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ABSTRACT 

Drone heading calculation indoors 

Johannes Jyrkkä 

University of Oulu, Degree Programme of Mechanical Engineering 

Master’s thesis 2020, 71 pp 

Supervisor(s) at the university: Toni Liedes 

 

Aim of this master´s thesis was to study drone flying indoors and propose a drone-imple-

mented system that enables the drone heading calculation. In the outdoors, the heading is 

calculated effectively with a drone´s sensors but using them indoors is limited. Indoor 

positioning currently has not both low-cost and reliable solution for drone heading calcu-

lating. The differences between indoor flying principles and outdoor flying principles of 

the drone are described in the beginning of the thesis. Then different ways to determine 

the drone's heading indoors and how they compare with one another are discussed. Fi-

nally, two different heading calculation methods are implemented and tested. The meth-

ods are based on using multiple location measurements on the drone and using machine 

vision together with machine learning. Both methods are affordable and are evaluated to 

see if they could enable drone flying indoors. First method gives out potential results 

based on testing results, but it needs further development to be able to always provide 

reliable heading. Second method shows poor results based on verification.  

 

Keywords: Drone, navigation, indoor positioning, machine vision 

 

 

 

 



 

 

TIIVISTELMÄ 

Dronen lentosuunnan laskenta sisätiloissa 

Johannes Jyrkkä 

Oulun yliopisto, Konetekniikan tutkinto-ohjelma 

Diplomityö 2020, 71 s 

Työn ohjaaja(t) yliopistolla: Toni Liedes 

 

Työn tavoitteena oli tutkia dronen lentämistä sisätiloissa ja ehdottaa sitä varten droneen 

implementoitavaa systeemiä, joka mahdollistaa dronen suunnan laskennan. Ulkona suun-

tatieto saadaan dronen sensorien avulla, mutta sisätiloissa niiden tarkkuus ei riitä samalla 

tavalla. Sisätilapaikannuksessa ei ole olemassa sekä edullista että luotettavaa ratkaisua 

dronen suunnan laskentaan. Työssä perehdytään aluksi dronen lentämisen periaatteisiin 

sisätiloissa ja miten ne eroavat ulkona lentämisestä. Sitten kerrotaan erilaisista keinoista 

määrittää dronen suunta sisätiloissa ja niiden keskinäisestä vertailusta. Lopuksi testataan 

kahta erilaista suunnan-laskenta-menetelmää, jotka perustuvat paikkatiedon käyttöön ja 

konenäköön yhdessä koneoppimisen kanssa. Menetelmät ovat edullisia ja niiden sopi-

vuutta dronen sisälennätykseen arvioidaan. Ensimmäinen menetelmä antaa hyviä testitu-

loksia mutta tarvitsee lisää jatkokehitystä, jotta se voisi antaa aina luotettavaa suuntatie-

toa. Toinen menetelmä antaa heikkoja tuloksia verifioinnin perusteella.  

Asiasanat: Droonit, navigointi, sisätilapaikannus, konenäkö 
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1 INTRODUCTION  

Drones have been used for a century, but the use cases have been solely for military pur-

poses until the 2000s. First concept of drone dates to 1849 when Austrian soldiers used 

unmanned balloons filled with explosives to attack the city of Venice (Consortiq 2020). 

Improvement in aviation technology resulted in the first pilotless winged aircraft during 

the first World War by the United States in 1916. The aircraft was called Ruston Proctor 

Aerial Target and it was controlled with a radio controller similarly to drones are con-

trolled these days. (William and K Munson 1977) The Aerial target was basically a flying 

bomb meaning that it was designed to crash with other aircrafts or ground targets. Later 

in 1980s and 1990s, technology advancements and the miniaturization of the associated 

hardware led to more extensive uses. (Tsouros, Bibi and Sarigiannidis 2019, 2) Drones 

were used to for example reconnaissance enemies’ locations and jam radio communica-

tions. In the 2006, drones started in earnest to have non-military use cases when Federal 

Aviation Admirations issued the first commercial drone permits. Even though the permit 

opened new opportunities for commercial applications it still took few years before 

drones started to really interest the common people. At the beginning of 2010s, drones 

surprisingly started to become more popular as a result of rapid growth in the usage of 

smartphones. Increased usage reduced prices of microcontrollers, accelerometers and 

camera sensors. These sensors were ideal for radio-controlled drone hobbyist. (Kashyap 

Vyas 2018) Drones started to become smaller in size and thus more portable leading to 

be convenient for surveillance and crowd control use cases for police and firefighters. In 

the recent years, drones have obtained more advanced features, for example in 2016, DJI 

introduced Phantom 4 which has computer vision and machine learning technology im-

plemented in it. This enables the drone to avoid obstacles and automatically track people 

or objects.  

Although drones were originally meant for outdoor applications, new potential use cases 

also want to utilise drones indoors. One example could be packet shipment company, 

which uses drones for transfer. Currently, sending packets with an automatic outdoor fly-

ing drone is possible and it has been done for example by the Amazon (TechCrunch 2019) 

and Google owned Wing (Medium 2019) companies. But the drones in either companies 
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cannot navigate indoors. This limits the packet transfer for example to the roof of a build-

ing, whereas if it could reliably navigate indoors, the packet could be taken further. This 

would enable for example sending important medicines to a patient or providing mainte-

nance package to someplace with restricted human access.  

Indoor navigation is a challenge because of location and orientation. There are multiple 

location solutions for indoor flying drones. For example, Jin, Ko and Lee (2018) used a 

stereo vision camera and proved that using it on drone makes position tracking indoors 

possible. The orientation and more specifically heading calculation on the other hand 

doesn’t have both reliable and low-cost solution 

The Aim of this thesis is to solve the heading calculation problem and propose a drone-

implemented system that enables the heading calculation indoors. Drone navigation prin-

ciples and reasons why heading calculation cannot be reliably done indoors are explained 

in chapter two. Then, in chapter three, different available heading calculation methods are 

investigated. In addition, heading calculation methods from other industries are examined 

to find out how the problem has been successfully solved in each of them. Both pros and 

cons are compared and used to inspect if implementing these features into a drone could 

enable drone heading calculation. This way, better understanding of the problem and po-

tential solutions are achieved. After that, two different methods will be proposed and 

tested in chapters four and five. First method is a multi-antenna method which is based 

on using multiple location points to calculate the heading angle compared with a global 

reference. Second method uses machine vision together with machine learning to learn 

heading angles from pictures around the flying area. Objective is to prove if either or both 

methods could enable reliable drone navigation indoors. Navigation is considered reliable 

when it gives out sufficiently accurate angle data constantly.  

The heading calculation task was given by Nokia and the work was done in cooperation 

with the company. As will be discussed in chapter three, there are already capable systems 

that can calculate drone heading indoors. But these methods are expensive and for that 

reason a specific requirement for the task was that the solution must be low-cost in addi-

tion to being reliable. Low-cost can be understood in many ways, so money wise this 

should be interpreted as a budget being much closer to 10 k€ instead of 100 k€. In addition 

to price, the low-cost includes the amount of work it needs time wise in this use case. It 
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means that needed work hours for a fully working system using such as setup and cali-

bration should be minimum. This is necessary because testing environments can vary and 

thus system shouldn’t be dependent on location or certain features in the testing area. 

Minimum work hours also mean that system can be scaled up easily when necessary.  

Heading calculation enables automatically flying the drone indoors. Nokia´s objective is 

to use drones for automatic and closely repeatable measurement flights. During the 

flights, a drone´s sensors could be directed to a specific direction. Drone orientation is 

important due to the flight principle of the drones. But because of the use case for Nokia, 

only rotation is focused on instead of calculating 6DOF (Degrees of freedom) position of 

the drone. Some indoor use cases for example intend to fly automatically a certain route 

and evade any possible obstacles. For this kind of navigation, the 6DOF position would 

be crucial. It is assumed that a drone´s inbuilt altitude sensors handle stabilizing the drone 

so that only 2D is concerned.  
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2 DRONE NAVIGATION INDOORS 

A drone is an unmanned aircraft which can be operated both manually and automatically. 

Sometimes drones are also referred to as UAV (unmanned aerial vehicle) or UAS (un-

manned aircraft systems).  It usually consists of 2 to 8 rotors and different movements 

such as turning or moving are accomplished by changing the spin rate of one or more of 

the rotors. Having multiple rotors sets drones apart from many of the other aircrafts, but 

it still has similarities with them. Main advantage between drone and other aircrafts such 

as an- airplane is that a drone can hover and rotate in place with multiple rotors. It can 

also move up, down and in all 4 directions in addition to just moving forward. Even 

though a drone can move other directions than it is facing, it still needs the heading infor-

mation to navigate. Without the heading, it is impossible to navigate from one place to 

another. For example, moving 50 meters forward doesn’t mean anything if you don’t 

know which direction forward is. Figure 1 shows a simple example for drone navigation.  

 

Figure 1. Drone navigation example. Heading information links drone´s 3D coordi-

nates to global coordinates. That enables a simple navigation task such as moving a 

certain amount to Y-direction in global coordinates.  
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Outdoors, the drone calculates the heading using on-board sensors. Inertial Navigation 

System of the drone provides acceptable position data for short flights. But for longer-

duration flights, it is obligatory to update navigation because INS accumulate error over 

time. (Schmidt 2011) For drone heading, a corresponding term for this error is drift, which 

means the angle between the heading of the object and the desired track. (Jung-Sup Um 

2019, 166) For successful navigation, a drift needs to be minimized. Outdoors, this is 

done using reference heading data from a magnetic field sensor also called a magnetom-

eter. Since the direction of the earth´s magnetic field is close to a constant, a magnetom-

eter can provide an absolute yaw angle which is then compared with the calculated yaw. 

(Jung-Sup Um 2019, 172 - 173) Lack of this reference data indoors is an important factor 

for indoors heading calculation problem. 

Drone sensors and how each of them affects both navigation and indoor navigation are 

explained in this chapter. Then, drone navigation principles and challenges for indoor 

flying are also touch upon. 

2.1 Drone sensors 

The key technology components in the drone are sensors and wireless networks. (Jung-

Sup Um 2019, 33) Most common location sensors are GPS, acceleration sensor, gyro-

scope, magnetometer and altimeter. These provide necessary navigation data which is 

then used to fly the drone. Additional sensors can enhance drone´s capability. For exam-

ple, Lidar or camera can be mounted at the bottom of the drone and used as imaging 

sensor for different applications such as surveillance or hover stabilization.  

Drones have limited sensors availability due to the weight limitations. In general, con-

sumer available drones are small and have decent flying time. Heavy load significantly 

reduces flight time of the drone. For this reason, both the sensors and parts needed for 

them such as power supplies and processors must be as light as possible. One big contrib-

utor for smaller and lighter sensors on drones has been MEMS (Micro Electromechanical 

System) technology. (Jung-Sup Um 2019, 34) Due to MEMS, cheaper and smaller sen-

sors are possible to manufacture. Below, is a more detailed description of all sensors and 

how each is involved in indoor navigation. Especially gyroscope and magnetometer are 

important because those are heavily involved with heading calculation. 
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2.1.1 GPS 

A global position system is a well-known GNSS (Global Navigation Satellite System) as 

it was first a satellite navigation system that offered a world-wide satellite positioning 

service available for public. (Essentials of Satellite Navigation Compendium 2007) Most 

likely due to that, GPS as a term has become a popular synonym for satellite navigation. 

The main difference between GPS and GNSS that should be kept in mind is that GNSS-

compatible receivers can use more networks beyond GPS system. Meaning that GNSS is 

more accurate and reliable because it uses more satellites. (TerrisGPS 2015) GPS is ar-

guably the most important sensor for drones outdoors because it is the only reliable way 

to obtain a drone´s location with high update rate. Due to that, GPS has improved drone 

navigation significantly and it has enabled autonomous flying missions outdoors. Prede-

fined waypoints can be followed with precise location data. The data is received with an 

equipped GPS receiver on the drone. The receiver can obtain signals from multiple satel-

lites and use trilateration to determine the relative position. Using more than three satel-

lites also enables altitude calculation and calculating time for each position. Eynard et al. 

(2010) state that a standard GPS has a vertical precision between 25 meters and 50 meters. 

Meaning that it is somewhat inaccurate, and a drone usually has a separate altimeter to 

calculate altitude.  

In addition to connecting to multiple satellites to obtain a more accurate position, drones 

can utilise satellite positioning principle RTK (Real Time Kinematic). RTK means using 

two satellites data together, one satellite signal is obtained from a stationary reference and 

another one from the moving drone. Then, combining these two data together a drone can 

obtain position accuracy of 1 to 5 cm. (manualsdir.com 1999, 45) Using precise 

timestamps with locations both heading and ground speed for drone can be calculated. 

GPS signal loses strength when passing through objects and that is why it is not reliable 

indoors. This is the main reason why both position and heading must be calculated using 

alternative ways compared with outdoors.  

2.1.2 Accelerometer 

Accelerometer measures proper acceleration forces. Accelerometer output is the follow-

ing: 
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𝑎̂ =  (1 + sa)𝑎 + ba +   µa    (1) 

where â is the measurement value, sa is the scale error, a is the true value, ba is the ac-

celerometer bias, and µa is the random noise. (Chao et al. 2010) Multi-axis accelerometers 

can determine both magnitude and the direction of the proper acceleration as a vector 

quantity. Meaning that it can detect both orientation changes and linear movements. 

MEMS technology has contributed to the accelerometers in a way that accelerometers are 

increasingly present in portable electronic devices to detect changes in position. (Wikipe-

dia Contributors 2019)   

For drones, accelerometers serve a few purposes, it can stabilize the drone and provide 

navigation inputs. Commonly, a drone has 3 accelerometers for 3 different axes, as shown 

in Figure 2. Those can detect movement in X, Y and Z axes. Because a drone is constantly 

under continuous force of gravity, an accelerometer can be also used to determine the 

pitch and roll rotations of the drone. An accelerometer can´t detect a yaw because in that 

rotation gravity force doesn’t change. Sudden changes in drone speed such as a gust of 

wind are also detected, and it can be compensated to improve hovering stability. Accel-

eration can be integrated twice to obtain position data. This position data can be fused 

together with GPS to achieve even higher accuracy in location.  

2.1.3 Gyroscope 

Gyroscope is a very essential sensor in drone navigation. A gyro is a spinning wheel 

(mass) which measures orientation and angular velocity from the spinning mass. (pilot-

friend.com 2018) The spinning mass maintains rotation and stays stable in axis of rota-

tion. This way, gyroscope resists turning and thus detects any deviation. For drones, gy-

roscope measures rotation movement around the aircraft principal axes yaw, pitch and 

roll. Its main use in a drone is to maintain orientation for stable hover similar to an accel-

erometer. These days, gyroscopes are so essential to the stable operation of a drone that 

a malfunction in the gyro sensors is considered as a fatal error and it will result in ending 

an automatic mission or in the worst case in a crash.  

Gyroscope accumulates error due to gyro bias and scale-factor instability. The gyro error 

model can be expressed as equation (2): 
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𝜔ෝ =  ൫1 + sg൯𝜔 + bg +   µg ,    (2) 

where ω̂ is measurement value, sg is the scale error,  is the true value, bg is the gyro bias 

and µg is the random noise. (Chao et al. 2010) Gyro bias is a temperature-sensitive vari-

able error, which affects the measurement all the time, thus, a gyro gives out output even 

while it is not moving. Scale-factor on the other hand occurs only when the object is 

moving. (El-Rabbany 2002, 121) Because the output is angular velocity, it must be inte-

grated once to obtain heading information. This further increases the accumulating error 

and that is why gyroscope needs reference data to maintain accurate orientation. Out-

doors, this reference data is obtained from GPS and magnetometer sensors. 

Gyroscopes and accelerometers are usually together called IMU (Inertial measurement 

unit). Combining 3 accelerometers and 3 gyroscopes is called 6DOF IMU. An example 

of it is given in Figure 2.  

 

Figure 2.  Accelerometers can detect movement along X, Y and Z axes. These also 

detect roll and pitch from changes in gravity forces. Gyroscopes measure yaw rota-

tion in addition to roll and pitch. Combining 3 accelerometers and 3 gyroscopes 

forms 6DOF IMU. 
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2.1.4 Magnetometer 

Magnetometer measures strength and direction of the magnetic field. For a drone and 

other aircrafts in general, it is used to determine the direction of Magnetic North.  The 

Magnetic North is the direction of the horizontal component of the Earth's magnetic field 

and from that direction a drone can determine its heading. (uavnavigation.com 2018) 

Magnetic North doesn’t change direction. It is used as a reference direction to compensate 

drift error for IMU and GPS heading. Even though Magnetic North doesn’t change direc-

tion the magnetometer can still easily be biased. There are two type of categories which 

can cause interference, hard and soft irons. Hard-iron distortion comes from materials that 

emit a magnetic field such as magnet in a speaker. When material doesn’t produce a mag-

netic field, but it influences the magnetic field, it is called soft-iron distortion. 

(FierceElectronics 2009) Soft-iron distortion occurs with metal and for example with a 

car or other electrical devices. Errors from magnetic disturbances can be reduced with 

filtering and sensor fusion but not completely removed. For example, Wang and Gao 

(2005, 155) used a deep learning algorithm to calibrate a magnetic compass to reduce 

disturbances. In many cases, interfering obstacles can´t be avoided indoors and that is 

why magnetometer is either unreliable or completely useless in indoor use cases.  

2.1.5 Altimeter 

Altimeter also called a rangefinder measure a drone´s altitude compared with a fix refer-

ence which is usually the ground. Altitude estimation of the drone is extremely important 

with flight manoeuvres such as landing, take-off and steady flying. (Cherian et al. 2009) 

Altitude can be obtained by different technologies. Barometer is the most common alti-

tude sensor used in airplanes and vehicles; it measures the altitude from the atmospheric 

pressure. (Nelson 1998, 26) Other common commercial rangefinders are SONAR, 

LIDAR and RADAR based. All three of them have the same basic principle where alti-

tude is calculated from arrival time of the reflected signal. The only difference is whether 

the signal is sonar, laser or electromagnetic pulse. These sensors are characterised as TOF 

sensors. (Hentschke et al. 2018) 

Newest additions are optical sensors which utilise computer vision to estimate altitude. A 

drone is for example equipped with a downward-looking camera which takes pictures. 

Pictures from different heights and environments are used to teach the machine learning 
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algorithm which then calculates altitude from features extracted from a camera´s pictures. 

As an advantage to the computer vision, the on-board camera is lighter and less power 

hungry compared with other sensors (e.g. laser). But it can´t be used in applications with 

texture less surfaces and it is limited to low altitude situations because pictures start to 

become more imprecise when altitude rises (Cherian et al. 2009). 

Altimeter becomes crucial in altitude definition indoors. Precise altitude is needed be-

cause most indoor use cases have ceiling and in the worst-case drone can crash if altitude 

information varies too much. 

2.2 Drone navigation 

In this section drone navigation and related matters are discussed. Navigation principles 

have great impact on the heading calculation because it defines the needed accuracy for 

it. Automated drone navigation and ground control station are touch upon because those 

are related to Nokia´s objective to fly closely repeatable flights.  

2.2.1 Drone navigation principles 

Without few exceptions, drone navigation means using GPS for navigation. Outdoors the 

working principle of the GPS based navigation works in a similar way as dead reckoning. 

(Jung-Sup Um 2019, 144) Dead reckoning in navigation means calculation of up-to-date 

position from a previously known position based on known direction and speed. Dead 

reckoning is subject to cumulative errors and GPS navigation has made it old-fashioned. 

(Wikipedia 2020) Because a drone cannot access GPS indoors, it must rely on dead reck-

oning navigation. Due to that fact, successful indoor navigation needs reliable heading 

information in addition to position. Reliability is achieved by updating location data and 

compensating errors from heading calculation. 

Drone navigation is usually done using waypoints. A drone flies from point-to-point ac-

cording to the parameters. These parameters include longitude, latitude, elevation and 

azimuths. The first three parameters are respectively denoted by φ, λ, h and they come 

from Geodetic coordinate system. (Cai, Chen and Lee 2011) In the system, longitude is a 

line that intersects the defined position and is parallel to a prime meridian line. Latitude 
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is also a line that intersects the defined position, but it is parallel to an equator line. (Patrik 

et al. 2019) Elevation means the distance between drone and surface of the earth. Com-

bining these three values, a drone exact position can be defined. Last parameter azimuths 

indicate an angle from true north. Using these four parameters, a drone can navigate using 

waypoints. The use of Geodetic coordinate system has because common for drone navi-

gation due to use of GPS. An example of the waypoint flying can be seen in Figure 3.  

Indoor navigation heading accuracy needs to be highlighted. Because dead reckoning is 

based on estimations, it has accuracy and acceptable limits. When navigation happens 

within these boundaries, it can be considered successful. Outdoors automatic waypoint 

following can be realised with 1–5 ° heading accuracy even using low cost GNSS receiv-

ers, MEMS-based inertial sensors and magnetometer. (Vetrella et al. 2016, 2) Based on 

that heading accuracy, indoor should also have target accuracy under 5 °. If the heading 

overshoots these limits, a drone will gradually try to compensate error by moving side-

ways. This can result in a drone rotating around the waypoint and never getting there. For 

indoor navigation, particularly this kind of behaviour is critical for two reasons. First rea-

son is that indoor space is limited, so an over compensated movement can result in a drone 

crashing to obstacles or walls. Other reason is that due to limited space waypoints must 

be close to each other. That gives a drone less time to compensate the error and thus a 

bigger adjustment movement is needed. This further emphasizes the risk of crashing the 

drone. 
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Figure 3. Dead reckoning for drone navigation. 

2.2.2 Ground control station 

Waypoints and other navigation related issues are handled with GCS (ground control sta-

tion). Drone GCS is the complete ground-based hardware and software systems used to 

control the UAV. It acts as a UI for the drone operator and it includes all the necessary 

HW and SW before and during the flight mission. For example, HW includes telemetry 

and data links to the drone. SW shows the operator map and different outputs from all the 

drone´s sensors. There are many different commercial GSC available for both desktops 

and smartphones. A few worth mentioning for desktop are Mission planner and APM 

Planner 2 and for smartphones MAVPilot and DroidPlanner 3. (ardupilot.org 2020) 

2.2.3 Automated drone navigation 

A drone can be operated both manually and autonomously. Manual operation means con-

trolling a drone for example with a radio controller. Automated drone navigation means 

that a drone uses inputs it receives from different sensors to navigate in an automatic 

manner. Therefore, it doesn’t require any man-made signals from outside the drone. 

(Schmidt 2011) Automatic navigation can mean for example following a certain object 

or flying predefined waypoints. It also includes hovering and stabilising at an unchanging 

position. These kinds of actions are executed using a closed-loop system. Almost without 
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exception, closed-loop systems for drones are proportional-integral-derivative control-

lers. PID is a vastly used controller which has a simple structure and in addition it is easy 

to tune.  

Automatic navigation offers many advantages compared to the manual operation. A drone 

in autopilot mode is much more stable than manually controlled one. This is especially 

useful for example in aerial photography where precision is necessary. Another upside is 

that automatic navigation enables flying the same route almost identically multiple times. 

This kind of flying enables doing measurement flights with a drone because margin of 

error due to flight decreases.  

Currently, automatic navigation indoors is not common but not impossible either. Gageik 

et al. (2013) were able to do autonomous drone navigation indoors using an optical flow 

sensor which points downward. An optical flow sensor can detect visual motion and out-

put displacement measurement based on changing pixel positions. This way, a sensor can 

point to the ground and give out position data for the drone. Using it together with com-

mercial IMU, Gageik et al. obtained accuracy of 20 cm for autonomous navigation and 

10 cm for position hold. But the downside is that they don’t have any way to compensate 

a drift from the gyroscope. An effect from the drift is visualized in their research by point-

ing out that for 6 minutes hovering, the drone rotates about 13 degrees. Another drawback 

in the system is that position is not tied to any global coordinate system. (X0,Y0) coordi-

nates are defined to be where the mission positioning starts. There are also other chal-

lenges for indoor navigation which will be touch upon in the last part of this chapter.  

2.3 Challenges for indoors flying 

Indoor flying means manoeuvring the drone inside a building or a similar structure such 

as a subway tunnel. Most important difference regarding the traditional outdoor flying is 

that some of the drone´s sensors won´t work the way they do indoors as already previously 

touch upon in this chapter. The crucial ones are GPS and magnetometer. Even though a 

drone could receive satellite signal thru windows and other openings, it is too varied to 

be used as it is. Instead, position information must be obtained using other methods. Sim-

ilarly, even though a magnetometer could work indoors, it is affected by sudden changes 

in magnetic fields like a car parked next to the flying area. It biases the magnetometer 
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thus making the heading information incorrect. Precise position and orientation are im-

portant because indoors tend to have less space compared with outdoors. Due to that, a 

drone can more easily bump into obstacles near the correct waypoints. De Croon and De 

Wagter (2018) stated that in addition to less space, automatic indoor navigation poses two 

more problems, different visual appearance and denied visibility of the sky. A different 

visual appearance means that indoors tend to have less colours and textures compared 

with outdoors. An example of this can be seen in Figure 4. This affects for example using 

machine vision algorithms because outdoors usually have fewer visual clues compared 

with outdoors. Visibility of the sky enables for example attitude estimation from main 

light source and polarization of the sky could be used as compass. (Chahl and Mizutani 

2012, pp.289–297, Pfeifer et al. 1998) 

 

Figure 4. Comparison between indoor and outdoor environments. 

 

Safety indoors is not regulated the same way as outdoors even though arguably outdoors 

flying is safer than indoors due to more available sensor data. According the Federal Avi-

ation Administration, FAA rules and regulations apply to operations conducted outdoors. 

(Faa.gov 2019) This means that actions to ensure safe flights are left for the pilots to take 

care of. Previously mentioned space limitations indoor pose danger but in addition to that 

indoor has potential interference signals which can affect flying. These interferences are 

for example Wi-fi, FM radio signals and Bluetooth.   
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One more challenge for indoor navigation is the lack of suitable SW dedicated to it. In-

door navigation must work with the already existing autonomous robotic systems. (Tie-

mann, Schweikowski and Wietfeld 2015) As an example, the position is obtained from 

GPS receiver, so the indoor coordinates have two options to work. Either coordinates are 

converted to longitude and latitude values to fit the current system. Otherwise, the system 

must be modified so that it can use the indoor coordinates. This potentially poses a prob-

lem because many platforms are not open source.    
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3 HEADING CALCULATION METHODS  

There are several methods that can be utilised to calculate heading of an object. Purpose 

of this chapter is to identify and research these methods. Because focus is on indoor head-

ing calculation, outdoor navigation options are mostly bypassed. Gade (2016) argued that 

categorising heading methods is not evident. This is due to several different methods 

available which are seemingly unrelated to each other. Moreover, different methods can 

be used together by turns or simultaneously and thus makes defining even more harder. 

Nevertheless, Gade summarised different methods to seven categories. The different 

methods and how they can potentially be used with drone indoor heading calculation are 

shown in Table 1.  

Table 1. Heading calculation methods and their suitability for drone indoor usage 

Method Usage for drone in-

door use case 

Reason 

1. Magnetic Compass No Magnetometer is not reliable indoors 

2. Gyro compassing No Gyrocompass is too expensive 

3. Observing multiple external 

objects 

Yes Can be done for example with downward 

looking camera 

4. Measure bearing to object 

with known position 

Yes Can be done for example with computer 

vision 

5. Multi-antenna GNSS Yes Indoor can be done with other position 

technics instead of GNSS 

6. Vehicle velocity No Drone movement is needed 

7. Vehicle acceleration No Drone movement is needed 

 

In this chapter, potential methods are evaluated. Examples from other research fields 

where heading problem has been successfully solved are examined as well, assuming they 

would be suitable a for drone in this use case. Example of these are Virtual Reality and 

pedestrian dead reckoning. From unusable methods, magnetic and gyro compassing are 

briefly discussed because both have main roles in need for drone heading calculation in-

doors. Heading calculation from vehicle velocity and acceleration are omitted. Since a 

drone must be able have heading even when not moving and those methods become more 

accurate with higher speed and acceleration. Neither high velocity nor acceleration is 
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usually possible because limitations of movement in indoor spaces. Another argument 

against heading from acceleration is that even though a drone has available acceleration 

data from an accelerometer, the data is mostly not fit to be used. This is because angle 

estimates from accelerometers suffer from high frequency noise when the drones are 

moving. (Chao et al. 2010) But this might change soon because attitude estimation for 

drones has recently gained great attention to it. Al-Sharman et al. (2020) were able to 

train a deep neural network with measurement noise from IMU and use the network to 

filter out the noise. Results from their measurement prove that attitude estimation works 

greatly with hover.  

3.1 Magnetic and gyro compassing 

Before turning to with the working and potential heading methods, magnetic and gyro 

compassing should be tackled first. The lack of the magnetic compass is a key factor for 

the need of indoor heading calculation. It is also related to IMU data fusion, which is 

often referred when talking about drone heading calculation. 

A magnetic compass can´t be reliably used indoors because electromagnetic interfer-

ences. These interferences may be caused for example by a car next to the drone area. 

Lack of magnetometer is a big lose because a magnetic compass is probably the simplest 

heading calculation method. But in addition to that, it is also the most common way to 

calibrate the IMU. IMU, and more specifically the gyro, can give heading information for 

a short period of time. But because the gyro accumulates errors over time, it quickly be-

comes useless without the calibration. That is why IMU can´t be relied on for indoor 

heading calculation unless it is calibrated by other means.  

There also exist high quality gyros which don’t need outsourcing calibration to work. 

These military grade gyros could be used for heading calculation and the method is re-

ferred to as gyro compassing. But this method is too expensive to be used with consumer 

UAVs instead it is used for example in airplanes and submarines.  
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3.2 Observing multiple external objects 

In this method, a heading vector is calculated from two known objects O1 and O2. The 

objects can be either on the drone or in the environment. These objects can be virtually 

anything and those can be recognised with many sensors, such as lidar, sonar and cam-

eras.  For example, objects could be features of wall border from a picture with a down-

ward-looking camera on the drone. The method doesn’t require the position of the drone 

for it to work but it is worth mentioning that it must be obtained by other means to navi-

gate a drone.  

First example of the method is one of the most potential heading calculations for a drone 

on the market. It is 3D tracking with OptiTrack. It can follow a fast-moving object with 

update rate up to 360 fps with high accuracy. The error in position is less than 0.3 mm 

and rotational error is less than 0.05 ° (OptiTrack 2020a) Because the accuracy is top tier, 

it enables OptiTrack to be a reference system for other heading and position calculating 

systems. For example, OptiTrack was used as a reference system for Oculus quest when 

it was in development state. (tech.fb.com 2019) It has also been very successful in drone 

industry which was proven when the Drone Racing League adopted this technology 

(sporttechie.com 2019). DRL used OptiTrack to record exact position of the drone with 

update rate of 300 frames per second. The data was used to compare a real drone position 

to a virtual drone in computer simulator. In the article, it was stated that precise position 

was the factor which made a realistic simulator possible. Working principle of the 

OptiTrack is the following: The position of a moving object is captured using multiple 

synchronised cameras which are installed around the target. 2D images are captured from 

each camera and using overlapping 2D positions, 3D position is calculated using triangu-

lation.  The accuracy is optimised with the use of trackable markers and high computa-

tional filtering algorithms. (OptiTrack 2020b) The best of the market is not the cheapest 

one which comes as no surprise. Relatively high price is not problem for many industries 

when the quality is the highest priority. But for the use case in this thesis, it is not a 

suitable system for that very reason.  

Another example where the observable objects are in indoor environment instead of on 

the drone was accomplished by Bills, Chen and Saxena (2011). Bills et al. presented a 

method which used together sonars and cameras to detect corridors and stairs. During 
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flying the heading of the drone was adjusted so that a drone would be in the centre of the 

stair or corridor based on the data obtained from sensors. Even though heading and auto-

matic flying were successfully accomplished this method can´t be used to freely navigate 

indoors. It is limited to specific targets and thus can´t be used to freely navigate indoors. 

3.3 Measure bearing to object with known position 

Working principle of the second potential method is to know own position B1 and other 

known position O1 in environment. Then, heading is calculated from the vector 𝑃ሬ⃗ B1O1. 

This method has been successfully implemented indoors with two different ways in VR. 

Firstly, it is done with a laser in the VR systems such as HTC Vive. Precise heading 

tracking is crucial in VR because the user will feel nauseous if the virtual reality doesn’t 

change similarly as the real-world view. In HTC Vive, which was launched 2016, the 

tracking was done using a laser implemented system. The system hardware consists of 

laser emitting base station and receiving headset with laser detecting photodiodes. The 

base station emits horizontal and vertical IR light scans. Each scan is detected in the head-

set with photodiodes in the pockets in front of the headset. Every scan gives out various 

angles and distances which are then calculated relative to the base station. This provides 

reference data for orientation detection and it is a clear replacement for a magnetometer. 

Meaning that the drift error can be compensated and together with IMU system of the 

headset, precise orientation is obtained. (Steven 2019)  

Secondly, in 2019, was launched Oculus Quest which has a different take on the heading 

tracking problem compared to other virtual reality equipment’s. Fundamental difference 

between the systems is that Quest is entirely wireless, and it doesn’t use any base stations 

for tracking. Instead, tracking is done using SLAM (simultaneous localization and map-

ping). It is done by combining computer vision with highly trained machine learning al-

gorithms. Both the algorithms and VR content are processed with a mobile chipset. 

(tech.fb.com 2019) 

6DOF headset tracking in Oculus Quest is accomplished by combining data from IMUs 

and cameras. Position and specifically orientation are initially calculated from IMU input 

data. Then, 3D map, generated from image data from ultra-wide-angle cameras, is used 
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to pinpoint landmarks such as corners from indoors. These landmarks are then used con-

tinually to check a position and compensate for drift error. This is enough to replace a 

magnetometer. (ai.facebook.com 2019) In addition to data fusion, Oculus Quest uses spe-

cifically for VR purpose developed algorithms which are refined with machine learning. 

The algorithms predict next human movements before they occur and thus the anticipa-

tion speeds up the process and increases accuracy. The heading calculation principle in 

Oculus Quest could work with a drone. But current algorithms are not compatible with a 

drone because it has been optimised with machine learning for a human user not for a 

drone. The difference between human and drone is for example that a drone can move 

more freely up and down in various heights and rotate faster than human because drones 

don’t feel nauseous. The whole system should be designed to fit the drone from the start 

for it to work. 

At the time of writing this thesis there are already some attempts to use VR technology 

with the drone. For example, Bitcraze company sells a component for their Crazyflie 

drone that uses HTC Vive base stations for drone positioning. While still being in an early 

access state, it also has capability to calculate drone pose (Bitcraze Store 2020). Also, 

Espinosa and Rubenstein (2018) were able to use the self-made controller together with 

HTC Vive to hold drone position in a virtual box and obtain 3D position. But they didn’t 

do actual flight with automatic control and feedback.  

Machine vision has many upsides compared to other sensors such as low weight, rich 

amount of data and option to use for other purposes also such as inspection and so on. For 

that reason, a machine vision-based method will be implemented and tested in this thesis 

as well.   

3.4 Multi-antenna  

Last potential indoor heading calculation is done using multiple antennas on the drone. 

Outdoor, this would be done using the GPS position. For reference, Hirokawa and Ebi-

numa (2009) presented tightly coupled GPS/INS with multiple GPS antennas. Using two 

auxiliary GPS antennas together with IMU module Hirokawa and Ebinuma obtained 0,1 

yaw degree accuracy with an experiment using a manned aircraft. But indoors instead of 
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GPS the position must be obtained other ways.  Currently available alternatives are Blue-

tooth, Wi-Fi (IEEE 802.11) and UWB. However, Bluetooth has so low accuracy that it is 

usually discarded for most of the indoor position applications. (Poza-Luján et al. 2018, 

132) 

Using a single antenna, heading is obtained when a drone is moving. Heading vector is 

updated each time when a drone obtains new position. The downside is that heading can-

not be calculated when a drone is staying in one place. This problem is solved by adding 

a second antenna and then two positions can be measured during a single moment. This 

principle is shown in Figure 5. From at least two different points of the drone, vector 𝑃ሬ⃗
B1B2

 

is drawn between measurement points 𝑃B1 and 𝑃B2. Then, heading θB is calculated with 

trigonometry by comparing 𝑃ሬ⃗
B1B2

 to a known vector 𝑃ሬ⃗
A1A2

. 𝑃ሬ⃗
A1A2

 can be directly pointing 

at magnetic north or it can be aligned with it by rotating it θA. 

 

Figure 5. Multi-antenna heading calculation method. Heading θB is calculated by 

comparing vectors 𝑷ሬሬ⃗
A1A2

 and 𝑷ሬሬ⃗
B1B2

. 
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Cho, Kim and Kim (2012) proved that the multi-antenna principle can be used indoors 

with Wi-Fi. The heading calculation was used for a PRD (pedestrian dead reckoning) 

application. Cho, Kim and Kim obtained azimuth error between 20–30 ° degrees and av-

erage position error of 3 meters. This accuracy is too low to enable drone heading calcu-

lation indoors. The most efficient way to obtain a better heading angle is to improve po-

sition accuracy. That is why Ultra-wideband is the next potential candidate. UWB posi-

tioning has been tested before with a drone before and it has been successful. Tiemann, 

Schweikowski and Wietfeld (2015) implemented UWB system on the UAV which was 

able to hold its position in a radius of under 50 cm. These results are clearly better than 

the ones obtained with Wi-Fi positioning. For these reasons, UWB based multi-antenna 

heading calculation will be implemented and tested in chapters 4 and 5. 
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4 TESTING OBJECTIVES AND METHODS 

In this work, two implement ready heading calculation methods are proposed. First one 

is multi-antenna method and the other one is heading with machine vision together with 

machine learning. The methods were chosen based on the criteria from Nokia as ex-

plained in the first chapter. Integrating the methods into a drone and successfully using 

them to navigate automatically was decided to be beyond the scope of this thesis. Mean-

ing that the objective is to only propose methods which are proven to be working with 

tests. First, methods´ different working principles are explained. Then, testing plans are 

introduced, and lastly, SW and HW components are examined.  

4.1 Methods working principle 

Multi-antenna heading calculation 

As stated in chapter 3, multi-antenna method uses two measurement points on the drone 

to determine a vector which is then compared to a known vector to obtain heading. The 

measurement points will be obtained from UWB system. Accuracy is improved by using 

a total of 4 tags instead of only 2 tags. Tags will be placed in cross formation, each 50 cm 

away from the centre. The position data is assumed to be better compared to a single tag 

because an average from all the tags can be calculated. Also, heading calculation can be 

done using two pairs of antennas and thus average of two measurements can also be used. 

Machine vision-based heading calculation 

For the heading calculation with machine vision, two principles were tested in this thesis. 

Both use a convolutional neural network to predict the current heading angle. CNN or 

convnets  is a class of deep learning neural networks. It includes convolution neural layer, 

which together with backpropagation enables to learn features from pictures. A common 

usage example for it is to recognise handwritten digits. (Schmidhuber 2015, 90-93) In this 

use case, one principle uses CNN for image recognition and other one uses it for regres-

sion. 
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In image recognition, AI (artificial intelligence) is trained with pictures from different 

angles. The camera stays in one place and rotates for full 360 degrees while taking pic-

tures. These pictures form a training data which is called a dataset. Every angle is an 

output and for each output hundreds to thousands of images are needed to properly train 

the neural network which is the main part in the deep learning algorithm. After the neural 

network is trained, it will have a total of 360 outputs. Each output will present the predic-

tion for a single angle degree. After training, machine vision will take a new picture and 

provide the neural network a new input. The input gives out prediction for each output 

with different certainties, usually indicated with %-mark. Meaning that image recognition 

is made to the input and each output is considered as a possible solution. In an ideal case 

the correct angle has prediction with close to 99 % certainty while other angles are closer 

to 1 %. This information is then used to determine the current heading angle.  

Second principle also uses DL together with machine vision. Training is done exactly 

like in the image recognition example and only the difference is that CNN is used to cal-

culate regression instead of image recognition. Main difference is that the regression 

system has single output compared to multiple outputs. After training, the new input is 

predicted and the result is given as a floating value. The floating value is between 0 and 

360 and it directly tells the result of the angle. Figure 6 is a flowchart which shows 

workflow for machine vision and machine learning principle.  
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Figure 6. Machine vision and machine learning workflow. 

 

Deep learning algorithms are a complicated and time-consuming subject. Building and 

training a working algorithm from scratch takes a lot of time and requires good 

knowledge about the subject. Many ready-to-go solutions exist for different kind of ap-

plications but those so called pretrained networks usually solve only the problem they 

were trained for. Those kinds of networks lack the necessary flexibility. That is why for 

the purpose of this testing, transfer learning was applied. Transfer learning means using 

a pretrained network as a base layer which is then modified by training the network with 

a new dataset. It saves time because the user doesn’t have to make the code and neural 

network parameters fine tuning. The main downside compared to a fully fine-tuned NN 

is that the most optimal solution is not most likely found. 
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Angle conversion to azimuths 

After receiving heading from either of the methods, the heading information must be con-

verted to global azimuths if it is to be used in automatic flying. An alternative method 

would be to modify currently existing navigation controllers. An illustrative image for 

the convert process is in Figure 7. First, an indoor position system using anchors or similar 

locators is setup, so that the positioning area formed in the middle of the locators. Because 

a drone´s heading is dependent on the accurate location data, the positioning area is also 

the available flying area for the drone. Usually, anchors using the system consist of 

3 to 8 anchors. One of the anchors is determined as a reference anchor and its position in 

the local coordinate system will be (X0,Y0) = (0,0). Then, line 𝑃ሬ⃗
A1A2 is drawn in y-direction 

starting from (X0,Y0) . (X0,Y0) position is measured and defined with GPS coordinates 

latitude and longitude. Lastly, the angle θA between 𝑃ሬ⃗
A1A2

 and magnetic north is calcu-

lated. With θA and (X0,Y0), local position and heading of the drone can be defined as 

global GPS location and azimuth. This method has the advantage that the same location 

data can also be used to determine a drone´s position.  

 

Figure 7. Positioning area from anchors is linked to global coordinates.  
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4.2 Testing plans 

For drone navigation there are four different and important actions that need to be tested. 

Those are hover, rotation, forward moving along an axis and height changing movement 

meaning up and down movements. In simplified terms every automatic drone navigation 

can be done with these four different manoeuvres. And for that reason, it should be 

enough from the simulation perspective. Drone flying is usually a combination of differ-

ent actions for example moving forward while also moving up. Different manoeuvres are 

shown in Figure 8. Below are more specific plans for each manoeuvre. 

 

Figure 8. Four different manoeuvres in drone navigation. 

 

Hover means that a drone stays in one place and holds it position. This is the most stable 

manoeuvre and because of that it should give out most exact heading. This can be con-

sidered as a foundation test which shows how good the system can be. To measure that, 

a reference system is necessary. For both heading calculation methods, ET250-3D turn-

table is used to determine exact angles and hold the angle for a certain period. Hover 

should stay in place for 30–60 s and it should be tested with multiple angles.  

After the hover, the test shows how good the system can be in the best case and the rota-

tion test is a natural continuation. The purpose of the rotation test is to find out how well 
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calculated heading keeps up with the true angle while moving. Similarly, as in hover 

testing, ET250-3D turntable will be used for the reference angle. The turntable has only 

one speed option so different velocities can´t be easily compared. Comparing different 

speeds would be interesting because every heading calculating algorithm has latency 

meaning that at some speed the heading can´t keep up with the rotation. When the number 

of errors in heading calculation exceed a certain threshold, it is deemed as invalid. Finding 

out those limits could be considered as an upper limit to how quickly a drone can rotate 

without losing reliability in heading calculation. A simple possible solution to test differ-

ent speeds a with turntable is to place tags to different distances from the centre.   

Pozyx system has an option to calculate altitude but height changing movement doesn’t 

have any reference system. In addition, the final setup doesn’t have an option for 3D 

positioning. For that reason, height changing movement tests are done only in pre-tests 

and the results will be roughly vague. Nevertheless, the test is important to show how 

reliable a system is when a drone elevates. Big changes in elevation are typical for drones 

and heading calculation must be able to cope with that.    

In addition to rotation, it is important to test movement along axis. Because IMU can 

provide momentary heading data, the reference system must stay the same as closely as 

possible while moving. This movement is not only limited to forward moving because a 

drone can move in four directions in addition of just forward. As with the height changing 

movement, movement along axis doesn’t have a reference system. The machine vision 

method was left out for both elevation and movement along axis due to its complexity. 

Basically, teaching the deep learning algorithm works similarly as in rotation and hover 

movements but obtaining the photos and testing the results is harder without a reference 

system. In the future this could be done with a drone which flies indoors.  

All of tests should be automatic when possible. Automatic testing means that tests are 

done with software and human assistance is minimum. Automatic testing has many ben-

efits, for example better repeatability and comparability because every test is identic with 

each other compared to testing with human interactions. Often, automation also makes 

testing easier which means that more tests can be conducted in the same period.  
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4.3 Test equipment and environment 

Equipment’s 

The selected indoors position system was Pozyx Enterprise system. It is a UWB based 

system which consists of tags and anchors. The system can reach up to 10 cm accuracy 

with up to 100 hz update rate for a single tag according the provider. Both accurate loca-

tion information and high update rate are needed for the drone navigation. The system 

supports two different working principles, TDOA (Time Difference of Arrival) and TWR 

(Two Way Ranging). TDOA means that a single tag sends out an unscheduled message 

with the chosen update rate. This message is then collected in all the anchors. Because 

the distance between the tag and different anchors differs, the time when each anchor 

receives the message also differs. These timestamps are then used to calculate the tag´s 

position using trilateration. In the TWR method three messages are sent between one tag 

and each anchor. First, the system must know which tags it needs to listen. Then, a tag 

starts the positioning by sending the first message to the anchor, the anchor sends a mes-

sage back to the tag and finally the tag returns the final message to the anchor. Calculating 

how long it took to receive this final message is used to determine the location. At least 

three communications are needed, and an ideal position is achieved with four communi-

cations. In the Enterprise edition, all the anchors are connected to each other with ethernet 

cables and these anchors are in the same way also connected to a local processing server 

called gateway. (Pozyx NV 2020a) 

To obtain precise heading information for both test cases, a turntable was used. ET250-

3D as seen in Figure 9 is a turntable which can be controlled remotely using TCP/IP 

network protocol and it has an accuracy of 0,5 °. (Outline 2020) 
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Figure 9. ET250-3D turntable. 

 

ET250-3D is connected to the internet using ethernet cable. Measurement PC is connected 

to the same network and thus they can communicate together. Outline has a graphical 

user interface ET commander 2012 which enables to control ET250-3D wirelessly. This 

GUI is limited in a sense that it only shows the angle value to the user, but these values 

cannot be collected by any means. That is why, the control will be integrated into the 

same software with heading calculation codes. This enabled to control ET250-3D and 

obtain precise rotation angle value logs while simultaneously making measurements. The 

same turntable will be used for both multi-antenna and machine vision testing.  

The last main equipment used for tests were simple testing platforms, as seen in Figure 

10. Platforms´ purpose is like a fixture in manufacturing industry, it holds a position to 

support work. A multi-antenna platform´s idea is to keep a certain distance between po-

sitioning tags. It also has a power bank integrated into it which powers ups all the tags. 

Shape of the platform is like a quadcopter drone. Distance between tag and centre of the 

platform is 50 centimetres. Because the turntable doesn’t have speed options, velocity 

varieties must be obtained by changing tags distance from the centre. The further tag is 

from the centre the more velocity it has. In addition to the setup in Figure 10, another 

platform was used in multi-antenna testing. It is a 4-meter-long wood plank attached to 

the turntable. It was used to place tags approximately 2,8 m and 3,8 m away from the 

centre. This way, three different speeds can be potentially compared to each other.   
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For the machine vision platform, the idea is to hold components in place. The platform 

consists of camera, company computer, memory stick and battery. Each component is 

connected so that the platform doesn’t have any cables connected to the turntable. This 

way, the platform can rotate freely. Intel realsense d435i camera and 32 Gb memory stick 

are connected to the LattePanda computer with USB connection. Training dataset pictures 

are collected straight to the memory stick and thus the dataset is easy to export to the PC 

which handles more demanding training processing. All the components are powered up 

with 4S 14.8 V LiPo battery which is down converted to 11 V to suit the LattePanda.  

 

Figure 10. Testing platforms which will be used in the tests. Left platform is for 

multi-antenna method and right one is for machine vision method.  

 

Test environments 

Tests were conducted in two different premises. Figure 11 shows both test areas. Pre-tests 

were done in a smaller 9 m x 5 m x 3 m office area. The Pozyx system´s anchors were 

integrated into ceiling grid by hanging them in different heights. The area was a tempo-

rary placement before the final placement, so attachments for Pozyx anchors were made 

with that in mind. Temporary attachment enabled for example testing multiple anchor 

configurations conveniently. Anchors position was calculated by hand with a laser range-

finder. Final tests were done in a bigger open area size of 13 m x 13 m x 6 m. Anchors 

were permanently attached to the ceiling and their accurate position was calculated using 

a laser scanner to obtain 1 mm accuracy. The anchors were placed at similar heights rel-

ative to each other around the positioning area. This provides most optimal 2D positioning 

but the lack of height difference means that 3D position can´t be done with Pozyx. But 
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this is not a mandatory because the goal is to get altitude information from the drone with 

an altimeter.  

 

Figure 11. Test areas. Left is office area for pre-tests. Right picture is final placement 

and final testing area.  

4.4 Method testing software  

Software used to development the heading calculating methods are python based. Be-

cause the software is made with python it can be implemented for example to Arduino 

and Raspberry Pi with minimal modification. The final version has been thought to be 

used with a company computer and it only needs to provide a heading angle. Drone nav-

igation can be handled with another computer. Both machine vision and multi-antenna 

method software are examined below. Two software share similarities because both are 

doing heading calculating and turntable control. The turntable is controlled with UDP 

protocol. First, the turntable is connected to the same network as the company computer 

with a lan cable. Then, UDP connection between the computer and turntable is opened 

and the computer can start sending request messages to the turntable. These messages can 

for example move the turntable to a certain direction or request the current heading angle. 

Using threading in python, the turntable control will run simultaneously with heading 

algorithm.  

Multi-antenna software 
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Pozyx´s gateway communicates using MQTT protocol. Data is sent out whenever a tag 

sends out a message. Different tags are distinguished with personal tag IDs and these ID:s 

need to be changed if the used tags changes. Output data is JSON file consisting position, 

anchor data and optionally data from multiple sensors. 

For each tag X and Y, coordinates are fetched from JSON file and used to calculate 𝜃B1 

and 𝜃B2 with equation (3).  

𝜃஻ = arctan ቀ
𝛥𝑦

𝛥𝑥
ቁ,      (3) 

where 𝜃B is the angle between X-axis and a tag pair. Because there are 4 tags the 𝜃B2 must 

be deducted by 90 degrees to be parallel with  𝜃B1. Then, 𝜃B can be calculated from the 

average of the two angles 𝜃B1 and 𝜃B2. Then, 𝜃B angle is changed to azimuth with simple 

equation (4) 

𝛼஻ = 360 ° −  𝜃஻ ,      (4) 

This average calculation has an error when heading is close to 0 degrees. This is because 

2 different headings might vary between both side of 0 ° and 360 ° meaning that one 

heading could be for example 357 ° and other 1 ° Even though the difference is 4 degrees, 

the average from this example would be 179 ° This is taken into account in a way that if 

the difference between two headings is more than 300 degrees, then a bigger one is left 

out and used heading is a smaller one divided by two. This method can correct heading 

when a drone is rotating toward and beyond 0 angle, but it can possibly bias data when 

heading is constantly 0 degrees. This should be considered when heading is kept in 0 de-

gree while doing the measurements.  

Finally, the heading value is imported. In the final version data must be imported into a 

different computer. In the current version, it is enough that heading is visualised for the 

user interface and measurement data is imported after measurement. Measurement import 

is done by writing the data to a .csv comma separated value file and then it will be post 

processed for example in Excel. 
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One important factor to make this method reliable is that it needs to provide enough ac-

curate position data. If the positions are changing too much, then heading calculation also 

changes and renders the result useless. That is why, data filtering is applied to the data to 

obtain most precise heading. Filtering can be applied in two areas: measurement points 

and calculated heading angles.  

The system used in this thesis has 4 tags with each having 100 Hz update rate. This means 

that position data is updated roughly 400 times in one second. Because the position 

doesn’t have to be updated so frequently, it can be averaged. Every measurement value 

is added to a buffer and when the buffer reaches a certain amount of values, it will calcu-

late average and forward one averaged position (x,y) pair for each tag.    

Before adding measurement points to the buffer, it can be filtered so that obvious outliers 

are filtered out. This can be done by comparing the current value with the previous value. 

If the change is bigger than a threshold value, then it is deemed as a wrong value and it 

will not be used in the heading calculation. Instead, a previous point will be used and send 

forward to heading calculation. A threshold value should be chosen so that it doesn’t bias 

the data. Choosing too small a threshold value could filter out real values if a tag is mov-

ing and values are supposed to be changing between every data point.  

Even though tags are moving, the distance between them will stay the same if the platform 

where tags are connected doesn’t move. This fact can be used to filter out data points in 

the buffer. Certain upper and lower threshold values are chosen based on the distance 

between the tags and accuracy of the positioning system. If the two positions have a big-

ger distance between each other than the upper threshold, then both values are invalidated. 

Similarly, if the distance is smaller than lower a threshold, then those values are also 

invalidated. This same principle can be applied to all possible tag pairs between 4 differ-

ent tags and not just the ones opposite of each other. Pozyx has integrated few position 

filters into the system which will be touch upon in pretests. 

One more way to filter a calculated heading value is to apply a similar comparer to it as 

is done with the position values. A threshold angle value is determined and if the heading 

angle changes more than the threshold value, then it is invalidated, and the past value is 

used. This is not a preferred option in a sense that, at this point of filter, heading update 
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rate is already low. Filtering it means that update rate will go down even more. That is 

why filtering should be done with position data because it has a much more higher update 

rate. If heading values are to be filtered, it should be done for example with Extended 

Kalman filter which could be used together with other sensors like gyro. 

 

Machine vision software 

Machine vision software consist of three parts: dataset collector, trainer and heading pre-

dictor.  

Dataset collector controls camera and turntable. Working principle is that the camera 

takes a certain number of pictures and then the turntable moves to the next angle. With 

intel realsense D435i, pictures can be either taken with RGB mode or NIR mode. NIR 

mode means that the camera takes Near Infrared pictures, which operate in a range from 

700 nm to 1400 nm. NIR removes color wavelengths but improves visibility, thus making 

it more suitable to long a range. (Infiniti Electro-Optics 2016) In raw mode, distance var-

iations are marked in the pictures, as seen in Figure 12. Hence, the NIR mode gives out 

more data compared to the normal and it was used to collect the dataset instead of using 

any camera. Pictures are immediately converted to a smaller size to later fit training al-

gorithm. Saving the pictures to the smaller size has also a benefit of using less memory. 

For image recognition, used size was 227 x 227 pixels and for regression 60 x 60 pixels. 

Pictures are collected to a separate USB driver. This way, pictures are easy to export to 

another PC which handles the training algorithm. 



 

44 

 

 

Figure 12. Two pictures taken with intel realsense D435i. Left one is a normal 

picture with RGB mode and right is raw data for the depth detection with NIR 

mode. 

 

Training is done with a capable computer because training the algorithm is computation-

ally heavy and thus takes time. Training algorithm is done using a pre-trained network. It 

means that all layers in the network are preselected and only the amount of inputs and 

outputs are changed. Inputs are the number of pictures for each training angle and output 

is the total amount of different trained angles. For image recognition with 1-degree inter-

val the output would be 360 and with CNN regression output is 1. After successful train-

ing, the trainer gives out a fully connected network also called as a model. The model has 

parameters which are specially tuned with the dataset. This unique model is lastly used 

for the heading prediction. 

The last part in the machine vision algorithm is the heading prediction. The basic idea is 

that the predictor takes new inputs for the previously trained model. Input can be obtained 

for example from new picture or frame of video clip. Then prediction using the model is 

made. Lastly, the predictor will give a heading angle as the output based on the calculation 

of the trained network. This output can be then used for drone navigation. Because the 

actual drone will not be flown in this thesis work, a predictor will not be implemented. 

Instead validation is used. Validation means that the dataset, which is not used for the 

training, is used to test how well the model works with new inputs. Validation dataset is 
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usually done by splitting the dataset during training. The most important thing for the 

validation is that the dataset doesn’t include the same pictures used with training since 

that is the only way to know if the model really works universally or not.  
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5 HEADING CALCULATION TESTS  

The purpose of the tests is to find out if the methods could work with an actual drone and 

if those could be used for reliable heading calculation. Tests described in this chapter 

were done in two phases, pre-test and final tests. Results from the pre-tests showed that 

both methods have limitations and those were considered in the final tests. Lastly, results 

and heading accuracy for each method from the final tests are presented in their own 

sections. 

5.1 Pre-tests  

Pre-tests were done in a smaller office area and the motivation was to test different things 

before doing the real tests in an area where configurating the system is harder. Especially 

indoor position Pozyx for the multi-antenna method must be optimised to provide best 

possible position data. Heading angle accuracy depends heavily on the position accuracy.  

Indoor position system pre-tests 

Before starting the heading measurements, it is important to test and optimize the indoor 

positioning system for a most accurate position. The first considered aspect was a position 

method. Pozyx Enterprise version has at the time of writing this thesis two available po-

sitioning methods, TWR and TDOA. Position methods were tested in three different an-

chors configurations, as seen in Figure 13. TDOA proved out to be better because of a 

few reasons. First, it has a higher update rate than TWR, but accuracy was the same for 

both methods, except in the second case with anchors being both near and far from the 

tags. In that scenario TWR was clearly more unstable because in TWR only 4 anchors 

can be utilised at the same time. Thus, position varies when used anchors bounce between 

closer and further ones. TDOA on the other hand uses all the available anchors, which 

makes it more reliable in that sense. In Pozyx enterprise edition, TDOA method has inte-

grated filter options. These options include selectable modes of unpredictable and pre-

dictable movement and a choice for the freedom of movement. Mode is chosen based on 

how fast tags move compared to update rate. Freedom of movement strength on the other 
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hand is chosen based on expected speed variances. Options used in tests were unpredict-

able movement and weak freedom of movement because the system has both low speed 

and speed variances. Testing showed that increasing freedom of movement increases po-

sition variety exponentially meaning that weak freedom of movement filters out obvious 

outliers. 

Pozyx system can do 2D or 3D positioning depending on the height placements of the 

anchors. If there is a height difference like in the cube configuration, then 3D positioning 

is possible. Testing showed that position accuracy stays the same for 2D and 3D position-

ing when a tag was kept in the same height. Because height is irrelevant for this use case, 

final placement of the anchors in the bigger testing area is scattered around the testing 

area. This ensures that positioning has best possible coverage for 2D positioning in the 

biggest possible area. The last initial observation was that the office area was little bit too 

small for optimal positioning. The system needs more distance between anchors to pro-

vide the most optimal coverage. The observation was done using Pozyx enterprise inter-

nal tool HDOP. HDOP stands for Horizontal Dilution of Precision and it shows position 

quality based on the anchors´ position in a certain height. (Pozyx NV 2020b) 

 

Figure 13. Three different anchor configurations. From left to right: Cube, three 

anchors close and anchors scattered around the room. 

 

Multi-antenna pre-tests 

In the beginning of the testing, the system needs to be calibrated. Purpose of the calibra-

tion is to find a correct 0 angle for the system. Calibration can only be done when the 
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system has a reference angle. When calibration is possible, XY directions can be tenta-

tively set visually along the axes of the room. But the starting direction can be basically 

anything because calibration can handle any starting angle. After choosing a starting an-

gle, a single measurement with 45-degree intervals is performed.  

Calibration process is the following: First, the system rotates 45 degrees for about 22 sec-

onds and then waits for 50 seconds. After the first 22 seconds, when the system has 

reached 45 degrees, it will measure 40 heading values. All the values are collected in a 

list. After 40 values measuring stops and average of the list is calculated. Then, the system 

prints the average and adds it to another list and waits until 50 seconds has been reached. 

After 50 seconds, the system rotates 45 degrees and repeats the process. This continues 

as a loop until 360 degrees is achieved. Then, all the averages will be examined, and the 

system will print out the following information: median, average, minimum and maxi-

mum average. Then, the user can change 0 angle based on the median and average. Usu-

ally, those values are similar but sometimes the system has big outliers. Those outliers 

can be detected from minimum and maximum values. In those cases, median should be 

used instead of average.  

Table 2 shows example calibration where the starting angle was purposely about 90 de-

grees offset. After a successful test, the 0 degree of the ET250-3D is changed based on 

the total correction from the measurement. This configuration is then used for all the rest 

of the tests.  

Table 2. Calibration measurement example. Starting angle was visually 90-degree 

offset.  

Measurements:     
Calibration round 1st 2nd 3rd True angle (°) 
Average correction (°) 81,65 4 2 45 

 84,85 0,2 0,56 90 

 79,05 1,05 2,56 135 

 79,98 4,85 2,15 180 

 82,93 3,8 2,37 225 

 80,85 1,1 0,15 270 

 269,34 2,27 1,24 315 

 79,85 5,46 348,83 360 
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Results:    
Calibration round 1st 2nd 3rd  
Average (°) 104,81 2,84 44,98  
Median (°) 81,25 3,04 2,07  
Minimum (°) 79,05 0,2 0,15  
Maximum (°) 269,34 5,46 348,83  
Rotation correction (°) 81 3 -  

 

After calibration, hover pre-test was planned to be conducted. But during the testing, re-

sults showed that a heading value varies depending on the chosen angle. For that reason, 

instead of hover testing first, pre-test was a position accuracy test. Because the tags lack 

a reference position, other ways to determine a true position had to be done. The position 

for centre of the turntable was calculated similarly to the anchors position using a 

handheld laser rangefinder. After calculating the centre point, the perimeter of the circle 

was calculated knowing that tags are 50 cm away from the centre. Then, the position test 

was done using the turntable. One tag rotated to 8 different positions on the perimeter 

with 45  degrees intervals. Lastly, the distance between tag position and point at 45 de-

grees on the perimeter is calculated. Test results for that position test can be seen in Figure 

14. Results show that a position varies to multiple directions. Further testing brought to 

attention a problem in the positioning system. The position had similar varieties in the 

same type of measurements. Meaning that precision is good, but the accuracy is not per-

fect. This kind of error is hard to filter out because errors will have different varieties in 

other positions. 
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Figure 14. Position measurement results with a single tag. Circle around middle 

point indicates target assumed values and other points are measurement averages. 

The same error occurring in position pre-test can be seen better in rotation pre-test in 

Figure 15. Two rotation measurements were done with the same calibration and setup 

except that the second measurement had an update rate cut in half. The turntable was 

rotated 180 degrees while calculating a reference. Results show that heading changes sim-

ilarly and not randomly. These repeatable errors are the highest error spikes in the heading 

calculation.  

Figure 15. Two different rotation measurements with almost identical results. 

 

Similar errors have been also detected in other studies. Masiero et al. (2017) reported in 

their detailed analysis that a systematic error indeed exists. According to their studies, the 
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systematic error varies significantly with respect to both distance and relative orientation. 

This error will be taken into account when conducting final tests in the bigger testing area.  

Height changing movement and movement along the axis were also briefly tested in the 

pretest phase. Neither of the measurements did have a reference system and measure-

ments were done by the user. In the height changing movement measurement, the plat-

form is lifted with two strings, one of them is connected to the end of each wing and the 

other one to the centre of the platform. The user started the measurement and then lifted 

the platform. When a certain height was visually achieved the platform was held there for 

approximately three seconds. After that, the platform was slowly returned to the starting 

position, kept there approximately three seconds. Finally, the same loop was repeated and 

after that the platform was kept in the starting position. This measurement practice was 

done five times. Movement along the axis measurement was also started and then manu-

ally moved by the user. The platform was moved to the other side of the room slowly and 

held at the end of the cable for about 10 seconds. Then, the platform was returned to the 

starting position and measurement ended.  

Figure 16 shows the results from the height changing measurement. The upper value is 

the height calculated from the average of all the tags height values and the lower value is 

a corresponding heading at the same moment of time. Results show that height doesn’t 

affect the heading value. Target heading was 270 degrees and the value changes up to 

10 degrees in a positive or negative direction. Lastly Figure 17 shows results from the 

movement along axis measurement. Without filtering, heading changes momentarily 

more than 15 degrees but filtering efficiently takes out the outliers and maximum change 

is about 5 degrees in a positive or negative direction.  
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Figure 16. Height changing measurement. Upper values are heights and lower val-

ues with matching colours indicate changing in heading angle. 

 

Figure 17. Movement along axis measurement results. Line filter leaves out heading 

values with position pairs, including invalid values. Invalid values are either too 

close or too far from each other.  
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Machine vision pre-tests 

During the pretest phase, only the image recognition algorithm was tested. Testing started 

by collecting the dataset. Collecting was done by combining D435i depth camera with 

turntable ET250-3D together. The system was controlled with SW that can take pictures 

with about 30 Hz update rate and rotate after taking a certain number of pictures. The 

dataset should have a lot of pictures and the raw data reserve a lot of memory space. That 

is why images where resized to the ready-to-use state for the deep learning algorithm as 

the needed size is smaller than the original size. Needed size is 227 x 227 pixels. SW 

starts taking pictures from angle 0 degrees. It takes 2,000 pictures and then moves forward 

1 degree. This loop is automatically repeated until 360 degrees are completed. During the 

measurement the pictures are written to the specific folders according the angles. The  

result is 360 separate folders with 2,000 pictures each. Each folder is named with a cor-

responding angle value. This way, the dataset is easy to import to the training software.  

Training was done with a pretrained AlexNet and process of development followed guide-

lines from Mathworks online course Deep Learning Onramp (matlabacademy.math-

works.com 2020) Results can be seen in Figure 18. Training was done with 1,500 samples 

for each angle and rest of the 500 pictures were used for validation. The outcome was an 

algorithm that learned the dataset too well. Validation had 100,00 % success rate. It means 

that the algorithm learned the dataset perfectly, but it can´t be used in any other occasion. 

If the system is moved for example 15 cm to left, it doesn’t work anymore. This was most 

likely due to the dataset being too similar. Next time, training data should be taken so that 

turntable location is moved to different positions in a small area. Then, different angles 

will have variation and the algorithm will be more adaptive.  
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Figure 18. Results from the pre-test machine vision heading calculation. Training 

was done with 1,500 samples for each angle and 500 for validation. Validation suc-

cess was 100,00 % meaning that the dataset was learned completely but the algo-

rithm is not adaptive at all.  

5.2 Multi-antenna testing  

After pre-tests, Pozyx indoor positioning system was integrated into a bigger testing area. 

Position accuracy is presumably better compared to results from the pre-test office area. 

This is because a bigger distance between the anchors means better coverage. Another 

improvement was that anchors´ position was also calculated with 1mm accuracy. Used 

equipment was Z+F IMAGER 5016, 3D Laser Scanner. (zf-laser.com 2020) In addition 

to anchors position, a few other positions in the testing environment were measured. 

These positions can be later used as reference points in the measurements.  

First Pozyx position accuracy was tested in the new environment. The turntable was man-

ually placed so that the centre of the turntable was on an accurately measured position. 

The measured position has high accuracy but because the turntable was placed manually 

with visual inspection there are bound to an error of few centimetres in the accurate po-

sition. After the measurement equipment was ready the same 45 degrees interval position 

test as previously done in pre-tests was conducted. The only difference was that this time, 
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the position was obtained from each of the tags instead of a single tag. Results are shown 

in Figure 19. Measurement was done three times in a row and the results suggest the same 

outcome as in the pre-tests. Position accuracy still differs to multiple directions, but all 

the measurements are almost identical meaning that precision is excellent. This naturally 

affects results in both rotation and hover tests.  

 

Figure 19. Position accuracy measurements in a new environment. Total of 3 meas-

urements with 4 tags.   

First hovering was tested in the same 45 degrees interval as the position measurement. 

Tags had 30 Hz update rate and total update rate was approximately 120 Hz. Heading was 

updated after 100 samples 40 times meaning that each angle was measured about 40 sec-

onds. After 40 seconds, the average heading was calculated as listed in Table 3. Results 

in the table show that in an optimal condition heading can achieve 1-degree accuracy but 

at its worst it can overshoot about 10 degrees. Overshoot is most likely due to inaccurate 

heading calculation in 0 angle. Figure 20 demonstrates an example histogram to the dis-

tribution of the first 45 degrees measurement. Data is distributed with a small spread be-

tween 47–48 degrees.  
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Table 3. Results for three hovering tests. 

Measurement: 1st  2nd 3rd 
True angle Average difference Average difference Average difference 

45 47,03 2,03 47,23 2,23 47,22 2,22 
90 92,3 2,3 92,34 2,34 92,25 2,25 

135 136,2 1,2 136,17 1,17 136,21 1,21 
180 183,34 3,34 183,35 3,35 183,4 3,4 
225 226,32 1,32 226,29 1,29 226,35 1,35 
270 269,22 0,78 269,68 0,32 269,39 0,61 
315 317,19 2,19 317,17 2,17 317,16 2,16 
360 359,66 0,34 350,82 9,18 350,84 9,16 

 

 

Figure 20. Example histogram from 1st 45 degree measurement. The scatter is 

visually small and all of the values are in 47–48  degrees range.  

 

After hover the heading was also tested in rotation. Then, the same 360 degrees rotation 

test was done with a multi-antenna method and comparison results are seen in Figure 21. 

Results include tag pairs A1 and B1 and their average difference compared to the refer-

ence angle. As seen from the results, the average heading difference is low, but it has 

some local biases where it overshoots. These overshoots come from either one tag pair 

overshooting a lot or both pairs overshooting at the same time. Same measurement was 

repeated 5 times with similar results, so the reliability is quite good.  
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Figure 4. Rotation heading measurement results. 

 

The final measurement for the multi-antenna method were done with a longer platform. 

Because the turntable doesn’t have speed options, using a longer distance from the centre 

of the turntable was the only available method to test different speeds for tags. The cir-

cumference of the circle is calculated as in equation (5) 

𝑠 = 2𝜋𝑟,      (5) 

where r is the radius of the circle. The period for one rotation took 164 seconds and we 

mark is as T. Then, the speed of the object travelling the circle is shown in equation (6) 

𝑣 =
௦

்
=

ଶగ௥

்
,     (6) 

The tags were placed to the platform at radius of 2,8 m and 3,8 m, so the respective speeds 

are V1 = 0,11 m/s  and V2 =0,15 m/s. The speeds are not high compared to average drone 

flying speed but it is quite close to optimal for the measurement flight speed indoors. The 

first position measurement was conducted and position was calculated with about one 

second interval. Position measurement results in Figure 22 show that while speed is 

increased, the tags can still keep up with the system. 2,8 m radius tag had minimum 
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distance of 71,4 mm and maximum of 310,6 mm. The average difference was 174,7 mm 

and 88,1 % of the positions were spread between 150–250 mm. For the 3,8 m radius, tag 

minimum distance was 128,5 mm and maximum was 417,4 mm. Meaning that the 

accuracy was clearly worse. Average was 243,9 mm and position differences were spread 

between 200–300 mm with 82,4 % of the whole measurement. Measurement results are 

based on calculating the position by hand using a rangefinder, so they have some 

uncertainty. Most difference is seen in the close to 0 values in X-axis, which means that 

tags are close to the wall. Being close to the wall could be a possible solution difference 

in position.  

 

Figure 5. Position measurement with long radius setup. 

 

Heading was also calculated with a longer radius setup but only two tags were used. 

Meaning that compared to other measurements, heading was obtained from a single pair 

of tags. Results in Figure 23 show a similar but slightly higher difference in heading ac-

curacy compared to other measurements. Maximum heading was 13,7 degrees, heading 

varied between 1–5 degrees with 55,5 % and between 1–8 degrees with 87 %. Results are 

understandable because having only two tags compared to 4 tags decreases accuracy. Be-

cause systems are not identical in that sense, results are not directly proportional, but it 
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can be stated based on two different measurements that increasing speeds decreases head-

ing accuracy.  

 

Figure 6. Rotation heading measurement with long radius setup. 

 

Based on all the measurements, it can be concluded that an accurate heading angle, even 

up to 1-degree accuracy, is possible to obtain using only with the multi-antenna method. 

But the system has local biases which are hard to filter out. It means that heading infor-

mation is not always reliable and thus it should not be used as the only heading calculation 

method. This is due to the systematic error in the positiong system. That is why, a multi-

antenna method should be used instead, together with other heading calculation ways to 

obtain always reliable heading.  

5.3 Heading calculation tests with machine vision 

Machine vision testing initially continued where it was left off in pre-test phase. Based 

on the results from the pre-tests, the camera must be moved to multiple positions for one 

training. This way, the algorithm will be more robust to movement. In the new environ-

ment testing was done with the same platform setup as in the pre-tests. First testing was 

90 degrees measurement with multiple positions in 50 cm radius. Results were the same 

as in the pre-test with 100 % validation accuracy. Second attempt was done by placing 
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the turntable in 4 different positions in a 2 square meter area. Results from this training 

can be seen in Figure 24. Rotation was done with a 5 degrees interval up to 90 degrees. 

100 pictures were taken for each position resulting in a total of 400 pictures for each an-

gle. As seen from the results, the validation accuracy was roughly 90 %. But further test-

ing and validation with data that had pictures in the middle of the area had close to 0 per-

cent success meaning that system is not stable.   

 

Figure 24. Results from 90 degrees rotation measurement with 5 degrees interval 

and 4 corner positions in 2 square meter area. 

 

During the testing phase another algorithm was also implemented and tested. As men-

tioned in more details in chapter 4, the other method is also based on using DL together 

with machine vision. But instead of image recognition, the neural network is used to cal-

culate regression. The tested principle is based on Adrian Rosebrock´s tutorial where 

CNN is used to predict regression. (PyImageSearch 2019) The principle is based on using 

Keras with the TensorFlow backend. 

The dataset for the neural network was obtained the same way using the machine platform 

as in the previous tests. Images were taken inside a small 50 cm radius so that data has 

little variance but the overall similar looking pictures. 100 pictures were taken a total of 
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seven times for each angle resulting to 525 training images and 175 validation images for 

each angle. For the regression method, images were resized to 60 x 60 pixels. After resiz-

ing, datasets were scaled to be between 0 and 1 by dividing it with 360. This will lead to 

better training and convergence. After data is prepared, the Convolutional Neural Net-

work is created and then the model is compiled. The network consists of two hidden lay-

ers, as shown in architecture Figure 25. Model uses mean absolute percentage error as 

loss, meaning that the algorithm seeks to minimize the absolute percentage difference 

between heading prediction and actual heading. Lastly, training is done based on the pre-

trained network parameters and results are demonstrated with verification. 

 

Figure 25. Heading CNN regression architecture diagram.  

 

Table 4 shows results from the regression measurement verification. Results are clearly 

poor because even the best results are still more than 2,000 % off, even though the number 

of angles was kept at 90. Having more angles would make the system more complex and 

would presumably further worsen the results. Due to using a pre-trained network with a 

ready-made architecture, testing of different parameters was limited. The only variable 

that had a positive effect on the results was epoch which means how many times dataset 

is passed through a neural network. For example, changing parameters which affect learn-

ing rate such as batch size only made the results worse. The only viable solution to make 

the current setup work better would be to completely change the architecture of the Neural 

Network. 
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Table 4. Regression measurement validation results. 

# Epoch Angles (°) Interval (°) 
training 
time (s) 

Training 
samples 

Validation 
samples Validation loss (%) 

1 3 90 5 168 12825 4275 6242,24 
2 200 90 5 11200 12825 4275 4081,56 
3 400 90 5 22 400 12825 4275 8443,12 
4 800 90 5 44800 12825 4275 2303,15 

 

Based on the results from both AI methods, it can be concluded that training data is too 

similar with each other. Taking a lot of pictures doesn’t help if all of them have been 

taken from the same situation with the same variables. One way to increase diversity in 

the pictures is to use different outputs from the camera. This way multiple new pictures 

could be taken automatically. But most likely it doesn’t fix the issue because the pictures 

would still share too much similarities. Instead of only changing one aspect like colour 

the whole system should be changed entirely. One example could be to use a drone with 

a camera to obtain the dataset. This way, a drone´s own vibration would add diversity to 

the different angles and on top of that pictures from different heights could be obtained 

more easily 

Another problem with the system is also related to the dataset. The problem is that the 

dataset only included a few positions. If the system would be scaled more bigger so that 

it could work in the whole target area, then the number of pictures would drastically in-

crease. In addition to multiple positions, drone flies in different heights which would even 

further increase complicity and worsen the results. More position and heights increase 

complicity and worsen the results.  
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6 CONCLUSION 

In this thesis, drone indoor flying and heading calculation were studied. Different heading 

calculation methods were discussed and two methods for the indoor use case were pro-

posed and tested. The work was done in collaboration with Nokia. 

The first tested method was a multi-antenna method which showed potential results. With 

testing, it could be proven that heading accuracy can even reach up to 1-degree with good 

repeatability using only the multi-antenna method. But the system has local biases which 

make it not suitable to be used alone for automatic drone navigation. Heading should be 

always reliable and for that very reason biases that affect heading are not acceptable. The 

second method was based on using machine vision together with machine learning. The 

results from the verification were poor. Due to poor results in verification the method 

could not be used with the same testing setup as the multi-antenna method. AI was trained 

with two different methods but neither of them worked as intended. Results were either 

too precise with no adaptivity or too inaccurate to enable heading calculation.  

Currently the multi-antenna method seems a more potential method, so the next develop-

ment is to test it with the real drone. Using an actual drone, the testing can be done indoors 

by controlling the drone manually. Such testing will provide more comprehensive results 

for changing height measurements and enables more realistic testing in general. For ex-

ample, using the drone, it is possible to test heading while moving forward and going up 

or rotating while moving up and down. The main concern in the used multi-antenna 

method was the local biases which were hard to filter out. For that reason, heading calcu-

lation should be refined with other sensor data. One testing worthy example is a flow 

sensor which has already been proven to work with drones. Using position data from a 

flow sensor, the multi-antenna method position could be filtered so that its more robust 

for short bias changes. Other way to use multi-antenna with a drone would be to replace 

a magnetometer and use it instead to compensate gyroscope drift. It is already proven that 

a multi-antenna method can give out accurate heading so instead of using it as main head-

ing source, it could potentially help keep a gyro from drifting. In this example, local biases 

would still exist, so their effect could possibly ruin this method.  



 

64 

 

As for the machine vision part, the machine learning component should be left out. Learn-

ing from pictures is time consuming and is proven to be inefficient. The most troubling 

aspect is that to make drone heading calculation work universally in the environment, 

there needs to be pictures from many heights and position. For that kind of work, it would 

be convenient to use an automatically flying drone which could take pictures from all the 

possible heights and positions. But that kind of system needs already working indoor 

heading calculation meaning that it defeats the purpose. Instead of using machine learn-

ing, focus should be on the more traditional machine vision. Determination of orientation 

would be based on for example detecting corners of the room and calculating changes in 

those. This way, the system could be easily imported to other places also. A simpler so-

lution could be to mark environment floor and use a downward looking camera to deter-

mine orientation with machine vision. This method has only the downside that it is de-

pendent on the environment. 

Based on the research in different heading calculations, the HTC Vive VR system will 

also be tested as a next development. VR technology is becoming more available and 

prices are bound to decrease while new VR equipment keep on coming to the market. 

There are already components on the market which developers can use to make custom 

objects for tracking. While writing this thesis Bitcraze has also released an early access 

product which uses HTC Vive base stations for pose and position calculation. While the 

Vive system has limitations with environment dependency, it offers promising accuracy 

and high update rate. It could work as a ground truth for other heading measurement 

testing’s if it doesn’t enable automatic navigation.  
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