34 research outputs found

    Certifying floating-point implementations using Gappa

    Full text link
    High confidence in floating-point programs requires proving numerical properties of final and intermediate values. One may need to guarantee that a value stays within some range, or that the error relative to some ideal value is well bounded. Such work may require several lines of proof for each line of code, and will usually be broken by the smallest change to the code (e.g. for maintenance or optimization purpose). Certifying these programs by hand is therefore very tedious and error-prone. This article discusses the use of the Gappa proof assistant in this context. Gappa has two main advantages over previous approaches: Its input format is very close to the actual C code to validate, and it automates error evaluation and propagation using interval arithmetic. Besides, it can be used to incrementally prove complex mathematical properties pertaining to the C code. Yet it does not require any specific knowledge about automatic theorem proving, and thus is accessible to a wide community. Moreover, Gappa may generate a formal proof of the results that can be checked independently by a lower-level proof assistant like Coq, hence providing an even higher confidence in the certification of the numerical code. The article demonstrates the use of this tool on a real-size example, an elementary function with correctly rounded output

    A Verified Certificate Checker for Finite-Precision Error Bounds in Coq and HOL4

    Full text link
    Being able to soundly estimate roundoff errors of finite-precision computations is important for many applications in embedded systems and scientific computing. Due to the discrepancy between continuous reals and discrete finite-precision values, automated static analysis tools are highly valuable to estimate roundoff errors. The results, however, are only as correct as the implementations of the static analysis tools. This paper presents a formally verified and modular tool which fully automatically checks the correctness of finite-precision roundoff error bounds encoded in a certificate. We present implementations of certificate generation and checking for both Coq and HOL4 and evaluate it on a number of examples from the literature. The experiments use both in-logic evaluation of Coq and HOL4, and execution of extracted code outside of the logics: we benchmark Coq extracted unverified OCaml code and a CakeML-generated verified binary

    Efficient search for inputs causing high floating-point errors

    Get PDF
    pre-printTools for floating-point error estimation are fundamental to program understanding and optimization. In this paper, we focus on tools for determining the input settings to a floating point routine that maximizes its result error. Such tools can help support activities such as precision allocation, performance optimization, and auto-tuning. We benchmark current abstraction-based precision analysis methods, and show that they often do not work at scale, or generate highly pessimistic error estimates, often caused by non-linear operators or complex input constraints that define the set of legal inputs. We show that while concrete-testing-based error estimation methods based on maintaining shadow values at higher precision can search out higher error-inducing inputs, suitable heuristic search guidance is key to finding higher errors. We develop a heuristic search algorithm called Binary Guided Random Testing (BGRT). In 45 of the 48 total benchmarks, including many real-world routines, BGRT returns higher guaranteed errors. We also evaluate BGRT against two other heuristic search methods called ILS and PSO, obtaining better results

    Metalibm: A Mathematical Functions Code Generator

    Get PDF
    International audienceThere are several different libraries with code for mathematical functions such as exp, log, sin, cos, etc. They provide only one implementation for each function. As there is a link between accuracy and performance, that approach is not optimal. Sometimes there is a need to rewrite a function's implementation with the respect to a particular specification. In this paper we present a code generator for parametrized implementations of mathematical functions. We discuss the benefits of code generation for mathematical libraries and present how to implement mathematical functions. We also explain how the mathematical functions are usually implemented and generalize this idea for the case of arbitrary function with implementation parameters. Our code generator produces C code for parametrized functions within a known scheme: range reduction (domain splitting), polynomial approximation and reconstruction. This approach can be expanded to generate code for black-box functions, e.g. defined only by differential equations

    Computing floating-point logarithms with fixed-point operations

    Get PDF
    International audienceElementary functions from the mathematical library input and output floating-point numbers. However it is possible to implement them purely using integer/fixed-point arithmetic. This option was not attractive between 1985 and 2005, because mainstream processor hardware supported 64-bit floating-point, but only 32-bit integers. Besides, conversions between floating-point and integer were costly. This has changed in recent years, in particular with the generalization of native 64-bit integer support. The purpose of this article is therefore to reevaluate the relevance of computing floating-point functions in fixed-point. For this, several variants of the double-precision logarithm function are implemented and evaluated. Formulating the problem as a fixed-point one is easy after the range has been (classically) reduced. Then, 64-bit integers provide slightly more accuracy than 53-bit mantissa, which helps speed up the evaluation. Finally, multi-word arithmetic, critical for accurate implementations, is much faster in fixed-point, and natively supported by recent compilers. Novel techniques of argument reduction and rounding test are introduced in this context. Thanks to all this, a purely integer implementation of the correctly rounded double-precision logarithm outperforms the previous state of the art, with the worst-case execution time reduced by a factor 5. This work also introduces variants of the logarithm that input a floating-point number and output the result in fixed-point. These are shown to be both more accurate and more efficient than the traditional floating-point functions for some applications

    Hardware-Independent Proofs of Numerical Programs

    Get PDF
    On recent architectures, a numerical program may give different answers depending on the execution hardware and the compilation. Our goal is to formally prove properties about numerical programs that are true for multiple architectures and compilers. We propose an approach that states the rounding error of each floating-point computation whatever the environment. This approach is implemented in the Frama-C platform for static analysis of C code. Small case studies using this approach are entirely and automatically prove

    A certified infinite norm for the implementation of elementary functions

    Get PDF
    The version available on HAL is slightly different from the published version because it contains full proofs.International audienceThe high-quality floating-point implementation of useful functions f : R -> R, such as exp, sin, erf requires bounding the error eps = (p-f)/f of an approximation p with regard to the function f. This involves bounding the infinite norm ||eps|| of the error function. Its value must not be underestimated when implementations must be safe. Previous approaches for computing infinite norm are shown to be either unsafe, not sufficiently tight or too tedious in manual work. We present a safe and self-validating algorithm for automatically upper- and lower-bounding infinite norms of error functions. The algorithm is based on enhanced interval arithmetic. It can overcome high cancellation and high condition number around points where the error function is defined only by continuous extension. The given algorithm is implemented in a software tool. It can generate a proof of correctness for each instance on which it is run

    Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis

    Get PDF
    This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA

    Provably Correct Floating-Point Implementation of a Point-In-Polygon Algorithm

    Get PDF
    The problem of determining whether or not a point lies inside a given polygon occurs in many applications. In air traffic management concepts, a correct solution to the point-in-polygon problem is critical to geofencing systems for Unmanned Aerial Vehicles and in weather avoidance applications. Many mathematical methods can be used to solve the point-in-polygon problem. Unfortunately, a straightforward floating- point implementation of these methods can lead to incorrect results due to round-off errors. In particular, these errors may cause the control flow of the program to diverge with respect to the ideal real-number algorithm. This divergence potentially results in an incorrect point-in- polygon determination even when the point is far from the edges of the polygon. This paper presents a provably correct implementation of a point-in-polygon method that is based on the computation of the winding number. This implementation is mechanically generated from a source- to-source transformation of the ideal real-number specification of the algorithm. The correctness of this implementation is formally verified within the Frama-C analyzer, where the proof obligations are discharged using the Prototype Verification System (PVS)
    corecore