View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by The University of Utah: J. Willard Marriott Digital Library

A Practical Logic Framework for Verifying Safety
Properties of Executables

Lu Zhao Guodong Li John Regehr
University of Utah
{luzhao,ligd,regehi@cs.utah.edu

Abstract—We present a novel program logic, £¢, which is The structure ofL; has three layers. The bottom layer is
designed on top of a Hoare logic, but is simpler, more flexible instruction semantics. In principle, any sound formal semantics
and more scalable. Based onCy, we develop a framework \qrks and there exists independently developed, well-vetted,

for automatically verifying safety properties of executables. It listic f | tics f instructi t hit
utilizes a whole-program interprocedural abstract interpretation realistic rormal sémantics Tor common instruction set architec-

to automatically discover the specifications needed by sto prove ~ tures, such as ARM [4], [5] and x86 [18]. The middle layer is
a program judgment. We implemented £ sand the framework in Hoare judgments of code blocks. We implement this layer by

the HOL theorem prover. a Hoare logic that has compositional rules for code blocks.

ydmosnuepy soyny Y1 NN

[. INTRODUCTION The top layer, as the core dfy, is hierarchical function

)) djudgments. A function is roughly equivalent to a function
It is challenging to formally reason about executable codgpnstructed by a binary rewriting/analysis tool. Such tool can

because it lacks high-level abstractions such as types, dgéompile an executable, construct a conservative control flow
structures and structured control flow. Some research rb}gph' and build functions by using call/return conventions,
addressed various issues in formally verifying machine codegysides other functionalities [11], [23]. A function has code
low-level code [2], [14], [15], [17], [20], [22], [24]. However, pjocks and calls to other functions. We abstract the calls
it is still impractical or very inefficient to verify some critical by well-formed nodeswhich also have a precondition and
safety properties about executables emitted by a productirhostcondition: the precondition is the initial condition of
compiler such as GCC using theorem proving. a callee, and the postcondition is the condition that holds
We present a novel program logic framework for automajyhen the callee returns. We define the relationship among the
ically proving safety properties about real-world executablegoare judgments of the code blocks and the callee nodes:
Its theoretical foundation is a new program logig, designed for each node, the postconditions of its predecessors imply its
on top of a Hoare logic. A Hoare logic describes code with gecondition. The final judgment of a program is the judgment
triplet judgment:{p} ¢ {¢}, wherep andq are the pre- and of the top-level or entry function.
post-conditions of code specifying the states before and after
the execution of the code, respectively [7], [10]. The reasoningThe hierarchical function judgments have several advan-
process is to compose the judgment of a piece of code fragyes over a traditional Hoare logic. First, it does not compose
judgments of smaller codes using inference rules, until thger code blocks, so it does not need rules for loops or any
judgment of an entire program is achieved. arbitrary jumps. Nor a termination proof. The definition of
It is simple to compose judgments of sequential code withe function judgment handles both infinite and finite loops.
a sequencing rule [7]. However, it is difficult to handle unSecond, it naturally divides an executable into object-code
structured control flows, because for each type of control flofeinctions, and the reasoning process examines one function
transfers, it requires proving some inference rules and usiaga time. As a result, it easily scales to an entire program.
them interactively [13]. For example, in order to specify &hird, it facilitates proof automation in two ways. One is the
loop, it requires a loop rule and a termination proof; this is n@omposition of judgments of code blocks, whose sequential
acceptable for reasoning about embedded code where condtalcture is simple enough that we automate the composition
loops are often infinite. In addition, the goal of composing lay meta-language programming. The other is utilizing inter-
monolithic judgment for an entire program has not been showrocedural abstract interpretations to automatically discover
useful in practice, because it is not scalable. the relationship among Hoare judgments in verifying shallow
Our idea is keeping the simple part of a Hoare logic: consafety properties.
position of code blockswhich only have sequential control
flows, such as a basic block or a super block; beyond codeThe first two layers ofL; have been well studied in
blocks, we design a novel scalable logic structure which do@erature, and in this paper, we focus on the hierarchical
not require compositional rules and which makes it possibienction judgments (Section II) and an application 0f:
to automate the entire proof of safety properties. This resultadtomatic verification of safety properties with assistance of
in £ (a logic with hierarchical function judgments). interprocedural abstract interpretations (Section IlI).

ydmosnuepy soyny Y1 NN

https://core.ac.uk/display/276283529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ydmosnuepy soyny Y1 NN

ydmosnuepy soyny Y1 NN

University of Utah Institutional Repository
Author Manuscript

<entryFun>

bl k1: (0x0, OXE3AOD441) //rmov r13, #0x41000000 first compose the Hoare judgments of code blocks, and the
(0x4, OxE3A00000) //nov r0,#0 results show what conditions are required in order for a block
(0x8, OxE1A01000) //nmov rl,r0 to execute safely. For example, blk4’s precondition requires
~ (OxC,OxEB000000) //bl foo (branch to f00) (.9} C mem and bIk5 requires14 € succ(0x2C) (similar
E:‘ gg; (0x10, OXBAFFFFFE) //b +#0 (branch to blk2) blk3). Next, we reason about the relationship among the

Hoare judgments of block 3, 4 and 5 (of functibno). We

bl k3: (0x14, 0xE2411001) //sub r1,r1, #0x1 4) X
(0x18, 0xE3320101) //teq r2, #0x40000000 follow and verify the CFG of the function and derive the fact

(Ox1C, 0x11A0F00E) //movne pc,rl4 (ret neq) that the postcondition of blk3 (from 0x1C to 0x20) satisfies
bl k4: (0x20, 0xESC21000) //strb ri,[r2] (str byte)that register R2 has valui40000000, which discharges the
(0x24, 0xE3310000) //teq rl, #0x0 (test €q) .qnjition of blka. However, the two assertions of the control
(0x28, OX1AFFFFF9) //bne foo (branch neq)
bl k5: (0x2C, OxelaOf 00e) //mov pc,rl4 (return) flow integrity of blk3 and blk5 can not be discharged inside
f oo, and they are propagated to the preconditionf ob
by an abstract interpretation. We next abstract the function
into a Hoare judgment, which can be fed into its caller,
ent r yFun, and which behaves like the judgments of blkl
and blk2 (Figure 1.c). We reason about the relationship among
the three Hoare judgments eht r yFun: of blkl, of blk2,
and of the abstractefloo, and we are able to discharge the
two assertions of 0o. The final result is a program judgment:

PROG SPEC SAFE I NS entryFun 0x0 pred bspec

(a) Program code

i

(b) Program CFG

bbl 0x0

Informally, it means that the program holds its memory safety
and control flow integrity with respect to a given specifica-
tion. We will discuss in detail how we formally reach this
conclusion (Section V).

It is worth to point out that verifying memory safety is
not always possible in real-world executables, because telling
that every store operation is confined to pre-defined regions
A. An Example is undecidable in general. In order to make proof possi-

To explainZ; and to show how it works, we take the examble in practice, we insert necessary dynamic checks before
ple of provingmemory safetystore operations are confined tgdangerous stores whose addresses can not be determined
pre-defined regions, armbntrol flow integrity execution may statically, and this instrumentation is done by transforming
not escape a pre-determined control flow graph (CFG), ab@it executable with a binary rewriter. We also get the CFG
the ARM executable shown in Figure 1. policy of the rewritten executable from the rewriter. These

For memory safety, we want to prove that it only writepractical considerations affect if a proof attempt succeeds. For
to a memory sectiomem = {a|0240000000 < a A a < Instance, if there was not blk3 in Figure 1.a, our proof of
0x41000100}. For control flow integrity, we need a CFGthe memory safety would simply fail (in fact, any kind of
policy (Figure 1.b). The CFG policy of an executable may beerification attempt would fail), and we could not derive the
computed by a binary analysis tool, or by hand. How the CF@ove program judgment. However, they are not irrelevant to
policy is computed is irrelevant t6 ;; what is critical is that how £; works, and we have omitted thefn.

L verifies that the executable respects the given CFG policy.We implemented_; and the framework for verifying safety
We model the CFG policy by a functiosaucc: given an properties in the HOL theorem prover [8]; we automatically
address of an instruction, it returns the set of addresses whifeved the memory safety and control flow integrity of rewrit-
the control goes. Suppose the given CFG policy of the examj® ARM executables, including some MiBench programs [9].
is (computed by hand):isucc i = {0zC — {0x14},0210 —

{0210}, 021C — {0220, 0210}, 0228 — {0x14,022CY}, 022C — . Ly

{0z10},7 — {3 + Oz4}}, where — means a parameter-return We design the first layer of ; to utilize an existing formal
value pair. For brevity, we use— {i + Ox4} to denote the ARM semantics, and it comes in as proven Hoare triples in the
PC relation inside a basic block without explicitly listing themHOL theorem prover [5], [13]. Figure 2 shows the semantics
(it is only used after other lookup fail$). for a store instruction: strb ri, [r2]. It says that after execution

For this program/ s establishes that the strb instruction irof the instruction, the value at memory address r2 is updated
blk4 does not violate the memory safety, and the two indiretd the least significant byte of ri@w converts a 32-bit word
jumps at 0x1C and 0x2C follow the given CFG policy. Weénto an 8-bit word), and the program counter (PC) increased

bbl 0x10

(c) Abstracted function nodes

Fig. 1. An example

1if the given CFG policy is too small, or does not coincide with the 2Determining which stores are dangerous and inserting dynamic checks for
executable, a proof attempt will fail. them are challenging by themselves and deserve their own research.

ydmosnuepy soyny Y1 NN

ydmosnuepy soyny Y1 NN

University of Utah Institutional Repository
Author Manuscript

Label Exp x StatePred

Ilp € LabelPred
l word32

{PCpxR27r2xR17rlxNMEMORY dom f «(r2 € dom)} € LabelExp

(p,0XE5C21000) // strb r1,[r2] p € StatePred separating conjunction expression
{PC(p+4)*R272+R1 rlx Its interpretation is defined by a semantic functib/®2 SP,
MEMORY dom ((r2 — (w2wr1)) f)} and another function,PSET, interprets a set of label predi-
cates:
Fig. 2. Axiomatic semantics of strb r1, [r2] LP2SP (I, p) =PC1l *p

LPSET P = Xs. (3p. Ip € P A (LP2SP Ip) s)

by 4. From our perspective, those theorems are equivalent ket 2 he the subsumption relation between two sets of label
instruction axioms in an axiomatic semantics, since we taRéedicates:
those theorems as granted and build our logic on top of it. This
semantics has some important properties which we summarize
below. For a full treatment, interested readers may refer to thewe define the following rule in order to use the existing
references mentioned above. semantics inL;, and it converts an instruction axiom to

; ; ; other theorem that uses the syntax of label predicates. The
« Machine states include registers, memory cells, Statﬂeeason for the conversion is that it is easy for the meta logic to

flags, and the current program status register. For exafjserate on a pair, but it is difficult to operate on theperator.
ple, PC p in the precondition of Figure 2 asserts thahnother advantage of label predicates will become clear when
the program counter has valye and thatp is word- we define the function judgment later.

aligned;R 2 2 andR 1 r1 assert that registers R2 and {PC 1% p} ins {PCI % g}

R1 have values2 andr1, respectivelyMEMORY dom f ORG_INS (I, p) ins (I, q) Ins
asserts that some set of memory addresées has -

value f (these are symbolic values). The operator g A Hoare Logic

in the meta logic updates a function on a given value 1o miggje layer ofL; is a multi-entry multi-exit Hoare
while keeping other values unchanged, whose definitiqiqgment with a set of label predicates as its assertion lan-

is:a — b= Af c. (ifa =-cthenbelsef c). Other guage. We use at ep relation to bridge state transitions in
machine state assertions incluBé v: one of the status £y and the existing axiomatic semantics.

flagst (carry sC, negativesN, overflowsV, or zerosZ)
has valuev.

« The * operator is a version of separating conjunctiorwhereir is a parameterized relation of instruction transition,
which has important properties as in the separatisramely, an instruction semantics. It can be the existing instruc-
logic [19]: (1) a triple only asserts the change of a locdion semantics introduced aboveRG | NS), or an augmented
state (the parts of state that are used by the instructiomgrsion for proving safety properties (to be described later). It
and a global version may be achieved by using the Frarsays that a transition from stateto statet by instructions
rule; (2) if a separating conjunction expression assemgder a given semantics is equivalent to a transition fscim
a machine resource more than once (excluding a purenade by the instruction under the semantics.
assertion), then its value fsal se. Based on thet ep relation, we implemented a Hoare logic.

« () represents a pure assertion [19], i.e., it does not assBeicause Hoare logic has been well studied in literature, we
any machine resource but serves as a predicate to spebiye omitted its details. We summarize the important results
the boolean relationship between variablg€ € dom) below. Interested readers may refer to [6], [14] for detailed
says thatr2 has to be in the domain of the memonydiscussions.

P2 Qiff (LPSET P)= (LPSET Q)

step iristiff Ipq. (ir pig) A (LP2SP p) s A (LP2SP q) ¢

function f in order for this transition to take place. « We write a Hoare judgment aSPEC ir {P} C {Q},
« The pair, (p,0XESC21000), represents code assertion whereir is the semantic parameter discussed abdve,
for the instruction, meaning that the valoRESC21000 and @ are sets of label predicates, adtlis a set of
is stored at the memory addresspof labeled instructions. Its interpretation is that if there exists
« Some boolean operators such as implicaties) (and a true label predicate in the precondition, then there exists
disjunction {) are lifted to the separating conjunction a true label predicate in the postcondition some steps
level. For examplep = ¢ meansks. (p s = ¢ s); p¥Yq later.
iSAs. (psVqs). « We proved many useful inference rules including those

bel di for composing code blocks, such as sequencing, frame,
A. Label Predicates and strengthen, etc. For example, the LPMerge rules

The assertion language ifi; is a set of label predicates combine and split label predicate entries which have the

A label predicate is a pair of a label (instruction address) ; ; ;
and a predicate, interpreted as that the predicate holds at the Z?DFEZ) label (Figure 3.a. We have omitted the leading

associated label. A set of label predicates means that there is)))
a true label predicate in the set. Formally, the syntax of a labels The Hoare logic has only one role ifi;: composing
predicate is judgments of code blocks, because it is simple and can be

University of Utah Institutional Repository
Author Manuscript

ydmosnuepy soyny Y1 NN

ydmosnuepy soyny Y1 NN

) y postcondition. We specify the relationship among these Hoare
Z.r PULlp)} Uil ot} C{Q}t = Z.r PUllbpY ot} C QY judgments as the following: for each node, the postcondition of
ir {P} C{QU{{,p)} u{(,9)}} =ir {P} C{QU{(l,p¥a)}} its predecessor “implies” its precondition. The implication idea
comes from Floyd'’s inductive assertion [3], and we formalize

(&) LPMerge rules it here in order to define the function judgment:

{(0220, MEMORY dom df * (r2 € dom) * (r1 # 0y * SSZ z*al)} b
blk4 (1) Q= RIff V(Lp) € R. V(k’,q) € Q.
{(0x14, MEMORY dom ((r2 — (W2w 1)) df) * a2)} (k=0 = ({(k,a)} 2 {L.p)})
al=R2r2xR1rl, a2=SsZ (r1 =0)x*al . .)
It reads that a set of label predicat@simplies another set
{(0220, MEMORY dom df (r2 € dom) % (r1 = 0) xS sZ z# o1)} ©Of 1abel predicatest (at the function level) if and only if for
bika @) every label predlcgtip in R, ifa Iabel predicatéq in @ has
{(022C, NENORY dom ((r2 > (w2w 1)) df) = a2)} itrr;]epl)s/a}[rt?eeslagellet\év:zzgt t(f)};n the singleton set dfg should
(b) The Hoare judgments of blk4 1) Function JudgmentsWe define the function judgment
Fig. 3. Hoare logic rules and judgments in Figure 4.a, wherev f is a well-formed node relation, and it
includes Hoare judgments of code blocks and Hoare abstrac-
tions of function calls. Figure 4.b defines such a relatibn.
automated by meta-language programming. For examplfe,the parameterized instruction semantics discussed before,
Figure 3.b gives the Hoare judgments of blk4 of Figandprog is a set of nodes of a function, including nodes of
ure 1.2 Blk4 has two separate judgments with each fg¥ode blocks and nodes of callee abstractions. The definition
a branch condition, and the branch conditiopd, £ 0) requires that each node is well-formed (the second to the last
and (r1 = 0), originate from the branch instructiame line). Entry is the entry address of the function, andt is
f 0o, which has two separate axioms [13]. The value dhe initial condition of the functionfzzits is a set of pairs with
the sz flag is set to(r1 = 0) in the postconditions (we €ach pair being an exit node and its associated exit condition.
have omitted the assertions for other status flags). ~ Predecessor models the CFG policy at the node level by
« After Composition, the assertion of a Safety property 2 function: given a nOde, it returns the set of predecessor
“pushed up” to the precondition of the code block conodes.Bspec and kspec are two specifications for all nodes
taining the instruction, becoming the block’s conditiondf the function; the former is a mapping from nodes to their
e.g. (r2 € dom) is now an assertion of the judgmentreconditions, and the latter is a mapping from nodes to their
of blk4. Branch conditions are a little different, becausBostconditions. The last line of the definition requires that if a
when we merge Judgments 1 and 2 with LPMerge rulgdode is a predecessor of another node, then the postcondition
the two branch conditions become tautology-1 = Of the former implies the precondition of the latter. The first
0) vV (r1 = 0)) and can be removed from the mergedine of the definition body specifies that the initial condition

judgment. of the function subsumes thigspec at the entry node, and
the second line stipulates that for every exit node kitgec
C. Well-Formed Hoare Judgments subsumes the exit condition associated with that node. In a

In order to model a code block which has only one ent§imple case{(entry,init)} is (bspec (bbl entry)), and
address, we definewell-formedHoare judgment as a single-(kspec e) is q.
entry multi-exit Hoare judgment by imposing two constraints: Bbl is one of the two constructors for a user-defined data
(1) there is only one entry address for the code; (2) the labeltgpe f un_node, which represents the code of a code block
a label predicate in the precondition must be the entry addressa function by its entry label:
Formally, it is

WE_SPEC ir P C Q iff
(SPECir {P} C {Q}) A (¥(l,p) € P. 1 =L(C)) We use two constructors for human readability indicating that
a node is a code block or a function abstraction; from the
whereL(C) returns the entry address of a code block. perspective of a type system, one constructor is enough.

D. Hierarchical Function Judgments 2) Well-formed NodesThe concept of a well-formed node

The central structure of ; is recursive function judgments plays a very important role inC,, and we define it in
The idea is that a function Jé:onsists of code blocks and functigtlgure 4:b by using the inductive relation definition of the
calls; code blocks are specified by the well-formed Hoare judgleta-logic [12]. The Base rule says that the well-formed Hoare
ment described above; we abstract a callee as a well-formedgment of a code block is a well-formed node. The Induction
node, which behaves like a well-formed Hoare judgment in thele says that from a function judgment (whose nodes are
caller, having a single-entry precondition, abstract code an%”_formed)l we can get a new well-formed node whose

3 L precondition is the initial condition of the function, and whose
A Hoare triple is written af P} C {Q}, and ourP, C andQ are sets

which also use braces by convention. For clarity, we only use one pair BPStcond!t'on IS .the b'.g union of its exit cond|t|on97rage
braces in writing pre- and post-conditions and do not use braces for the cagea function defined asmage f s = {f z|x € s}, andsnd

bbl , fun: word32 — fun_node

ydmosnuepy soyny Y1 NN

ydmosnuepy soyny Y1 NN

University of Utah Institutional Repository
Author Manuscript

FUN_SPEC wf ir prog entry init exits predecessor bspec kspec iff
({(entry, init)} & (bspec (bbl entry)))A
(V(e, q) € exits. (kspec e) & Q)N
Vnode € prog.
(wf ir (bspec node) node (kspec node)) A
(Vpre € (predecessor node). (kspec pre) L (bspec node))

(a) Function judgment

WF_SPECir {(I,p)} C {Q}
WF_NODE ir {(I,p)} (bbl 1) {Q}

FUN_SPEC WF_NODE ir prog entry init exits predecessor bspec kspec
WF_NCDE ir {(entry,init)} (fun entry) (J(i mage snd exits))

(b) Well-formed node

Base

Induction

PROG_SPEC ir prog entryProg predecessor bspec iff
kspec exits. FUN_SPEC WF_NODE ir prog entryProg (As.T) exits predecessor bspec kspec

(c) Program judgment as the judgment of the top-level function

Fig. 4. Definitions of function judgments

returns the second element of a tuple. In the call graph offa Safe Instruction Semantics

program, the leaf functions, which do not have a callee, onlywe augment an exiting instruction axiom to the following
have thebbl nodes; other functions have bdtbhl andfun by asserting the safety properties mentioned before:

nodes (Figure 1.c).

Figure 4.c defines the judgment of a program, which is sim-
ply the judgment of the top-level function. We have simplified)
the initial condition to As.T) by focusing on the predicate of (,ins) C)
states instead of the contents of states. {PC 1" » MEMORY memdf’ + MEMORY cmef * p'}

3) SoundnessOur soundness proof says that a progranyhere; is the value of the PGy represents other assertions

never gets stuck under a given semantics throughout its eyt are not explicitly written out, and corresponding values
cution. An intuitive argument is that when control reaches thg the postcondition are marked with a prirhe

end of a code block, it resumes on one of its successor blocksi) Safety AssertionsRecall thatmem is the set of pre-

(including jumping to the entry block of another functionjefined memory region mentioned in Section 1-A, andtc
because of the implication relation. Formally, we may derivg he CEG policyrs (ins) is the set of memory addresses that
a function specificatiorFUN_SPEC if and only if: starting 4p instructionjns, writes to.(ns (ins) C men) is the assertion
from its initial states, if the execution reaches the label of gy, memory safety, and’ € succ({)) is the assertion for the
code blockL(n), then the precondition defined Bgpec on control flow integrity. The memory assertion is true for non
the block is ensured to be true. We have omitted the theorgiae instructions, becauses (ins) = {}. MEMORY cm cf
itself, since it uses some definitions of our Hoare logic whichsserts the data pool of ARM executables. A data pool is a set
we did not show (We will have a detailed technical repogf memory addresses in the text section for storing constants,
available on-line if this paper is published). and our augmented theorem says that it cannot be changed

(cf’ = ¢f). The purpose of modeling the data pool is that some

constants are useful in proving some properties. Figure 5.a

[Il. AUTOMATIC VERIFICATION OF SAFETY PROPERTIES shows the augmented theorem for the axiom in Figure 2.

2) The Safe Instruction RuléVe define a safe instruction

. - o . e rule, whose antecedent is the augmented theorem, and whose
We describe a specific application 6f;: verifying safety .j-clusion is a new relatioSAFE | NS:

properties. We present a framework that takes advantage of the

{PC ! « MEMORY memdf « MEMORY cmcfx
(s (ins) C mem * (I’ € succ(l)) * p}

hierarchical structure of ; and that utilizes an interprocedural theorem 3 Safelns
abstract interpretation to automate the verification. For th€AFE_I NS (I, MEMORY memdf « MEMORY cmef+

example of Figure 1, we first make assertions about the (ms (ins) C meny x (I' € succ(l)) * p)
memory safety and the control flow integrity by defining a (I, ins)

safe instruction semanti@AFE_| NS and use it to instantiate (I, MEMORY memdyf’ «+ MEMORY cmef * p')

the semantic parametér.

ydmosnuepy soyny Y1 NN

ydmosnuepy soyny Y1 NN

University of Utah Institutional Repository

Author Manuscript
{PC p + NEMORY memdf « NEMORY cmef« B. Interprocedural Safety Assertion Analysis

(ms (OXE5C21000) C mem * ((p + 4) € succ(p)) * al} This is a backward context-sensitive and flow-sensitive

(p, 0XE5C21000) // strb r1,[r2] analysis. Its domain is the power set of all concrete safety
{PC (p + 4) » MEMORY mem ((r2 — (W2w r1)) df) * assertions occurring in the Hoare judgments of code blocks.
MEMORY cmef +al} It runs on a function at a time and computes, for a set of
Wl =R2r2%R1 71 incoming safety assertions, the set of assertions that goes

out of the function. A function has two types of nodes:
(@) The augmented semantics of strb r1, [r2] block nodesHoare judgments of code blocks, afichction

SAFE_I NS (p, {(p + 4) € succ(p)) = ({r2} C mem) *---) nodes abstract nodes for function calls. The transfer function

(p,0XE5C21000) // strb r1,[r2] works differently on a block node and a function node. For a

(p+4,--) block node, it runs as follows: when a node has an incoming

safety assertion, it tries to derive the assertion from the label
predicates in the postcondition whose labels are the same
Fig. 5. Safe instruction rule in action as the incoming assertion; if it succeeds, which means the
assertion is true, it does nothing; otherwise, it propagates the
assertion along the flow, hoping that other nodes can discharge
This rule is critical, because if we directly use an instructiotie assertion. For a function node, it suspends the computation
semantic with safety assertions in a logic, when the safdtythe caller and “dives into” the code of the callee. It merges
assertions are simplified tor ue and removed from the the incoming assertions to the in-configuration of each exit
precondition, it is not clear what causes the absence of thede of the callee and computes the outgoing assertions for the
assertions: that the axiom does not have the assertions atcllee. It takes the assertions going out of the callee as the new
or that they have been discharged. With the new relatioggnfiguration of the function node and resumes the analysis in
SAFE_I NS, we are always assured that they have bedpe caller. If the callee has other callees, it recursively dives
discharged; there is no instruction without having the safeif§to these callees to compute their outgoing configurations.
assertions in this relation. In simplified pseudo-code, the transfer functions axe, (
After applying this rule to the augmented theorem in Figand ¥,,; are the in- and out-configurations of a function):
ure 5.a, we get the safe instruction semantics for the store
strb rd, [r2], in Figure 5.b (We have omitted the assertions féiansferblock (brnode, ¥;,):

(b) Safe instruction semantics of strb r1, [r2]

memory, R2 and R1, since they are the same as in (a)). foreach(l, assert) in ¥;, (bnode)

It is noteworthy that this rule also provides flexibility in foreach(l’,p) € post condi ti on(bnode)
proving safety properties. For example, if we want to prove a if I’ =1 and fot (p implies assert)) then
different property, say, memory reads being confined to pre- Yout(bnode) = Xt (bnode) U{ (L (bnode), assert) }

defined regions, then we only need to formalize it as assertions
in the augmented theorem. All the proven rules and definitioti@nsfer fun (fnode, ;,):
stay unchanged. mergeX,, (fnode) to the in-configuration

3) Instantiating the Semantic ParameteiVe use the of exit nodes of function offnode (fun_of_fnode);
SAFE_I NS relation to instantiate the semantic parameter ~ compute the states of funf_fnode until fixed point;
in £;. This instantiation means that every instruction of a out(fnode) = the out-configuration of the entry
program over all possible executions has been asserted for the node of funof_fnode
safety properties defined by the Safelns rule. For example, the
program judgment in Section I-A has this relation, indicating This algorithm computes the global invariants—where a
that every instruction of the program has been asserted f@fety assertion can be discharged—in depth first search. In
memory safety and control flow integrity. theory, it is exponential, but in practice, we use a cache

By the definition of PROG_SPEC SAFE_I NS, proving it for each function that records the outgoing assertion for a
boils down to finding the? relation among nodes insidefunc-given_ incoming assertion. _This makes an stertion trave_rse a
tions, which in turn reduces to finding global invariants thgnction only once, reducing the complexity to polynomial.
can discharge the safety assertions thaSAEE_| NS relation Qur |mpllementat|on also records or computes the following
has. There are two processes(p that discharge these safetynformation:
assertions. One is the composition process (Section 1I-B). Fore The location where a safety assertion is originated in
example, the assertiofip + 4) € succ(p)) in Figure 5.b can a context-sensitive call graph and the path it traverses
be discharged for the instruction at address 0x20 (Figure 1.a) through;
after we instantiate to 0220 in composing. For the assertions « the location where a safety assertion gets discharged;
that cannot be discharged by composition, they are pushed up for each block node, which safety assertions traverse
to the precondition of the Hoare judgments of code blocks, and along which call paths and their conversion theorems
we use another method presented below to discharge them. (equations that connect incoming assertions to corre-

ydmosnuepy soyny Y1 NN

ydmosnuepy soyny Y1 NN

Author Manuscript

University of Utah Institutional Repository

sponding outgoing assertions).

(rf R14 € succ(0z2C)) (Judgment 10), and{rf R2} C

This information is necessary for later proof automation thaen} (Judgments 8 and 9).
constructs function abstractions in depth first search for theNext, we examine the judgments of nodes in funcfi@o
top-level function. The automation is implemented by meté&Judgments 6, 7, 8, 9, and 10) to see if these assertions can
language programming, in which we take the safety assertidi discharged({rf R2} C men) can be discharged by the
that are propagated by a block node and use the Frame rul@@stcondition of Judgment 7, because it has the branch con-
add them to the node, generating a context-sensitive judgmeéiiion of ((rf R2) = 0x40000000), and ({0x40000000} C
along a call path. The framed Hoare judgments are adl@nM = true.Inorder to getit formally, we frame the branch
to imply the precondition of its successor nodes from thegondition to the judgment itself. As a result, the assertion in the

postcondition.

IV. PROVING THE EXAMPLE

postcondition hag(rf R2) = 0240000000), which implies
the memory assertion of blk4. In our framework, this work is
done by the abstract interpretation described in Section 111-B.

We illustrate the verification process by proving the example The other two assertions cannot be discharged insate

in Figure 1. First, we compose Hoare judgments of code bIoc%\n

by instantiating the semantic parameterwith SAFE_| NS

d are propagated to the judgment of blk3 by the analysis.
Rer the analysis, we take the safety assertions propagated by
a block node and frame them to the node judgment. We also

and use the Frame rule to convert the local judgments to timerge the two judgments of the same block with the LPMerge
global version. The results are shown below. For clarity, weles. For example, we get the framed and merged judgment

have omitted the leading relation markePEC SAFE_| NS.

In addition, we have not explicitly written out unchang
assertions and less important assertions such as assertio

status flags; they are represented- by.

{(020,REGrf *---)}
blk1 (4)
{(0214,REG rf' x---)}

{(0210,REG 7f % ---)}
blk2 (5)
{(0210,REG 7f % ---)}

of blk3 in (11) (similar to blk4). The branch conditions

iﬁrm tautology after merging and are removed. The merged

dq%ments have one entry in the precondition and two entries
A $he postcondition. It is easy to prove that they are well-
formed Hoare judgments by definition (Section 1I-C).

{(0x14,REGrf x* SSZ z x (rf R14 € succ(0z1C))x*
(rf R14 € succ(022C)) *---)}

blk3 11)

where REG r f collectively asserts the values of registers from RY(rf R14,REG (Rl — (rf R1—1)) rf) *sls%---),

to R14 (similar toMEMORY), andr ' = ((R14 — 0210) ((RO —
0) ((R1 — 0) ((R13 — 0241000000) r£)))).
{(0214,REGrf *SSZ z* (rf R14 € succ(0z1C))x
(rf R2 # 0240000000) * - --)}
blk3 (6)
{(rf R14,REG (Rl (rf R1—=1)) rf) *slx---)}
s1=SsZ ((rf R2) = 0240000000)

{(0214,REGrf * SSZ z * (rf R2 = 0240000000) * ---)}
blk3 @)
{(0220,REG ((R1+— (rf R1—=1)) rf)*sl*---)}

{(0220, MEMORY memdf « REGrf « SSZ z
({rf R2} Cmem = (rf R1 # 0x0) *---)}
blk4 ®)
{(0z14, MENORY mem ((rf R2 — wew(rf R1)) df) * s2%---)}
s2=REGrf*SsZ ((rf Rl) = 0z0)

{(0220, MEMORY memdf « REGrf xS sZ z x
{rf R2} Crem x (rf R1=0z0)*---)}
blk4)
{(0x2C, MEMORY mem ((rf R2 — W2W(rf R1)) df) * s2*---)}

{(022C,REG rf * (rf R14 € succ(0z2C)) ---)}
blk5
{(rf R14,REGrf *---)}

(10

(0220,REG ((R1+ (rf R1—1)) rf) *sl %
(rf R2 = 0240000000) * (rf R14 € succ(0x2C)) *---)}

Next, we construct the terms needed for proving the function
judgment off oo. Let P; and Q; be the precondition and
postcondition of blk After using the Base rule (Figure 4.b),
we get three well-formed nodes, whose code figo =
{bbl 0x14, bbl 0x20, bbl 0x2C}. We construct the
two specifications of the function aéoo_bspec = {(bbl
0x14) — Pp, (bbl 0x20) — P, (bbl 0x2C) — P}, and
foo_kspec = {(bbl 0x14) — @i, (bbl 0x20) — Q2,

(bbl 0x2C) — Qs}. The exit specification i$ 00_exi ts

= {(bbl 0x14, @,), (bbl 0x2C, @3) }. The initial condi-
tion has the two assertions that are not discharged by foo:
foo_init = (rf RI4 € succ(0z1C)) = (rf R14 €
succ(0z2C)) = ---. With these terms, we are able to prove
the judgment of functiori oo:

FUN_SPEC WF_NODE SAFE_INS foo 0x14 foo_init
foo_exits foo_predecessor foo_bspec foo_kspec

wheref oo_predecessor is the predecessor relation of
nodes: {bbl 0x14 — {bbl 0x20}, bbl 0x20 — {bbl
0x14}, bbl 0x2C — {bbl 0x20}}.

By applying the Induction rule (Figure 4.b), we get the well-
formed node of functiorf oo, whose three label predicate
entries in the postcondition come from the postconditions of
blk5 and blk3 (we only write out state predicates for clarity):

WE_NODE SAFE_I NS
{(0z214, {(rf R14 € succ(0z1C)) * (rf R14 € succ(0z2C)))}
fun 0x14 // foo (12)

There are safety assertions that are not discharged di(f R14,---), (rf R14,---),

ing composition:{(rf R14 € succ(0z1C)) (Judgment 6),

(0220, (rf R2 = 0240000000) * (rf R14 € succ(0z2C)) *---)}

ydmosnuepy soyny Y1 NN

ydmosnuepy soyny Y1 NN

Author Manuscript

University of Utah Institutional Repository

With this Hoare judgment df oo, we repeat the above rea- [3]

soning process for functioant r yFun. Inside this function,

the two assertions dfoo are discharged by the postcondition
of blkl, where R14 is 0x10. As a result, we are able to
prove thePROG_SPEC judgment given in Section I-A, where 5

ent ryFun is the set of nodes of entryFupred is the

predecessor relation of these nodes (Figure 1.c gives tfifd

pictorial representation of these two terms), dmbpec is
the mapping from the nodes to their preconditions.

V. RELATED WORK

R. W. Floyd. Assigning meaning to programs. Mathematical Aspects
of Computer Sciencevolume 19, pages 19-32, 1967.

] A. Fox. Formal specification and verification of ARM6. Rroc. of the

16th Intl. Conf. on Theorem Proving in Higher Order Logics (TPHQLS)
pages 25-40, Rome, ltaly, Sept. 2003.

A. Fox and M. O. Myreen. A trustworthy monadic formalization of
the ARMV7 instruction set architecture. Proc. of the Intl. Conf. on
Interactive Theorem Proving (ITPEdinburgh, UK, July 2010.

M. J. C. Gordon. Mechanizing programming logics in higher order
logic. In G. Birtwistle and P. A. Subrahmanyam, editdZsirrent Trends
in Hardware Verification and Automated Theorem Proyipgges 387—
439. Springer-Verlag, 1989.

M. J. C. Gordon.A Mechanized Hoare Logic of State Transitippages
143-159. Prentice Hall International (UK) Ltd., 1994.

M. J. C. Gordon and T. F. Melham, editorsintroduction to HOL:

Boyer and Yu made the first attempt to verify small real{®!

world executables with symbolic execution, but their spec- university Press, 1993.

ifications and proofs were done manually [1]. Myreen et9]
al. developed a traditional Hoare logic for machine code
programs [14] and a decompiler to reuse proofs for multiple ar-

chitectures [15]. Both the logic and the decompilation require mibench.

structured code in order to compose a judgment or to deve

A Theorem Proving Environment for Higher Order Lagi€ambridge

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. IrProc. of Workshop on Workload Characteriza-

tion, pages 3-14, Austin, TX, Dec. 2001. http://www.eecs.umich.edu/

C. A. R. Hoare. An axiomatic basis for computer programming.

a function. Tan and Appel developed a compositional logje1)
for reasoning about arbitrary control flows and proved typinclgz]

Communications of the ACM2(10):576-580, Oct. 1969.

I. Jager, T. Avgerinos, E. Schwartz, and D. Brumley. Bap: Binary
analysis platform. ICAV, 2011.

T. F. Melham. A package for inductive relation definitions in HOL. In

rules for the foundational proof-carrying code project [22}.

Their logic requires a complicated semantics and soundness

proof.

Proof-carrying code uses a VCG-based approach to verify

programs without formalizing the method itself [16].

Shao’s group developed certified assembly programming
to verify low-level code [17], [24]. It requires manually[15
provided specifications of code, and the verification process is
interactive. This is similar to the last step in our framework,

in which the specifications are instantiated and verified.

Seo et al. used the result of an abstract interpretation to ap-
proximately guide the construction of Hoare logic proofs [21]17]
but the abstract interpreter generated redundant information

that needed to be removed manually.

VI. IMPLEMENTATION AND CONCLUSION

We implemented’ ; and the framework for verifying safety
properties in the HOL theorem prover and applied it to
automatically prove the memory safety and the control floi&0]
integrity of rewritten ARM executables. The definition of our
logic is about 60 lines in HOL, proof scripts of useful theoremgy
are about 600 lines, and automating libraries are about 8000

lines including the interprocedural interpreter.

Proc. of the 1991 International Workshop on the HOL Theorem Proving
System and its Applicationpages 350-357, 1992.

M. O. Myreen, A. C. J. Fox, and M. J. C. Gordon. A Hoare logic for
ARM machine code. IrProc. of the IPM Intl. Symp. on Fundamentals
of Software Engineering (FSEN2007.

M. O. Myreen and M. J. C. Gordon. A Hoare logic for realistically
modelled machine code. IRroc. of the Tools and Algorithms for the
Construction and Analysis of Systems (TAGA@pes 568-582, 2007.

] M. O. Myreen, K. Slind, and M. J. C. Gordon. Machine-code verification

for multiple architectures—An application of decompilation into logic.
In Proc. of the Formal Methods in Computer-Aided Desiga08.

6] G. C. Necula. Proof-carrying code. IRroc. of the 24th Symp. on

Principles of Programming Languages (POPRIppges 106-119, Paris,
France, Jan. 1997.

Z. Ni and Z. Shao. Certified assembly programming with embedded
code pointers. IProc. of the 33rd Symp. on Principles of Programming
Languages (POPL)pages 320-333, Charleston, SC, USA, Jan. 2006.
S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-
TSO. InProc. of the 22nd Intl. Conf. on Theorem Proving in Higher
Order Logics (TPHOLs)pages 391-407, 2009.

J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. InProc. of the 17th IEEE Symp. on Logic in Computer
Science (LICS)pages 55-74, 2002.

A. Saabas and T. Uustalu. A compositional natural semantics and
Hoare logic for low-level languagesTheoretical Computer Science
373(3):273-302, Mar. 2007.

S. Seo, H. Yang, and K. Yi. Automatic construction of hoare proofs
from abstract interpretation results. Broc. of the 1st Asian Symp. on
Programming Languages and Systemslume 2895 ofLecture Notes

in Computer Sciengepages 230-245. Springer-Verlag, 2003.

The ARM executables we proved include our test programs] G. Tan and A. W. Appel. A compositional logic for control flow. In

and MiBench programs [9]. The proven MiBench programs

have text sections over hundreds of machine instructions,

Proc. of the 7th Intl. Conf. on Verification, Model Checking and Abstract
Interpretation (VMCAI) pages 80-94, 2006.

] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere.

StringSearch has 1104 machine words. These programs can piaplo: A reliable, retargetable and extensible link-time rewriting frame-
run on a development board based on the NXP LPC2129 Chip, work. In Proc. of the 2005 IEEE International Symposium On Signal

which contains an ARM7TDMI core and targets industria}54]

automation.

REFERENCES

[1] R. S. Boyer and Y. Yu. Automated proofs of object code for a widely

used microprocessod. ACM 43:166-192, January 1996.

[2] X.Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular verification

of assembly code with stack-based control abstractions.Prét. of

the ACM SIGPLAN 2006 Conf. on Programming Language Design and

Implementation (PLDI)pages 401-414, June 2006.

Processing And Information Technologyages 7-12, Athens, 12 2005.
D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC:
Dynamic storage allocationScience of Computer Programming0(1-
3):101-127, 2004.

