54 research outputs found

    Aquatic escape for micro-aerial vehicles

    Get PDF
    As our world is experiencing climate changes, we are in need of better monitoring technologies. Most of our planet is covered with water and robots will need to move in aquatic environments. A mobile robotic platform that possesses efficient locomotion and is capable of operating in diverse scenarios would give us an advantage in data collection that can validate climate models, emergency relief and experimental biological research. This field of application is the driving vector of this robotics research which aims to understand, produce and demonstrate solutions of aerial-aquatic autonomous vehicles. However, small robots face major challenges in operating both in water and in air, as well as transition between those fluids, mainly due to the difference of density of the media. This thesis presents the developments of new aquatic locomotion strategies at small scales that further enlarge the operational domain of conventional platforms. This comprises flight, shallow water locomotion and the transition in-between. Their operating principles, manufacturing methods and control methods are discussed and evaluated in detail. I present multiple unique aerial-aquatic robots with various water escape mechanisms, spanning over different scales. The five robotic platforms showcased share similarities that are compared. The take-off methods are analysed carefully and the underlying physics principles put into light. While all presented research fulfils a similar locomotion objective - i.e aerial and aquatic motion - their relevance depends on the environmental conditions and supposed mission. As such, the performance of each vehicle is discussed and characterised in real, relevant conditions. A novel water-reactive fuel thruster is developed for impulsive take-off, allowing consecutive and multiple jump-gliding from the water surface in rough conditions. At a smaller scale, the escape of a milligram robotic bee is achieved. In addition, a new robot class is demonstrated, that employs the same wings for flying as for passive surface sailing. This unique capability allows the flexibility of flight to be combined with long-duration surface missions, enabling autonomous prolonged aquatic monitoring.Open Acces

    Perching with fixed wings

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (leaves 43-46).Human pilots have the extraordinary ability to remotely maneuver small Unmanned Aerial Vehicles (UAVs) far outside the flight envelope of conventional autopilots. Given the tremendous thrust-to-weight ratio available on these small machines [1, 2], linear control approaches have recently produced impressive demonstrations that come close to matching this agility for a certain class of aerobatic maneuvers where the rotor or propeller forces dominate the dynamics of the aircraft [3, 4, 5]. However, as our flying machines scale down to smaller sizes (e.g. Micro Aerial Vehicles) operating at low Reynold's numbers, viscous forces dominate propeller thrust [6, 7, 8], causing classical control (and design) techniques to fail. These new technologies will require a different approach to control, where the control system will need to reason about the long term and time dependent effects of the unsteady fluid dynamics on the response of the vehicle. Perching is representative of a large class of control problems for aerobatics that requires and agile and robust control system with the capability of planning well into the future. Our experimental paradigm along with the simplicity of the problem structure has allowed us to study the problem at the most fundamental level. This thesis presents methods and results for identifying an aerodynamic model of a small glider at very high angles-of-attack using tools from supervised machine learning and system identification. Our model then serves as a benchmark platform for studying control of perching using an optimal control framework, namely reinforcement learning. Our results indicate that a compact parameterization of the control is sufficient to successfully execute the task in simulation.by Rick E. Cory.S.M

    The Characterization of Material Properties and Structural Dynamics of the Manduca Sexta Forewing for Application to Flapping Wing Micro Air Vehicle Design

    Get PDF
    The Manduca Sexta species of moth serves as a source of biological inspiration for the future of micro air vehicle flapping flight. The ability of this species to hover in flapping flight has warranted investigation into the critical material, structural, and geometric properties of the forewing of this biological specimen. A rigorous morphological study of the Manduca Sexta forewing was conducted to characterize the physical and material properties of the biological forewing for the purpose of developing an advanced parametric three dimensional model finite element analysis (FEA) model. This FEA model was tuned to match the experimentally determined structural dynamics of the biological specimen and serves as the basis for an engineered wing design. Manufacturing methods are developed and implemented to fabricate the baseline engineered wing design. Biological wings and engineered wings are experimentally tested to determine the aerodynamic lift production of each of wings under the same boundary conditions. Through this research, a structural dynamics based engineering methodology has been used to design, develop, and identify biomimetic engineered wings that experimentally produce aerodynamic forces equivalent to their biological analog

    Power Requirements for Bi-harmonic Amplitude and Bias Modulation Control of a Flapping Wing Micro Air Vehicle

    Get PDF
    Flapping wing micro air vehicles (FWMAV) have been a growing field in the research of micro air vehicles, but little emphasis has been placed on control theory. Research is ongoing on how to power FWMAVs where mass is a major area of concern. However, there is little research on the power requirements for the controllers to manipulate the wings of a FWMAV. A novel control theory, BABM, allows two actuators to produce forces and moments in five of the FWMAV\u27s six DOF. Several FWMAV prototypes were constructed and tested on a six-component balance. Data was collected for varying control parameters and the generated forces were measured. The results mapped control parameters to different degrees of freedom. The force required to generate desirable motion and power required to generate that motion was plotted and evaluated. These results can be used to generate a minimum power controller in the future. The results showed that BABM control required a 26% increase in power in order to increase lift by 22%. The lift increase was accomplished by increasing the amplitude by 10% over the established baseline. The data also showed that varying some parameters actually decreased the power requirements, allowing other parameters to increase which in turn would enable more complex maneuvers. For instance, an asymmetric change in split-cycle shift of + or - 0.25 decreased the power required by 14% and decreased the lift by 25%. Changing the stroke bias to + or - 0.75 had a negligible effect on power but decreased the lift by 27%. Furthermore, the data identified certain parameter combinations which resulted in other forces and moments. These results identified how BABM be used as a control theory for the control of FWMAVs

    Development of Optimized Piezoelectric Bending Actuators for Use in an Insect Sized Flapping Wing Micro Air Vehicle

    Get PDF
    Piezoelectric bimorph actuators, as opposed to rotary electric motors, have been suggested as an actuation mechanism for flapping wing micro air vehicles (FWMAVs) because they exhibit favorable characteristics such as low weight, rapidly adaptable frequencies, lower acoustic signature, and controllable flapping amplitudes. Research at the Air Force Research Labs and the Air Force Institute of Technology has shown that by using one actuator per wing, up to five degrees of freedom are possible. However, due to the weight constraints on a FWMAV, the piezoelectric bimorph actuators need to be fully optimized to support free flight. This study focused on three areas of investigation in order to optimize the piezoelectric actuators: validating and improving analytical models that have been previously suggested for the performance of piezoelectric bimorph actuators; identifying the repeatability and reliability of current custom manufacturing techniques; and determining the failure criteria for piezoelectric actuators so that they can be driven at the highest possible voltage. Through the optimization, manufacturing, and performance testing of piezoelectric bimorphs, analytical models have been adjusted to fit the empirical data to yield minimum mass actuators that could potentially meet the mechanical energy requirements in a FWMAV. For custom manufactured actuators, optimized tapered actuators with an end extension showed an 89.5% energy density improvement over optimized rectangular actuators and a 19.5% improvement in energy density over commercially available actuators

    Biorobotics: Using robots to emulate and investigate agile animal locomotion

    Get PDF
    The graceful and agile movements of animals are difficult to analyze and emulate because locomotion is the result of a complex interplay of many components: the central and peripheral nervous systems, the musculoskeletal system, and the environment. The goals of biorobotics are to take inspiration from biological principles to design robots that match the agility of animals, and to use robots as scientific tools to investigate animal adaptive behavior. Used as physical models, biorobots contribute to hypothesis testing in fields such as hydrodynamics, biomechanics, neuroscience, and prosthetics. Their use may contribute to the design of prosthetic devices that more closely take human locomotion principles into account

    IMPROVED PREDICTION OF FLAPPING WING AERIAL VEHICLE PERFORMANCE THROUGH COMPONENT INTERACTION MODELING

    Get PDF
    Flapping wing aerial vehicles offer the promise of versatile performance, however prediction of flapping wing aerial vehicle performance is a challenging task because of complex interconnectedness in vehicle functionality. To address this challenge, performance is estimated by using component-level modeling as a foundation. Experimental characterization of the drive motors, battery, and wings is performed to identify important functional characteristics and enable selection of appropriate modeling techniques. Component-level models are then generated that capture the performance of each vehicle component. Validation of each component-level model shows where errors are eliminated by capturing important dynamic functionality. System-level modeling is then performed by creating linkages between component-level models that have already been individually validated through experimental testing, leading to real-world functional constraints that are realized and correctly modeled at the system level. The result of this methodology is a system-level performance prediction that offers the ability to explore the effects of changing vehicle components as well as changing functional properties, while maintaining computational tractability. Simulated results are compared to experimental flight test data collected with an instrumented flapping wing aerial vehicle, and are shown to offer good accuracy in estimation of system-level performance properties
    corecore