6 research outputs found

    Autonomous Systems: Autonomous Systems: Indoor Drone Navigation

    Full text link
    Drones are a promising technology for autonomous data collection and indoor sensing. In situations when human-controlled UAVs may not be practical or dependable, such as in uncharted or dangerous locations, the usage of autonomous UAVs offers flexibility, cost savings, and reduced risk. The system creates a simulated quadcopter capable of autonomously travelling in an indoor environment using the gazebo simulation tool and the ros navigation system framework known as Navigaation2. While Nav2 has successfully shown the functioning of autonomous navigation in terrestrial robots and vehicles, the same hasn't been accomplished with unmanned aerial vehicles and still has to be done. The goal is to use the slam toolbox for ROS and the Nav2 navigation system framework to construct a simulated drone that can move autonomously in an indoor (gps-less) environment

    Internet of Things 36-rotor Multicopter for Ionizing Radiation Surveying

    Get PDF
    This paper presents an Internet of things 36-rotor unmanned aerial vehicle suitable for radiological surveying of buildings and facilities. The design of the 36-rotor multicopter platform is disclosed. The aircraft is used as a testbed for a lightweight gamma/beta/neutron ionizing radiation sensor closely coupled with the autopilot of the multirotor aircraft. A prototype of the drone and sensor was developed and initial tests were conducted. Test results are presented with data from measuring different radiation sources. The proposed novel design is compared to existing work and advantages to the latter were established

    Drone heading calculation indoors

    Get PDF
    Abstract. Aim of this master’s thesis was to study drone flying indoors and propose a drone-implemented system that enables the drone heading calculation. In the outdoors, the heading is calculated effectively with a drone’s sensors but using them indoors is limited. Indoor positioning currently has not both low-cost and reliable solution for drone heading calculating. The differences between indoor flying principles and outdoor flying principles of the drone are described in the beginning of the thesis. Then different ways to determine the drone’s heading indoors and how they compare with one another are discussed. Finally, two different heading calculation methods are implemented and tested. The methods are based on using multiple location measurements on the drone and using machine vision together with machine learning. Both methods are affordable and are evaluated to see if they could enable drone flying indoors. First method gives out potential results based on testing results, but it needs further development to be able to always provide reliable heading. Second method shows poor results based on verification.Dronen lentosuunnan laskenta sisätiloissa. Tiivistelmä. Työn tavoitteena oli tutkia dronen lentämistä sisätiloissa ja ehdottaa sitä varten droneen implementoitavaa systeemiä, joka mahdollistaa dronen suunnan laskennan. Ulkona suuntatieto saadaan dronen sensorien avulla, mutta sisätiloissa niiden tarkkuus ei riitä samalla tavalla. Sisätilapaikannuksessa ei ole olemassa sekä edullista että luotettavaa ratkaisua dronen suunnan laskentaan. Työssä perehdytään aluksi dronen lentämisen periaatteisiin sisätiloissa ja miten ne eroavat ulkona lentämisestä. Sitten kerrotaan erilaisista keinoista määrittää dronen suunta sisätiloissa ja niiden keskinäisestä vertailusta. Lopuksi testataan kahta erilaista suunnan-laskenta-menetelmää, jotka perustuvat paikkatiedon käyttöön ja konenäköön yhdessä koneoppimisen kanssa. Menetelmät ovat edullisia ja niiden sopivuutta dronen sisälennätykseen arvioidaan. Ensimmäinen menetelmä antaa hyviä testituloksia mutta tarvitsee lisää jatkokehitystä, jotta se voisi antaa aina luotettavaa suuntatietoa. Toinen menetelmä antaa heikkoja tuloksia verifioinnin perusteella

    Drone-Assisted Confined Space Inspection and Stockpile Volume Estimation

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-08-18, pub-electronic 2021-08-24Publication status: PublishedThe accuracy of stockpile estimations is of immense criticality to process optimisation and overall financial decision making within manufacturing operations. Despite well-established correlations between inventory management and profitability, safe deployment of stockpile measurement and inspection activities remain challenging and labour-intensive. This is perhaps owing to a combination of size, shape irregularity as well as the health hazards of cement manufacturing raw materials and products. Through a combination of simulations and real-life assessment within a fully integrated cement plant, this study explores the potential of drones to safely enhance the accuracy of stockpile volume estimations. Different types of LiDAR sensors in combination with different flight trajectory options were fully assessed through simulation whilst mapping representative stockpiles placed in both open and fully confined areas. During the real-life assessment, a drone was equipped with GPS for localisation, in addition to a 1D LiDAR and a barometer for stockpile height estimation. The usefulness of the proposed approach was established based on mapping of a pile with unknown volume in an open area, as well as a pile with known volume within a semi-confined area. Visual inspection of the generated stockpile surface showed strong correlations with the actual pile within the open area, and the volume of the pile in the semi-confined area was accurately measured. Finally, a comparative analysis of cost and complexity of the proposed solution to several existing initiatives revealed its proficiency as a low-cost robotic system within confined spaces whereby visibility, air quality, humidity, and high temperature are unfavourable

    A framework for the implementation of drones in German automotive OEM logistics operations

    Get PDF
    Intralogistics operations in automotive OEMs increasingly confront problems of overcomplexity caused by a customer-centred production that requires customisation and, thus, high product variability, short-notice changes in orders and the handling of an overwhelming number of parts. To alleviate the pressure on intralogistics without sacrificing performance objectives, the speed and flexibility of logistical operations have to be increased. One approach to this is to utilise three-dimensional space through drone technology. This doctoral thesis aims at establishing a framework for implementing aerial drones in automotive OEM logistic operations. As of yet, there is no research on implementing drones in automotive OEM logistic operations. To contribute to filling this gap, this thesis develops a framework for Drone Implementation in Automotive Logistics Operations (DIALOOP) that allows for a close interaction between the strategic and the operative level and can lead automotive companies through a decision and selection process regarding drone technology. A preliminary version of the framework was developed on a theoretical basis and was then revised using qualitative-empirical data from semi-structured interviews with two groups of experts, i.e. drone experts and automotive experts. The drone expert interviews contributed a current overview of drone capabilities. The automotive experts interview were used to identify intralogistics operations in which drones can be implemented along with the performance measures that can be improved by drone usage. Furthermore, all interviews explored developments and changes with a foreseeable influence on drone implementation. The revised framework was then validated using participant validation interviews with automotive experts. The finalised framework defines a step-by-step process leading from strategic decisions and considerations over the identification of logistics processes suitable for drone implementation and the relevant performance measures to the choice of appropriate drone types based on a drone classification specifically developed in this thesis for an automotive context
    corecore