20 research outputs found

    Separation Logic for Small-step Cminor

    Get PDF
    Cminor is a mid-level imperative programming language; there are proved-correct optimizing compilers from C to Cminor and from Cminor to machine language. We have redesigned Cminor so that it is suitable for Hoare Logic reasoning and we have designed a Separation Logic for Cminor. In this paper, we give a small-step semantics (instead of the big-step of the proved-correct compiler) that is motivated by the need to support future concurrent extensions. We detail a machine-checked proof of soundness of our Separation Logic. This is the first large-scale machine-checked proof of a Separation Logic w.r.t. a small-step semantics. The work presented in this paper has been carried out in the Coq proof assistant. It is a first step towards an environment in which concurrent Cminor programs can be verified using Separation Logic and also compiled by a proved-correct compiler with formal end-to-end correctness guarantees.Comment: Version courte du rapport de recherche RR-613

    Krivine realizability for compiler correctness

    Get PDF
    We propose a semantic type soundness result, formalized in the Coq proof assistant, for a compiler from a simple functional language to SECD machine code. Our result is quite independent from the source language as it uses Krivine's realizability to give a denotational semantics to SECD machine code using only the type system of the source language. We use realizability to prove the correctness of both a call-by-name (CBN) and a call-by-value (CBV) compiler with the same notion of orthogonality. We abstract over the notion of observation (e.g. divergence or termination) and derive an operational correctness result that relates the reduction of a term with the execution of its compiled SECD machine code

    Crowfoot: a verifier for higher-order store programs

    Get PDF
    We present Crowfoot, an automatic verification tool for imperative programs that manipulate procedures dynamically at runtime; these programs use a heap that can store not only data but also code (commands or procedures). Such heaps are often called higher-order store, and allow for instance the creation of new recursions on the fly. One can use higher-order store to model phenomena such as runtime loading and unloading of code, runtime update of code and runtime code generation. Crowfoot's assertion language, based on separation logic, features nested Hoare triples which describe the behaviour of procedures stored on the heap. The tool addresses complex issues like deep frame rules and recursion through the store, and is the first verification tool based on recent developments in the mathematical foundations of Hoare logics with nested triples

    A practical logic framework for verifying safety properties of executables

    Get PDF
    ManuscriptWe present a novel program logic, Lf , which is designed on top of a Hoare logic, but is simpler, more flexible and more scalable. Based on Lf , we develop a framework for automatically verifying safety properties of executables. It utilizes a whole-program interprocedural abstract interpretation to automatically discover the specifications needed by Lf to prove a program judgment. We implemented Lf and the framework in the HOL theorem prover

    Function extraction

    Get PDF
    AbstractLow-level imperative programming languages typically have complex operational semantics (e.g. derived from an underlying processor architecture). In this paper, we describe an automatic method for extracting recursive functions from such low-level programs. The functions are derived by formal deduction from the semantics of the programming language. For each function extracted, a proof of correspondence to the original program is automatically constructed. Subsequent program verification can then be done without referring to the details of the low-level programming language semantics at all: it suffices to prove properties of the extracted function. The technique is explained for simple while programs and also for the machine code of a widely used processor. We show how heuristics can enhance the output from the function extractor/decompiler and how the technique aids implementation of a trustworthy compiler. Our tools have been implemented in the HOL4 theorem prover

    ARMor: fully verified software fault isolation

    Get PDF
    ManuscriptWe have designed and implemented ARMor, a system that uses software fault isolation (SFI) to sandbox application code running on small embedded processors. Sandboxing can be used to protect components such as the RTOS and critical control loops from other, less-trusted components. ARMor guarantees memory safety and control flow integrity; it works by rewriting a binary to put a check in front of every potentially dangerous operation. We formally and automatically verify that an ARMored application respects the SFI safety properties using the HOL theorem prover. Thus, ARMor provides strong isolation guarantees and has an exceptionally small trusted computing base-there is no trusted compiler, binary rewriter, verifier, or operating system

    Compiler verification meets cross-language linking via data abstraction

    Get PDF
    Many real programs are written in multiple different programming languages, and supporting this pattern creates challenges for formal compiler verification. We describe our Coq verification of a compiler for a high-level language, such that the compiler correctness theorem allows us to derive partial-correctness Hoare-logic theorems for programs built by linking the assembly code output by our compiler and assembly code produced by other means. Our compiler supports such tricky features as storable cross-language function pointers, without giving up the usual benefits of being able to verify different compiler phases (including, in our case, two classic optimizations) independently. The key technical innovation is a mixed operational and axiomatic semantics for the source language, with a built-in notion of abstract data types, such that compiled code interfaces with other languages only through axiomatically specified methods that mutate encapsulated private data, represented in whatever formats are most natural for those languages.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293)United States. Dept. of Energy. Office of Science (Award DE-SC0008923

    A Verified Information-Flow Architecture

    Get PDF
    SAFE is a clean-slate design for a highly secure computer system, with pervasive mechanisms for tracking and limiting information flows. At the lowest level, the SAFE hardware supports fine-grained programmable tags, with efficient and flexible propagation and combination of tags as instructions are executed. The operating system virtualizes these generic facilities to present an information-flow abstract machine that allows user programs to label sensitive data with rich confidentiality policies. We present a formal, machine-checked model of the key hardware and software mechanisms used to dynamically control information flow in SAFE and an end-to-end proof of noninterference for this model. We use a refinement proof methodology to propagate the noninterference property of the abstract machine down to the concrete machine level. We use an intermediate layer in the refinement chain that factors out the details of the information-flow control policy and devise a code generator for compiling such information-flow policies into low-level monitor code. Finally, we verify the correctness of this generator using a dedicated Hoare logic that abstracts from low-level machine instructions into a reusable set of verified structured code generators

    Iris-Wasm: robust and modular verification of WebAssembly programs

    Get PDF
    WebAssembly makes it possible to run C/C++ applications on the web with near-native performance. A WebAssembly program is expressed as a collection of higher-order ML-like modules, which are composed together through a system of explicit imports and exports using a host language, enabling a form of higher- order modular programming. We present Iris-Wasm, a mechanized higher-order separation logic building on a specification of Wasm 1.0 mechanized in Coq and the Iris framework. Using Iris-Wasm, we are able to specify and verify individual modules separately, and then compose them modularly in a simple host language featuring the core operations of the WebAssembly JavaScript Interface. Building on Iris-Wasm, we develop a logical relation that enforces robust safety: unknown, adversarial code can only affect other modules through the functions that they explicitly export. Together, the program logic and the logical relation allow us to formally verify functional correctness of WebAssembly programs, even when they invoke and are invoked by unknown code, thereby demonstrating that WebAssembly enforces strong isolation between modules

    From Network Interface to Multithreaded Web Applications: A Case Study in Modular Program Verification

    Get PDF
    Many verifications of realistic software systems are monolithic, in the sense that they define single global invariants over complete system state. More modular proof techniques promise to support reuse of component proofs and even reduce the effort required to verify one concrete system, just as modularity simplifies standard software development. This paper reports on one case study applying modular proof techniques in the Coq proof assistant. To our knowledge, it is the first modular verification certifying a system that combines infrastructure with an application of interest to end users. We assume a nonblocking API for managing TCP networking streams, and on top of that we work our way up to certifying multithreaded, database-backed Web applications. Key verified components include a cooperative threading library and an implementation of a domain-specific language for XML processing. We have deployed our case-study system on mobile robots, where it interfaces with off-the-shelf components for sensing, actuation, and control.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293
    corecore