2,415 research outputs found

    Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments

    Full text link
    The increased penetration of uncertain and variable renewable energy presents various resource and operational electric grid challenges. Micro-level (household and small commercial) demand-side grid flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, but literature and field deployments exploring the necessary information and communication technologies (ICTs) are scant. This paper presents an exploratory framework for enabling information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response pilot implementation. FlexBox field data has begun shedding light on relationships between ambient temperature and load energy consumption, load and building envelope energy efficiency challenges, latency communication network challenges, and opportunities to engage existing demand-side user behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop new technologies, system architectures, and implementation approaches that can easily scale across regions, incomes, and levels of development

    Modeling of On-line Traffic Control and Management Network for Operational and Communication Performance Evaluation

    Get PDF
    Communication systems are the backbone of every effective and reliable traffic control and management application. While traditional fiber optics and telephone communications have long been used in managing and controlling highway traffic, wireless communication technology shows great promise as an alternative solution in traffic management applications due to their suitability for deployment in rural areas, and their flexibility and cost-effectiveness for system expansion. However, the detailed characteristics of various wireless communication technologies and real performance in the field have not been systematically studied. To augment this existing knowledge so that traffic professionals may better utilize these technologies to improve traffic safety, mobility and efficiency, this study aims to 1) identify existing wireless communication technologies used in ITS, and potential wireless communication alternatives that can be widely used in ITS, 2) evaluate the performance, cost and reliability of existing and potential wireless communication technologies in supporting on-line traffic control and management functions, and 3) apply benefit-cost analysis to identify the impacts of using these wireless technologies to support on-line traffic management. To achieve these research objectives, the author first conducted an interview to discover the specifications of existing communication infrastructures deployed for various ITS related applications and the usage of wireless technologies in different states. Moreover, the author proposed a network design process that considered wireless coverage range and network topology, followed with case studies utilizing Wireless Fidelity (WiFi) and Worldwide Interoperability for Microwave Access (WiMAX) technologies to support a traffic surveillance system in seven metropolitan areas throughout South Carolina. Field tests were conducted to evaluate the performance and reliability of wireless transmissions between adjacent sensor nodes. After that, the author applied a communication simulator, ns-2, to compare the communication performance of a traffic sensor network with WiFi and WiMAX technologies under infrastructure and mesh topologies, and environmental conditions. Based on these simulation results, the author conducted performance-cost analysis for these selected technologies and topologies. The WiFi field test results indicated that wireless communication performance between two traffic sensors significantly degrades after 300 ft; this distance, however, may vary with the modulation rates and transmission power upon which the system operates. WiMAX nomadic test suggested that line-of-sight (LOS) greatly affects the connectivity level. Moreover, the capabilities and the performance of the WiMAX network are sometimes affected by the characteristics of the client radio. The simulation analysis and benefit-cost analysis indicated a WiFi mesh network solution has the highest throughput-cost ratio, 109 bits/dollar for supporting traffic surveillance systems, while the WiMAX infrastructure option provides the greatest amount of excess bandwidth, 9.15Mbps per device, which benefits the system\u27s future expansion. This dissertation provides an important foundation for further investigation of the performance and reliability of different wireless technologies. In addition, research results presented in this dissertation will benefit transportation agencies and other stakeholders in evaluating and selecting wireless communication options for different traffic control and management applications

    Analysis, simulation and testing of ITS applications based on wireless communication technologies

    Get PDF
    Intelligent Transportation Systems (ITS) aim to improve road transport safety and efficiency, to manage road networks in the interest of the society and to provide real time responses to events. In order to reach these goals, real time feedback to the drivers is expected through the integration of telecommunications, sensing and information technologies with transport engineering. Wireless communication technologies, that have been used in industrial applications for more than 30 years, play a crucial role in ITS, as based on the concept of multiple devices (on both vehicle and infrastructure side) interconnected in different ways. Connectivity, in tandem with sensing technologies, is fuelling the innovations that will inevitably lead to the next big opportunity for road transport: autonomous vehicles. Therefore, this study has investigated - through analysis, simulation and field testing – on applications based on wireless communication technologies meant to support both Data acquisition and Data diffusion as fundamental aspects/ phases in ITS, where data is widely individuated as being the key element

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    Smart home technology for aging

    Get PDF
    The majority of the growing population, in the US and the rest of the world requires some degree of formal and or informal care either due to the loss of function or failing health as a result of aging and most of them suffer from chronic disorders. The cost and burden of caring for elders is steadily increasing. This thesis focuses on providing the analysis of the technologies with which a Smart Home is built to improve the quality of life of the elderly. A great deal of emphasis is given to the sensor technologies that are the back bone of these Smart Homes. In addition to the Analysis of these technologies a survey of commercial sensor products and products in research that are concerned with monitoring the health of the occupants of the Smart Home is presented. A brief analysis on the communication technologies which form the communication infrastructure for the Smart Home is also illustrated. Finally, System Architecture for the Smart Home is proposed describing the functionality and users of the system. The feasibility of the system is also discussed. A scenario measuring the blood glucose level of the occupant in a Smart Home is presented as to support the system architecture presented

    Intensity based interrogation of optical fibre sensors for industrial automation and intrusion detection systems

    Get PDF
    In this study, the use of optical fibre sensors for intrusion detection and industrial automation systems has been demonstrated, with a particular focus on low cost, intensity-based, interrogation techniques. The use of optical fibre sensors for intrusion detection systems to secure residential, commercial, and industrial premises against potential security breaches has been extensively reviewed in this thesis. Fibre Bragg grating (FBG) sensing is one form of optical fibre sensing that has been underutilised in applications such as in-ground, in-fence, and window and door monitoring, and addressing that opportunity has been a major goal of this thesis. Both security and industrial sensor systems must include some centralised intelligence (electronic controller) and ideally both automation and security sensor systems would be controlled and monitored by the same centralised system. Optical fibre sensor systems that could be used for either application have been designed, developed, and tested in this study, and optoelectronic interfaces for integrating these sensors with electronic controllers have been demonstrated. The versatility of FBG sensors means that they are also ideal for certain mainstream industrial applications. Two novel transducers have been developed in this work; a highly sensitive low pressure FBG diaphragm transducer and a FBG load cell transducer. Both have been designed to allow interrogation of the optical signal could occur within the housing of the individual sensors themselves. This is achieved in a simple and low cost manner that enables the output of the transducers to be easily connected to standard electronic controllers, such as programmable logic controllers. Furthermore, some of the nonlinear characteristics of FBG sensors have been explored with the aim of developing transducers that are inherently decoupled from strain and temperature interference. One of the major advantages of optical fibre sensors is their ability to be both time division and wavelength division multiplexed. The intensity-based interrogation techniques used here complement this attribute and are a major consideration when developing the transducers and optoelectronic circuits. A time division multiplexing technique, using transmit-reflect detection and incorporating a dual bus, has also been developed. This system architecture enables all the different optical fibre transducers on the network to have the same Bragg wavelength and hence the number of spare replacement transducers required is minimal. Moreover, sensors can be replaced in an online control system without disrupting the network. In addition, by analysing both the transmitted and reflected signals, problems associated with optical power fluctuations are eliminated and the intensity of the sensor signals is increased through differential amplification. Overall, the research addresses the limitations of conventional electrical sensors, such as susceptibility to corrosive damage in wet and corrosive environments, and risk of causing an explosion in hazardous environments, as well as the limitations of current stand-alone optical fibre sensor systems. This thesis supports more alert, reliable, affordable, and coordinated, control and monitoring systems in an on-line environment

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore