the tip [l=10 mm obstacle placed at (100 mm, 100
mm)], can prevent the spiral from breaking up, whereas a
bigger obstacle, placed far away from the tip [l= 75 mm,
placed at (125 mm, 50 mm)], does not affect the spiral.

To understand in detail how the position of the obsta-
cle changes the final state, we now present the results of
our extensive simulations for the d = 2 Panfilov model in
a square domain with side 200 mm, i.e., 400 × 400 grid
points, and with a square obstacle of side l=40 mm. Fig-
ure 3A shows our simulation domain divided into small
squares of side lp mm (lp=10 mm in Fig. 3A). The color
of each small square indicates the final state of the system
when the position of the lower-left corner of the obstacle
coincides with that of the small square: white, black, and
gray indicate, respectively, ST, RS, and Q. In Figs. 3B
and 3C we show the rich, fractal-like structure of the in-
terfaces between the ST, RS, and Q regions by zooming in
successively on small subdomains encompassing sections
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of the obstacle coincides with that of the small square (white, black, and gray denote ST, RS, and Q, respectively). (A) for
lp=10 mm. We get the fractal-like structure of the interfaces between ST, RS, and Q by zooming in on small sub domains
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mm).
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FIG. 4: The local time series, interbeat interval IBI, and power spectrum of the transmembrane potential V (x, y, t) at a
representative point (x, y) in the tissue. When the obstacle is at (160 mm,100 mm) a spiral turbulent state ST is obtained with
the time series (A), and interbeat interval (B)showing non-periodic chaotic behavior and a broad-band power spectrum (C).
However, with the bottom-left corner of the obstacle at (150 mm,100 mm), the spiral wave gets attached to the obstacle after
9 rotations (' 1800 ms); this is reflected in the time series (D) and the plot of the interbeat interval(E); after transients the
latter settles on to a constant value of 363 ms; the power spectrum (F) shows discrete peaks with a fundamental frequency ωf

= 2.74 Hz and its harmonics. Initial transients over the first 50,000 δt were removed before we collected data for calculating
the power spectrum.

of these interfaces (white boundaries in Figs. 3A and 3B)
and reducing the sizes of the small squares into which we
divide the subdomain. Clearly very small changes in the
position of the obstacle can change the state of the system
from ST to Q or RS, i.e., the spatiotemporal evolution
of the transmembrane potential depends very sensitively
on the position of the obstacle.

The time series of the transmembrane potential
V (x, y, t) taken from a representative point (x, y) in
the simulation domain illustrates the changes that oc-
cur when one moves from the ST to the RS regime in
Fig. 3. Such time series are shown in Fig. 4. For ex-
ample, when the obstacle is placed with its bottom-left
corner at (160 mm, 100 mm), the system is in the spiral-
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FIG. 5: Inhomogeneities in ε1 : Inhomogeneities in the parameter ε1 result in the coexistence of different types of spa-
tiotemporal behavior in the same system. With εout

1 =0.01 and εin
1 =0.02 (see text), we obtain spatiotemporal chaos outside

the inhomogeneity but quasiperiodic behavior inside it (A); the latter is illustrated by the power spectrum of V (x, y, t) with
discrete peaks (B) and the former by a broad-band power spectrum (C). With εout

1 =0.03 and εin
1 =0.01 and the left-bottom

corner of the inhomogeneity placed at (x=140 mm, y=140 mm), single and broken spiral waves coexist in same medium (D),
whereas, with the inhomogeneity at (x=60 mm, y=50 mm), a single rotating spiral gets anchored to the inhomogeneity (E, F)
with quasiperiodic behavior illustrated by the interbeat interval (G) and the power spectrum (H). The power spectrum (H)
shows six frequencies (ω1 = 4.06, ω2 = 5.56, ω3 = 6.57, ω4 = 7.05, ω5 = 8.58, and ω6 = 9.07 Hz) not rationally related to each
other; all other frequencies can be expressed as

P6
i=1 niωi, where the ni are integers. Initial transients over the first 50,000 δt

were removed before we collected data for calculating power spectra.

turbulent state ST. The time series of V from the point
(51 mm, 50 mm) clearly shows non periodic, chaotic be-
havior. The times between successive spikes in such time
series, or interbeat intervals (IBI), are plotted versus the
integers n, which label the spikes, in Fig. 4B; this also
shows the chaotic nature of the state ST. Figure 4C shows
the power spectrum E(ω) of the time series in Fig. 4A;
the broad-band nature of this power spectrum provides
additional evidence for the chaotic character of ST. By
combining Figs. 4A-4C with the pseudo-greyscale plots
of Figs. 1A and 1B we conclude that ST is not merely
chaotic but exhibits spatiotemporal chaos. Indeed, it has
been shown that the Panfilov model, in the spiral tur-
bulence regime, has several positive Lyapunov exponents
whose number increases with the size of the simulation
domain; consequently the Kaplan-Yorke dimension also

increases with the system size (see Fig.4 of Ref.[33]); this
is a clear indication of spatiotemporal chaos.

If we change the position of the obstacle slightly and
move it such that its left-bottom corner is at the position
(150 mm, 100 mm), the spiral eventually gets attached
to the obstacle. For this case the analogs of Figs. 4A-
4C are shown, respectively, in Figs. 4D-4F. From the
time series of Fig. 4D we see that the transmembrane
potential displays some transients up to about 2000 ms
but then it settles into periodic behavior. This is also
mirrored in the plot of IBI versus n in Fig. 4E in which
the transients asymptote to a constant value for the IBI
(363 ms) which is characteristic of periodic spikes. Not
surprisingly, the corresponding power spectrum in Fig.
4F consists of discrete spikes at frequencies ωm = mωf ,
where m is a positive integer and ωf is the fundamen-
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tal frequency (ωf = 2.74 Hz). A simple rotating spiral
anchored at the obstacle (Fig. 1C) will clearly result in
such a periodic time series in the state RS.

We do not show the analogs of Figs. 4A-4C for the
quiescent state Q since the transmembrane potential V
just goes to zero after an initial period of transients. The
durations for which the transients last, say in Fig. 4D,
vary greatly depending on the position of the obstacle
relative to the spiral tip. We have seen transient times
ranging from 300 ms to 2000 ms in our simulations.

We obtain similar results for the three-dimensional
Panfilov and the two-dimensional Luo-Rudy I models:
Illustrative pictures from our simulations of spiral turbu-
lence (ST) and a single rotating spiral (RS) anchored at
the obstacle are shown in Figs. 1 and 2, respectively.
From these and similar figures we note that the final
state, ST, RS, or Q, depends not only on the size of the
obstacle but also on its position. Obstacles of different
shapes, e.g., circles, irregular shapes, and two squares
separated from each other, lead to similar results (see
www.physics.iisc.ernet.in/~rahul/movies.html for
representative movies of our simulations).

We have also explored the effects inhomogeneities in
parameters such as ε1 in Eq. (1). In the Panfilov model,
ε−1
1 is the recovery time-constant for large values of g and

intermediate values of V [32]. As ε1 increases the absolute
refractory period of the action potential decreases and
this in turn decreases the pitch of the spiral wave (cf.
Fig.3 in Ref.[33]).

In a homogeneous simulation domain (of size say 200
× 200 mm2) values of ε1 > 0.03 produce a single period-
ically rotating spiral. As ε1 is lowered, e.g., if ε1 < 0.02,
quasiperiodic behavior is seen; this is associated with the
meandering of the tip of a simple rotating spiral. Even
lower values of ε1, say ε1 = 0.01 that we have used above,
lead to spatiotemporal chaos. We now consider an inho-
mogeneous simulation domain in which all parameters
in the model except ε1 remain constant over the whole
simulation domain. We then introduce a square inhomo-
geneity inside which ε1 assumes the value εin

1 and outside
which it has the value εout

1 . Different choices of εin
1 and

εout
1 lead to the interesting behaviors we summarize be-

low.
With a square patch of size 40 × 40 mm2, εin

1 = 0.02,
and εout

1 = 0.01, a spatiotemporally chaotic state is ob-
tained for most positions of this inhomogeneity. But
there are certain critical positions of this inhomogene-
ity for which all spirals are completely eliminated (e.g.,
when the left-bottom corner of the inhomogeneity is at
x=70 mm, y=120 mm the spiral moves out of the sim-
ulation domain). For yet other positions of the inhomo-
geneity, spatiotemporal chaos is obtained outside the in-
homogeneity but inside it quasiperiodic behavior is seen
(Figs. 5A-5C). However, with εin

1 = 0.01 and εout
1 = 0.03,

spiral breakup occurs inside the inhomogeneity and coex-
ists with unbroken periodic spiral waves outside it (Fig.
5D), as previously noted by Xie et al [38]. Even in this
case, for certain positions of the inhomogeneity, a single

spiral wave gets anchored to it (Figs. 5E, 5F) as in the
case of a conduction inhomogeneity (Fig. 1C). However,
the temporal evolution of V at a representative point in
Fig. 5E is richer than it is in Fig. 1C: V (x, y, t), with
x=51 and y=50, displays the interbeat interval of Fig.
5G; the associated power spectrum shows six fundamen-
tal frequencies, not rationally related to each other, and
their combinations; this indicates strong quasiperiodicity
of V (x, y, t). So, even an inhomogeneity in the excitabil-
ity of the medium can cause the ST-RS or ST-Q tran-
sitions we have discussed above for the case of conduc-
tion inhomogeneities. Furthermore, an inhomogeneity in
excitability can also lead to rich temporal behaviors as
shown in Figs. 5 E-H.

IV. DISCUSSION

We have shown that spiral turbulence in models of car-
diac arrhythmias depends sensitively on the size and po-
sition of inhomogeneities in the medium. In particular,
we have shown that, with the inhomogeneity at a particu-
lar position, the state of the spiral wave changes from ST
to RS as the size of the obstacle increases. We have also
shown that, for an obstacle with fixed size, this transition
also depend upon the position of the obstacle. Two im-
portant questions arise from our work: (1) What causes
the sensitive dependence of such spiral turbulence on the
positions and sizes of conduction inhomogeneities? (2)
What are the implications of our theoretical study for
cardiac arrhythmias and their control? We discuss both
these questions below.

Spiral turbulence (ST) and a single rotating spiral (RS)
in our models are like VF and VT, respectively, in cardiac
tissue. Our study suggests, therefore, that such cardiac
arrhythmias, like their ST and RS analogs in the Pan-
filov and Luo-Rudy I models, must depend sensitively on
the positions and sizes of conduction inhomogeneities.
Furthermore, our work indicates that this is a natural
consequence of the spatiotemporal chaos associated with
spiral turbulence [33, 39] in these models: Even for much
simpler, low-dimensional dynamical systems it is often
the case that a fractal basin boundary [29, 30] separates
the basin of attraction of a strange attractor from the
basin of attraction of a fixed point or limit cycle; thus
a small change in the initial condition can lead either to
chaos, associated with the strange attractor, or to the
simple dynamical behaviors associated with fixed points
or limit cycles.

The PDEs we consider here are infinite-dimensional
dynamical systems; the complete basin boundaries for
these are not easy to determine; however, it is reasonable
to assume that a complex, fractal-like boundary separate
the basins of attraction of spatiotemporally chaotic states
(e.g., ST) and those with simpler behaviors (e.g., RS or
Q). Here we do not change the initial condition; instead
we change the dynamical system slightly by moving the
position, size, or shape of a conduction inhomogeneity.
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This too affects the long-time evolution of the system as
sensitively as does a change in the initial conditions.

In particular, our work elucidates that, by changing the
position of a conduction inhomogeneity, we may convert
spiral breakup to single rotating spiral or vice versa as
depicted graphically in Figs. 3 and 4. Even more exciting
is the possibility that, at the boundary between these
two types of behavior (Fig. 3), we can find the quiescent
state Q. Thus our model study obtains all the analogs
of possible qualitative behaviors found in experiments,
namely, (1) ST might persist even in the presence of an
obstacle, (2) it might be suppressed partially and become
RS, or (3) it might be eliminated completely.

Our work on inhomogeneities in the parameter ε1 in the
Panfilov model illustrates the complex way in which the
spatiotemporal evolution of the transmembrane potential
depends on the properties of this model for cardiac tissue.

The implications of our results for anti-tachycardia-
pacing and defibrillation algorithms, used for the sup-
pression of cardiac arrhythmias, are very important. Op-
timal pacing algorithms might well have to be tailor made
for different inhomogeneities. Indeed, clinicians often
adapt their hospital procedures for the treatment of ar-
rhythmias, on a case-by-case basis, to account for cardiac
structural variations between patients [40]. We hope,
therefore, that our work will stimulate further system-
atic experiments on the effects of obstacles on cardiac
arrhythmias.
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APPENDIX: THE LUO-RUDY MODEL

In the Luo-Rudy I (LR I) model there are six compo-
nents of the ionic current, which are formulated mathe-
matically in terms of Hodgkin-Huxley-type equations[41].
The partial differential equation for the transmembrane
potential V is

∂V

∂t
+

ILR

C
= D∇2V. (A.1)

Here ILR is the instantaneous, total ionic-current den-
sity. The subscript LR denotes that we use the formu-
lation of the total ionic current described by the Luo-
Rudy Phase I (LR1) model [35], where ILR = INa +
Isi + IK + IK1 + IKp + Ib, with the current densities INa

(fast inward Na+), Isi (slow inward), IK (slow outward
time-dependent K+), IK1 (time-independent K+), IKp

(plateau K+), Ib (total background), given by:

INa = GNam3hj(V − ENa);
Isi = Gsidf(V − Esi);
IK = GKxxi(V − EK);

IK1 = GK1K1∞(V − EK1);
IKp = GKpKp(V − EKp);

Ib = 0.03921(V + 59.87);

and K1∞ is the steady-state value of the gating variable
K1. All current densities are in units of µA/cm2, volt-
ages are in mV, and Gξ and Eξ are, respectively, the
ion-channel conductance and reversal potential for the
channel ξ. The ionic currents are determined by the time-
dependent ion-channel gating variables h, j, m, d, f , x,
xi, Kp and K1 generically denoted by ξ, which follow
ordinary differential equations of the type

dξ

dt
=

ξ∞ − ξ

τξ
,

where ξ∞ = αξ/(αξ + βξ) is the steady-state value of
ξ and τξ = 1

αξ+βξ
is its time constant. The voltage-

dependent rate constants, αξ and βξ, are given by the
following empirical equations:

αh = 0, if V ≥ −40 mV,

= 0.135 exp [−0.147 (V + 80)], otherwise;

βh =
1

0.13 (1 + exp [−0.09(V + 10.66)])
, if V ≥ −40 mV,

= 3.56 exp [0.079 V ] + 3.1× 105 exp [0.35 V ], otherwise;

αj = 0, if V ≥ −40 mV,

= [
(exp [0.2444 V ] + 2.732× 10−10 exp [−0.04391 V ])

−7.865× 10−6{1 + exp [0.311 (V + 79.23)]} ]

×(V + 37.78), otherwise;

βj =
0.3 exp [−2.535× 10−7 V ]

1 + exp [−0.1 (V + 32)]
, if V ≥ −40 mV,

=
0.1212 exp [−0.01052 V ]

1 + exp [−0.1378 (V + 40.14)]
, otherwise;

αm =
0.32 (V + 47.13)

1− exp [−0.1 (V + 47.13)]
;

βm = 0.08 exp [−0.0909 V ];

αd =
0.095 exp [−0.01 (V − 5)]
1 + exp [−0.072 (V − 5)]

;

βd =
0.07 exp [−0.017 (V + 44)]

1 + exp [0.05 (V + 44)]
;
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αf =
0.012 exp [−0.008 (V + 28)]

1 + exp [0.15 (V + 28)]
;

βf =
0.0065 exp [−0.02 (V + 30)]

1 + exp [−0.2 (V + 30)]
;

αx =
0.0005 exp [0.083 (V + 50)]

1 + exp [0.057 (V + 50)]
;

βx =
0.0013 exp [−0.06 (V + 20)]

1 + exp [−0.04 (V + 20)]
;

αK1 =
1.02

1 + exp [0.2385 (V − EK1 − 59.215)]
;

βK1 =
[0.49124 exp [0.08032 (V − EK1 + 5.476)]

1 + exp [−0.5143 (V − EK1 + 4.753)]
+ exp [0.06175 (V −EK1 − 594.31]].

The gating variables xi and Kp are given by

xi =
2.837 exp 0.04(V + 77)− 1
(V + 77) exp 0.04 (V + 35)

, if V > −100mV,

= 1, otherwise; (A.2)

Kp =
1

1 + exp [0.1672 (7.488− V )]
. (A.3)

The values of the channel conductances GNa, Gsi, GK ,
GK1 , and GKp are 23, 0.07, 0.705, 0.6047 and 0.0183
mS/cm2, respectively[42]. The reversal potentials are
ENa = 54.4 mV, EK = −77 mV, EK1 = EKp = −87.26
mV, Eb = −59.87 mV, and Esi = 7.7 − 13.0287 ln Ca,
where Ca is the calcium ionic concentration satisfying

dCa

dt
= −10−4Isi + 0.07(10−4 − Ca).

The times t and τξ are in ms; the rate constants αξ and
βξ are in ms−1.
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