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ABSTRACT
We have designed and implemented ARMor, a system that
uses software fault isolation (SFI) to sandbox application
code running on small embedded processors. Sandboxing
can be used to protect components such as the RTOS and
critical control loops from other, less-trusted components.
ARMor guaranteesmemory safety and control flow integrity ;
it works by rewriting a binary to put a check in front of every
potentially dangerous operation. We formally and automat-
ically verify that an ARMored application respects the SFI
safety properties using the HOL theorem prover. Thus, AR-
Mor provides strong isolation guarantees and has an excep-
tionally small trusted computing base—there is no trusted
compiler, binary rewriter, verifier, or operating system.

Categories and Subject Descriptors
D.2.4 [Software]: Software Engineering—Software/Program
Verification

General Terms
Verification

Keywords
Software Fault Isolation, ARM Executables, Program Logic,
Automated Theorem Proving

1. INTRODUCTION
Isolation—the guarantee that one computation on a ma-

chine cannot affect other computations—is a fundamental
system service supporting multiprogramming. Reliable iso-
lation enables many useful kinds of coexistence; for exam-
ple, users can safely run code downloaded from the Internet,
servers belonging to mutually-untrusting parties can be run
in different virtual machines on the same physical box, and
embedded systems can be made smaller and cheaper by run-
ning critical and non-critical code on the same processor.
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Isolation can be implemented in many ways, including us-
ing physical partitioning across processors, hardware-assisted
address space management, type-safety at the programming
language level, capability-based systems, and software fault
isolation (SFI). Each of these methods has advantages and
disadvantages. In this paper we focus on SFI, which is im-
plemented by rewriting a compiled program to insert a dy-
namic check in front of every dangerous operation. An op-
eration is dangerous if it may violate the security policy,
for example by writing to out-of-bounds storage or attempt-
ing to execute unauthorized code. We have implemented
an SFI system that guarantees memory safety : store oper-
ations are confined to predefined regions, and control flow
integrity : execution may not escape a predetermined control
flow graph.

In the context of critical embedded systems, a key advan-
tage of SFI is that it potentially has the smallest trusted com-
puting base (TCB) of any software-based isolation scheme.
Notably, the TCB for SFI does not necessarily contain the
compiler or operating system. Furthermore, the binary code
of an executable can be fully formally verified using a me-
chanical theorem prover. We have done this, resulting in the
creation of ARMor: the first fully verified, realistic imple-
mentation of SFI that we are aware of.

The ARMor toolchain operates as follows:

1. An ARM executable is created by a compiler.

2. An extension for Diablo [23] that we developed inserts
a check before every potentially dangerous operation.

3. With a novel program logic framework, we use the
HOL theorem prover [9] to automatically prove that
the rewritten binary conforms to the memory safety
and control flow integrity policies that we have writ-
ten.

The TCB for ARMor contains only our memory safety and
control flow integrity policies, a program logic, a well-vetted
formal semantics for the ARM instruction set architecture
(ISA), and HOL itself.

Formal verification at the binary level is useful because
SFI can easily go wrong. First, the policies themselves are
fairly subtle: verification exposes them to a large amount of
additional scrutiny. Second, tricky source code errors can
result in vulnerable implementations. For example, the au-
thors of the Google Native Client encountered a situation
where a routine refactoring of C code permitted the com-
piler to silently eliminate a crucial safety check [3]. Third,
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Figure 1: Multitasking embedded systems with fully
verified isolation, enabled by ARMor

compiler bugs are not uncommon [25] and can undermine
the safety policy.
The goal of ARMor is to provide a very high-confidence

argument that its memory safety and control flow integrity
policies are not violated, and that systems such as the one
depicted in Figure 1 can be trusted. The key property is
that larger, non-critical components (GUIs, network stacks,
etc.) can be trustably isolated from smaller critical compo-
nents (control loops, the RTOS, etc.) using SFI. A bug in
application code or in the binary rewriter or in the compiler
can result in verification failure, or is guaranteed by AR-
Mor’s proof that it cannot affect the rest of the machine—an
ARMor-level trap that stops the faulting computation. Ide-
ally these bugs are discovered during pre-deployment test-
ing.
In ARMor, the safety policy is parameterized by a con-

trol flow graph (CFG): a description of legal control flow
transfers in a list of instructions. If the CFG is erroneously
computed, and is too small, the proof will fail. If the CFG
is erroneously computed, and is too large, then ARMor’s
safety policy will provide a weaker safety guarantee than
is desirable. In practice we use Diablo, a binary rewriter,
to discover a CFG that is then passed to the safety policy.
However, other methods, such as computing the CFG by
hand, could also be used.
We present a high-level theorem that ARMor provides

about an executable in Section 2. Next, we describe an
SFI implementation in Section 3; Section 4 and Section 5
describe the instruction semantics and logic that ARMor
uses. We illustrate the logic with a complete proof of an
example in Section 6. We present results in Section 7, discuss
related work in Section 8, and conclude in Section 9.

2. HIGH-LEVEL GUARANTEE
For a sandboxed ARM executable, ARMor guarantees

that for every instruction of the executable, the set of mem-
ory addresses the instruction writes to is a subset of a prede-
fined memory set, and the program counter (PC) following
the execution of the instruction points to a successor in-
struction given in a predetermined CFG. More formally, we
model a CFG as a function succ: given the address of an
instruction, it returns the set of addresses of legal successor
instructions. Each instruction has a unique memory address,
and we use a pair (a, i) to represent an instruction i is stored
at memory address a. Let prog be the set of paired instruc-
tions of an executable, mem be the set of predefined memory
addresses, ms(i) be the set of memory addresses an instruc-
tion writes to, and l and l′ be values of the PC before and
after the instruction executes. l is the address of i in order

block1: 0x0, sub R1,R1,#0x1 // R1 <- R1 - 4
0x4, teq R2,#0x40000000 // test equality
0x8, bne +#16 // branch not equal

block2: 0xC, strb R1,[R2] // store a byte
0x10, teq R1,#0x0 // test equality
0x14, bne -#20 // branch not equal

block3: 0x18, add R1,R2,#0x4 // R1 <- R2 + 4
block4: 0x1C, b +#0 // branch to itself

(a) Program instructions

CFG policy succ

input output
0x8 {0x18, 0xC}
0x14 {0x0, 0x18}
0x18 {0x1C}
0x1C {0x1C}
others λa. {a+4}

Memory safety policy mem

{a|0x40000000 ≤ a ∧ a < 0x40001000}

(b) Safety policies

Figure 2: An example for illustrating ARMor’s logic

to execute i, and l′ is decided by the underlying instruction
semantics, Section 4.2. ARMor proves the following:

Theorem 1. ∀(l, i) ∈ prog. (ms(i) ⊆ mem)∧(l′ ∈ succ(l))
with respect to a given initial state.

We take the following steps to prove it:

1. We choose an existing well-vetted formal semantics of
the ARM ISA. It was developed independently by re-
searchers at Cambridge [8, 14] and has been used as
the basis for several previous projects and is believed
to be correct. For example, Fox proved that the ARM
semantics implemented one particular version of the
ARM hardware [7].

2. We augment the existing semantics to create a safe in-
struction semantics by asserting the above safety prop-
erties, i.e., (ms(i) ⊆ mem)∧ (l′ ∈ succ(l)), for every in-
struction of a program. The instructions of the pro-
gram are obtained from Diablo and compared with
GCC objdump output. The CFG policy of the pro-
gram is also obtained from Diablo.

3. We develop a novel program logic that discharges the
assertions at two levels. The first level is a composition
process used in Hoare logic reasoning, whose results
are Hoare judgments for code blocks. The other level
is a top-level program judgment that defines an impli-
cation relationship among the code block judgments.

4. After automatically generating the code block judg-
ments, we use an abstract interpretation to discover
the global relationship among them and use its result
to prove the top-level program judgment.

5. The top-level program judgment is a global specifica-
tion for the program with the safe instruction seman-
tics. Because the semantics asserts the safety proper-
ties for every instruction of the program over all pos-
sible executions, the above theorem follows naturally.

We illustrate these steps with a very simple example shown
in Figure 2.a, and we assume its safety policies in Figure 2.b.
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Figure 3: Left: the original memory layout of an
executable. Right: ARMor’s transformed layout.

We first use a Hoare logic to derive the precondition and
postcondition of each block. For example, block1’s post-
condition when control flows from 0x8 to 0xC has r2 =
0x40000000. Next, we follow and verify the CFG of the
program and derive the fact that the address of the store
instruction satisfies {r2} ⊆ mem for every execution of this
program starting from every valid initial state. One key fea-
ture of this method is to reduce the proof of safety properties
to linking and checking specific preconditions and postcondi-
tions of all blocks. Theorem 1 holds if and only if this proce-
dure succeeds. We explain this process in detail throughout
this paper.

3. SFI IMPLEMENTATION
We developed a binary transformation tool based on Di-

ablo [23]. Diablo is a link-time binary rewriting framework
that analyzes and transforms statically linked executables
to achieve better performance, smaller code size, and im-
proved security. Our tool utilized Diablo’s framework and
implemented three new transformations for an ARM exe-
cutable emitted by GCC. These transformations ensure that
either the invariants required by ARMor hold, or else a trap
handler executes.

3.1 Protecting Return Addresses
Spilled return addresses of functions are normally pushed

onto the stack, and this imposes a great danger for control
flow integrity, because they can be overwritten by buffer
overflow or pointer manipulation. We introduce a special
region into the runtime memory of an executable to save the
return addresses exclusively, which is named control stack,
Figure 3. The original stack is called data stack for distinc-
tion. Our rewriting tool inserts code to save and restore
return addresses to and from the control stack upon func-
tion calls and returns. This control stack provides invariants
that are strong enough to prove assertions of control flow
integrity about return addresses (Section 4.2). We patched
GCC to reserve a dedicated register, R8, as the pointer of
the control stack.

3.2 Checking Unknown Store Addresses
We used Diablo’s linear constant analysis to find the store

instructions whose addresses are unknown statically, and we
inserted a call to an address checking routine before them.
The routine takes the start and end addresses of the mem-
ory range to be written by an instruction and checks whether
the range falls within a set of memory addresses. This set
of addresses includes the data stack, the global data section,
and I/O addresses as depicted in Figure 3. If the check suc-
ceeds, the routine simply returns, transferring control to the
store instruction; otherwise, the routine aborts the program.
Figure 4 illustrates this transformation.

stmia R2,{R6,R7}

mov R0,R2
add R1,R0,#0x8
bl dguard
stmia R2,{R6,R7}

(a) Original code (b) Instrumented code

if [R0, R1) falls in the global data section,
the data stack, or I/O region

then return else abort

(c) Pseudo-code of the checking routine (R0 and
R1 are used to pass parameters)

Figure 4: Checking unknown store addresses

mov pc, R2 ;indirect jump
...

target:
str R1, [R0] ;target

(a) Original code

mov R0, 0x4 ;load mangled word pattern
mov R0, R0, ROR #1 ;right rotate 1 bit
ldr R1, [R2, #-4] ;R1 <- Mem[R2 - 4]
cmp R0, R1 ;compare ids
bne invalid ;abort if not equal
mov pc, R2 ;indirect jump
...
0x8 ;unique word pattern

target:
str R1, [R0] ;target

(b) A unique ID and the check for its presence, where 0x8 is 0x4
left rotated by 1 bit.

Figure 5: Constraining unknown jumps

Our rewriter unconditionalizes all conditional stores: it
removes the condition of a store and inserts a conditional
branch instruction before it with the same condition which
jumps over the store when necessary. Next, it uses the same
procedure discussed above to safe-guard the unconditional
stores.

3.3 Constraining Indirect Jumps
Indirect jumps, such as those used to implement function

pointers and jump tables, represent potential risks for the
control flow integrity, since the value of a destination register
might not coincide with the value given in the CFG policy.

We constrain these jumps by a method proposed by Abadi
el at [1]. Our rewriter inserts, before a jump target in the
given CFG, a unique identifier that is not present in the code
of an executable. In the ARM ISA, the rewriter places the
identifier in a datapool, which is a fragment of code memory
storing constant data. Next, it inserts a piece of code right
before the jumping instruction to check the presence of the
identifier. The code loads a value mangled from the identifier
by a fixed operation such as by left rotation with one bit, and
restores the identifier by a reverse operation. If the restored
value is the same as the identifier, then the target is correct.
Figure 5 shows this transformation.

4. INSTRUCTION SEMANTICS
We first introduce the existing formal ARM semantics,

from which we create a safe instruction semantics.
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{PC p ∗ R 2 r2 ∗ R 1 r1 ∗ MEMORY dom f ∗ 〈r2 ∈ dom〉}

(p, 0xE5C21000) // strb R1, [R2]

{PC (p+ 4) ∗ R 2 r2 ∗ R 1 r1 ∗ MEMORY dom ((r2 7→ (w2w r1)) f)}

Figure 6: Axiomatic semantics of strb R1, [R2]

4.1 ARM Semantics
The ARM semantics comes in as Hoare triples proven in

the HOL theorem prover. Figure 6 shows the semantics for
the store instruction strb R1, [R2]. As w2w converts a 32-
bit word into an 8-bit word, the semantics states that after
execution of the instruction, the value at memory address r2
is updated to the least significant byte of r1, and the PC is
increased by 4. From our perspective, those Hoare triples are
equivalent to instruction axioms in an axiomatic semantics,
since we take those theorems as granted and build our logic
on top of it. The detail of the design and implementation of
the semantics is available in [7, 8, 14]. Here, we summarize
important properties related to our cause.
Machine states include registers, memory cells, status flags,

and the current program status register. For example, PC p

in the precondition of Figure 6 asserts that the program
counter has value p and that p is word-aligned; R 2 r2
and R 1 r1 assert that registers R2 and R1 have values
r2 and r1, respectively; MEMORY dom f asserts that some
set of memory addresses dom has value f (these are sym-
bolic values). The 7→ operator is defined as: (a 7→ b) f =
λx. if x = a then b else f x, namely, the result is a new
function where a is mapped to b while other values stay un-
changed. ((r2 7→ (w2w r1)) f) means that only the value at
address r2 is updated to (w2w r1).
The ∗ operator is a separating conjunction [19]: (1) a

triple only asserts the local state (the parts of state that
are used by the instruction), and a global version may be
achieved by using the frame rule (which adds resource as-
sertions not used by a judgment onto it); (2) if a separating
conjunction expression asserts a machine resource more than
once (excluding a pure assertion), then its value is false.
〈〉 represents a pure assertion [19], i.e., it does not assert

any machine resource but serves as a predicate to specify the
boolean relationship between variables. 〈r2 ∈ dom〉 states
that r2 has to be in the domain of the memory function f

in order for this transition to take place.
The pair (p, 0xE5C21000) represents code assertion for the

instruction, meaning that the value 0xE5C21000 is stored at
memory address p.
Some boolean operators such as implication (⇒) and dis-

junction (∨) are lifted to the separating conjunction level;

p
∗

=⇒ q means λs. (p s ⇒ q s); p
∗

∨ q is λs. (p s ∨ q s).

4.2 Safe Instruction Semantics
It is difficult to formalize memory safety or control flow in-

tegrity in Hoare logic, because a Hoare judgment only gives
the pre- and post- states of code and hides intermediate
states. In order to assert the properties for all states ex-
plicitly, we define a safe instruction rule, which creates a
semantics that ensures both properties in every state.

{PC p ∗ R 8 k ∗ 〈(p+ 4) ∈ succ(p)〉 ∗ 〈msafe〉 ∗

MEMORY dm df ∗ MEMORY cm cf ∗ MEMORY pm pf ∗ R 2 r2 ∗ R 1 r1}

(p, 0xE5C21000) // strb R1, [R2]

{PC (p+ 4) ∗ R 8 k ∗

MEMORY dm ((r2 7→ (w2w r1)) df) ∗ MEMORY cm cf ∗

MEMORY pm pf ∗ R 2 r2 ∗ R 1 r1}

Figure 7: The augmented theorem of strb R1, [R2]

Safe Instruction Rule. From an augmented instruction ax-
iom, we define a new state transition relation SAFE_INS by
HOL’s inductive relation definition [13].

{PC l ∗ R 8 k ∗ 〈l′ ∈ succ(l)〉 ∗ 〈MemSafe〉 ∗

MEMORY dm df ∗ MEMORY cm cf ∗ MEMORY pm pf ∗ p}

(l, ins)

{PC l′ ∗ R 8 k′ ∗ MEMORY dm df ′ ∗ MEMORY cm cf ′ ∗ MEMORY pm pf ∗ q}

SAFE_INS (l, R 8 k ∗ 〈l′ ∈ succ(l)〉 ∗ 〈MemSafe〉 ∗

MEMORY dm df ∗ MEMORY cm cf ∗ MEMORY pm pf ∗ p)

(l, ins)

(l′, R 8 k′ ∗ MEMORY dm df ′ ∗ MEMORY cm cf ′ ∗ MEMORY pm pf ∗ q).

The augmented instruction axiom serves as the antecedent
of the rule, where l is the value of the PC in the precondi-
tion, k is the value of the control stack pointer, R8, p and
q represent other assertions that are not explicitly written
out, and corresponding values of machine resources in the
postcondition are marked with a prime ′. As an example,
Figure 7 shows the augmented version for the axiom in Fig-
ure 6.

In the augmented theorem, we divide the data memory
of a program into three parts and use three separate asser-
tions. The three parts are the writable data memory set
(WD), the control stack (CS), and the datapool (DP). WD
includes the data stack, the global data section, and the I/O
addresses as depicted in Figure 3. WD and CS form the pre-
defined memory set mem described in Theorem 1. Because
the three parts are disjoint, we use three sets of memory ad-
dresses to represent them: dm represents WD, cm represents
CS, and pm represents DP. We also use three separate asser-
tions: MEMORY dm df asserts WD, MEMORY cm cf asserts CS,
and MEMORY pm pf asserts DP. We explicitly write out these
memory assertions in order to utilize the feature provided
by the separation logic [19]; that is, these memory addresses
can not be asserted by other assertions, and doing so will
result in a false value.

Formalization of safety properties. The augmented the-
orem has two important safety assertions. One is 〈l′ ∈
succ(l)〉, which asserts control flow integrity. The other is
〈MemSafe〉, which asserts memory safety:

MemSafe = if not (isStore ins) then true else

ms(ins) ⊆ (if k = k
′ then dm else cm)

where ms(ins) is the set of memory addresses that the in-
struction writes to. Recall that R8 is the control stack
pointer. The rationale of (if k = k′ then dm else cm) is that if
the control stack pointer does not change during execution,
then the instruction should write to dm; otherwise, it writes
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SAFE_INS (p, R 8 k ∗ 〈(p+ 4) ∈ succ(p)〉 ∗ 〈{r2} ⊆ dm〉 ∗ · · · )

(p, 0xE5C21000) // strb R1,[R2]

(p+ 4, R 8 k ∗ · · · )

Figure 8: Safe instruction semantics of strb r1,[r2]

to cm. This ensures that changes to the control stack can
only be done through its pointer in R8.
In the example of Figure 7, only the value of the memory

set dm is updated to df ′ = ((r2 7→ (w2w r1)) df), while the
value of cm stays the same as in the precondition (cf ′ =
cf); the assertion of the control flow integrity is 〈(p + 4) ∈
succ(p)〉, and the memory safety assertion is

msafe = if not (isStore 0xE5C21000) then true else

ms(0xE5C21000) ⊆ (if k = k
′ then dm else cm).

The safe instruction rule plays very important roles in
ARMor’s logic framework. First, if we directly used an ax-
iom with safety assertions in logic, it would not be clear
what caused the absence of the assertions after they are
simplified to true and removed from the precondition, be-
cause the axiom may not have assertions at all. With the
new SAFE_INS relation created by the safe instruction rule,
we are always assured that they have been discharged, as
there is no instruction without having the safety assertions
in this relation. As a result, when writing specifications (as-
sertions) for memory safety and control flow integrity, we
do not care about the exact program points where the spec-
ifications originate; we only care about if any specifications
can be derived properly, i.e., if any assertions can be dis-
charged. Second, our logic uses a flexible construct, a label
predicate, to handle arbitrary jumps used in machine code,
and it requires a new syntax which the axioms do not have.
After applying the safe instruction rule to the augmented

theorem in Figure 7, we get the safe instruction semantics
for strb R1, [R2] in Figure 8. For brevity, we have omitted
the assertions for memory, R2 and R1. They are the same
as in Figure 7. Notice that the memory safety assertion has
been simplified, as this is a store instruction, and k′ = k.

5. A NOVEL LOGIC FRAMEWORK
We developed a novel program logic that has a two-layer

structure for reasoning about executables. The first layer
is a Hoare-style logic that reasons about a code block with
sequential execution structure such as a basic block by gen-
erating a local Hoare judgment. The novelty comes from
the following. First, the second layer is a top-level program
judgment stipulating the relationship among the Hoare judg-
ments of code blocks: for every code block, the postcondi-
tions of its predecessor blocks imply its precondition. This
idea originated from Floyd’s inductive assertion [6], and we
formalize it in this program logic. Second, we use a sim-
ple concept, label predicate, to connect the two layers. It
is inspired by Tan and Appel’s label continuation [22], but
we use a much simpler, direct (instead of continuation) in-
terpretation and do not have a complicated semantics and
a complex soundness proof used by the latter. Third, our
logic facilitates proof automation in two ways. One is the
composition of code block judgments, which is automated
by SML programming, SML being the meta-language of the

HOL theorem prover. The other is discovering the relation-
ship among these judgments automatically by an abstract
interpretation.

5.1 Label Predicates
Our logic’s assertion language is a set of label predicates.

Informally, a label predicate is a pair of a label and a pred-
icate, interpreted as that the predicate holds at the associ-
ated label. A set of label predicates means that there is a
true label predicate in the set. Formally, the syntax of a
label predicate is

lp ∈ LabelPred = LabelExp× StateAssert
l ∈ LabelExp = word32
p ∈ StateAssert = separating conjunction expression

Its interpretation is defined by a semantic function LP2SP,
and another function, LPSET, interprets a set of label predi-
cates:

LP2SP (l, p) = PC l ∗ p

LPSET P = λs. (∃lp. lp ∈ P ∧ (LP2SP lp) s) .

We denote the subsumption relation between two sets of

label predicates as
lp
=⇒:

P
lp
=⇒ Q iff (LPSET P )

∗

=⇒ (LPSET Q).

5.2 A Hoare Logic
This first layer is implemented by the following set of def-

initions that bridge the gap between SAFE_INS and a Hoare
judgment.

First, a step relation implements a state transition:

step i s t iff

∃lp kq. (SAFE_INS lp i kq) ∧ (LP2SP lp) s ∧ (LP2SP kq) t.

It reads that a transition from state s to state t by in-
struction i is equivalent to a transition from s to t by the
safe semantics, indicating that the transition is safe.

Next, a sequence relation implements the concept of n-
step execution:

seq C sq s iff

(sq 0 = s)∧

(∀n. if ∃i ∈ C. ∃t. step i (sq n) t

then ∃i ∈ C. step i (sq n) (sq (n+ 1))

else false)

where C is a set of instructions, and sq is a mapping from
integer to state. It reads that in an instruction set, if there
exists an instruction that can take a state to the next, then
do the transition; otherwise, execution gets stuck, indicated
by the false value.

We first define a single-entry single-exit Hoare judgment:

sglspec {lp} C {kq} iff

∀r s. ((LP2SP lp) ∗ r) s ⇒ ∀sq. seq C sq s

⇒ ∃n. ((LP2SP kq) ∗ r) (sq n).

It reads that if the precondition lp holds for an initial state
s, then n steps later, the postcondition kq holds for another
state (sq n). The universally quantified r forces any and
only those resources used by the code to be included in the
pre- and post-conditions.
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Label predicate rules:

P
lp
=⇒ P

LPRefl
P

lp
=⇒ (P ∪Q)

LPExt

Hoare rules:

{P1} C1 {Q1} {P2} C2 {Q2}

{P1 ∪ P2} (C1 ∪ C2) {Q1 ∪Q2}
Union

{P ∪M} C {Q ∪M} {M} C {Q}

{P ∪M} C {Q}
Discharge

{P} C {Q}

{(l, p ∗ r)|(l, p) ∈ P} C {(k, q ∗ r)|(k, q) ∈ Q}
Frame

{P} C {Q} R
lp
=⇒ P

{R} C {Q}
Strengthen

{P} C {Q} Q
lp
=⇒ R

{P} C {R}
Weaken

Label predicate merge rules:

{P ∪ {(l, p)} ∪ {(l, q)}} C {Q} = {P ∪ {(l, p
∗

∨ q)}} C {Q}

{P} C {Q ∪ {(l, p)} ∪ {(l, q)}} = {P} C {Q ∪ {(l, p
∗

∨ q)}}

Figure 9: Some proven inference rules

We extend it to a multiple-entry multiple-exit Hoare judg-
ment:

SPEC {P} C {Q} iff sglspec (LPSET P ) C (LPSET Q)

where P and Q are sets of label predicates. Informally, it
means that if there exists a true label predicate in the pre-
condition, then there exists a true label predicate in the
postcondition some steps later.

5.2.1 Instruction and Inference Rules
It is relatively straightforward to prove instruction and

inference rules by definition substitutions. We list some im-
portant inference rules in Figure 9, omitting the leading re-
lation marker SPEC. Most rules are standard in Hoare logic.
An unusual rule is Discharge, which removes unnecessary in-
termediate label predicate entries in the postcondition. La-
bel predicate merge rules are used to combine and split label
predicate entries which have the same label.

5.2.2 Soundness
This Hoare logic is sound, because we derive all the rules

from the formal safe semantics of the ARM ISA.

5.2.3 Composing Code Block Judgments
Like in a traditional Hoare logic, the reasoning process

for a code block is to compose a block Hoare triple from
instruction rules. The inference rules used in composition
are Frame, Union, Discharge, Strengthen, and LPExt. We
show their usage in composing the judgment of block2 of the
example in Figure 2, starting with the first two instructions.
For this concrete example, the rule for the store instruc-

tion is instantiated and simplified to the following (p = 0xC,
and (0x10) ∈ succ(0xC) = true):

{(0xC, MEMORY dm df ∗ 〈{r2} ⊆ dm〉 ∗ a1 ∗ a2)}

(0xC, 0xE5C21000) // strb R1,[R2]

{(0x10, MEMORY dm ((r2 7→ (w2w r1)) df) ∗ a1 ∗ a2)}

where a1 = R 8 k ∗ MEMORY cm cf ∗ MEMORY pm pf

a2 = R 2 r2 ∗ R 1 r1

and the simplified rule for the test instruction is:

{(0x10, R 1 r1 ∗ S sZ z ∗ MEMORY dm df ∗ a1)}

(0x10, 0xE3310000) // teq R1,#0x0

{(0x14, R 1 r1 ∗ S sZ (r1 = 0) ∗ MEMORY dm df ∗ a1)}

where S sZ z asserts that the zero status flag (sZ) has value z.
For brevity, we have omitted the assertions for other status
flags.

First, we find all state assertions used by these two rules
and use the Frame rule to add the assertions of resources
that are not used by an instruction to that instruction. For
example, we add R 2 r2 to the second rule and the asser-
tions of status flags to the first rule. In this process, we
need to instantiate the free variables of the second rule to
the corresponding values in the postcondition of the first
rule. For example, df in the second rule is instantiated to
((r2 7→ (w2w r1)) df), because the second instruction starts
with the ending state of the first instruction. Next, we apply
the Union rule to compose the two rules together, and use
the Discharge rule to remove the intermediate entry in the
postcondition, which is the entry with label 0x10. Finally,
we use the LPExt and the Strengthen rules to remove the in-
termediate entry from the precondition to get the judgment
for the first two instructions.

By repeating this procedure, we compose the judgment of
block2, and the final results are:

{(0xC, MEMORY dm df ∗ 〈{r2} ⊆ dm〉 ∗ 〈r1 6= 0〉 ∗ S sZ z ∗ a1 ∗ a2)}

block2 (1)

{(0x0, MEMORY dm ((r2 7→ (w2w r1)) df) ∗ S sZ (r1 = 0) ∗ a1 ∗ a2)}

{(0xC, MEMORY dm df ∗ 〈{r2} ⊆ dm〉 ∗ 〈r1 = 0〉 ∗ S sZ z ∗ a1 ∗ a2)}

block2 (2)

{(0x18, MEMORY dm ((r2 7→ (w2w r1)) df) ∗ S sZ (r1 = 0) ∗ a1 ∗ a2)}.

Notice that block2 has two separate judgments with each
for a branch condition. The branch conditions, 〈r1 6= 0〉 and
〈r1 = 0〉, originate from the branch instruction bne -#20,
which has two separate axioms.

5.2.4 Discharging and Pushing Up Safety Assertions
The composition process handles a safety assertion in two

ways. The first is to discharge a safety assertion if possible,
for example, the assertions of control flow integrity are dis-
charged due to simplification using the succ function. If a
safety assertion cannot be discharged, such as the memory
assertion of the store instruction, then it is pushed up to
the precondition of the composed judgment. We discharge
those up-pushed assertions in the second layer of the logic. It
is noteworthy that this composition procedure is completely
mechanical and does not require complicated rule selections.
We automated it by SML programming.
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5.3 Well-Formed Code Blocks
A multiple-entry Hoare judgment does not model a basic

block well, because a basic block has only one entry ad-
dress. We define a well-formed code block as a single-entry
multiple-exit Hoare judgment by imposing two conditions:
(1) there is only one entry address for the code; (2) the label
of a label predicate in the precondition must be the entry
address. Formally, it is

WF_CBL P C Q iff

(SPEC {P} C {Q}) ∧ (∀(l, p) ∈ P. l = L(C))

where L(C) returns the entry address of an instruction set.

5.4 The Top-Level Program Judgment
This layer connects the Hoare judgments of code blocks

to form the semantics of a program.
We first define an implication relation between a precon-

dition and a postcondition at the program level.

Q
P
=⇒ R iff ∀(l, p) ∈ R. ∀(k, q) ∈ Q.

(k = l) ⇒
(

{(k, q)}
lp
=⇒ {(l, p)}

)

.

It reads that a set of label predicates Q implies another
set of label predicates R at the program level if and only if
for every label predicate lp in R, if a label predicate kq in
Q has the same label with lp, then the singleton set of kq
should imply the singleton set of lp.
We define the top-level judgment of a program as

PROG_SPEC prog predecessor bspec iff

∃kspec.

∀cbl ∈ prog.

(WF_CBL (bspec cbl) cbl (kspec cbl)) ∧

(∀cbl′ ∈ (predecessor cbl). (kspec cbl
′)

P
=⇒ (bspec cbl))

where prog is the set of code blocks of a program. The sec-
ond to the last line of the definition requires that each code
block is well-formed. The predecessor models the CFG pol-
icy at the code blocks level by a function: given a code block,
it returns the set of predecessor code blocks. bspec and kspec

are two global specifications on code blocks. The former is
a mapping from code blocks to their preconditions, and the
latter is a mapping from code blocks to their postconditions.
The last line of the definition specifies that if a code block is
a predecessor of another code block, then the postcondition
of the former implies the precondition of the latter.
This logic does not compose over code blocks, so it does

not need rules for composing any control flow transfers. As
a result, it can handle arbitrary jumps commonly seen in
executables. The requirement of the postcondition of a block
implying the precondition of a successor block in the CFG
policy holds for arbitrary control flow transfers including
finite or infinite loops.
Our soundness argument for this program semantics says

that execution never gets stuck if and only if the program
is safe, which is captured by the given global specification
(bspec). An intuitive argument is that when control reaches
the end of a code block, it resumes on one of its successor
blocks because of the implication relation. Formally, we may
derive a program specification PROG SPEC prog predecessor

bspec if and only if: starting from the initial state s of a
program, if the execution reaches the label of a code block,

L(cbl), then the precondition defined by bspec on the block
is ensured to be true. This shows that bspec is an accurate
specification for the program. The theorem is

∀s sq n cbl.

seq C sq s ∧ (bspec entryBlock s) ∧ LABEL_IN (L(cbl)) (sq n)

⇒ (bspec cbl) (sq n)

where LABEL_IN specifies that a state has a label, or the con-
trol reaches to the state: LABEL_IN l t iff ∃p. (LP2SP(l, p)) t,
and C is the set of instructions of the program (

⋃

prog).

5.5 Discharging Safety Assertions Globally
In general, there is not an automated reasoning process

for finding the two global specifications. However, for veri-
fying the shallow safety properties presented in this paper,
we describe an abstract interpretation that automatically
discovers them.

This is a flow-sensitive backward analysis for discharging
the safety assertions globally. Its domain is the power set
of all concrete safety assertions occurring in the judgments
of code blocks, and each judgment is a node. The trans-
fer function runs as follows: when a node has an incoming
safety assertion, it tries to derive the assertion from the label
predicates in the postcondition of the node and whose label
is the same as the incoming assertion; if it succeeds, which
means the assertion is true, it does nothing; otherwise, it
propagates the assertion along the flow, hoping that other
nodes can discharge the assertion. In pseudo-code, it is

transfer (node,Σin) :

foreach (l, assert) in Σin

foreach (l′, p) ∈ postcondition(node)

if l
′ = l and (not (p implies assert)) then

Σout(node) = Σout(node) ∪ {(L(node), assert)}

where Σin and Σout are the in-state and out-state of the
analysis.

When the fixed point computation successfully terminates,
we take the safety assertions that are propagated to a node
and use the Frame rule to add them to the node. This makes
the postcondition of a node’s predecessor imply the precon-
dition of the node.

6. PROVING THE EXAMPLE
We illustrate the reasoning process in the second layer by

proving the example in Figure 2. This process has four steps
and starts with the Hoare judgments of code blocks. The
first step is to convert the local judgments of code blocks to
the global version. The second is to find the two global spec-
ifications: bspec and kspec. The third is to prove the well-
formedness of code blocks. Finally, we prove the PROG_SPEC
judgment by instantiating its definition with the two speci-
fications found, the program code and the CFG policy. The
first step is simple, in which we apply the Frame rule to add
unused resource assertions to block judgments. So is the
third step, since it is a straightforward proof by definition.
Therefore, we focus on the second and the last step.

We composed the Judgment 1 and 2 in Section 5.2.3 for
block2. We use the same procedure to compose the judg-
ments of other blocks and give the results below. For clarify
of explanation, we assume that the judgments are already
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in the global version, but we do not explicitly write out as-
sertions of status flags and of other machine resources rep-
resenting them with · · · unless necessary.

{(0x0, R 2 r2 ∗ R 1 r1 ∗ S sZ z ∗ 〈r2 6= 0x40000000〉 ∗ · · · )}

block1 (3)

{(0x18, R 2 r2 ∗ R 1 (r1− 1) ∗ S sZ (r2 = 0x40000000) ∗ · · · }

{(0x0, R 2 r2 ∗ R 1 r1 ∗ S sZ z ∗ 〈r2 = 0x40000000〉 ∗ · · · )}

block1 (4)

{(0xC, R 2 r2 ∗ R 1 (r1− 1) ∗ S sZ (r2 = 0x40000000) ∗ · · · }

{(0x18, R 2 r2 ∗ R 1 r1 ∗ · · · )}

block3 (5)

{(0x1C, R 2 r2 ∗ R 1 (r2 + 4) ∗ · · · }

{(0x1C, R 2 r2 ∗ · · · )}

block4 (6)

{(0x1C, R 2 r2 ∗ · · · }.

The central task is to discover the
P
=⇒ relation between

a postcondition-and-precondition pair, which in turn boils
down to discharging safety assertions. In this example, the
safety assertion of block2, 〈{r2} ⊆ dm〉, can be discharged by
the postcondition of Judgment 4, because it has the branch
condition of 〈r2 = 0x40000000〉, and {0x40000000} ⊆ dm =
true (dm is the only predefined memory set). In order to get
it formally, we frame the branch condition to the judgment
itself. As a result, the assertion in the postcondition has
R 2 r2 ∗ 〈r2 = 0x40000000〉, which implies 〈{r2} ⊆ dm〉. In
our framework, this work is done by the abstract interpre-
tation described in Section 5.5. There are no safety asser-
tions in other blocks, so the relation between corresponding
postcondition-precondition pairs is trivial.
Next, we merge the two judgments of the same block to

form a single judgment for it. After merging, the branch con-
ditions can be removed. For example, the two branch con-
ditions of Judgment 3 and 4 are simplified to true (〈(r2 6=
0x40000000) ∨ (r2 = 0x40000000)〉). Afterwards, we build
the two global specifications. Denote the preconditions of
the four blocks as P1, P2, P3 and P4, respectively, and
the postconditions of the blocks as Q1, Q2, Q3 and Q4,
respectively. Then bspec = {blocki → Pi}, and kspec =
{blocki → Qi}, for i=1,2,3,4. The other two parameters are
prog = {blocki}, for i=1,2,3,4, and predecessor = {block1
→ {block2}, block2 → {block1}, block3 → {block1, block2},
block4 → {block3, block4}}.
Finally, we instantiate the definition of PROG_SPEC with

these terms. Since we have already found the
P
=⇒ relation be-

tween postcondition-and-precondition pairs, we are able to
prove it by rewriting the definition step-by-step. An example

of the relation is Q1
P
=⇒ P2 as discussed above; the relation

for other postcondition-precondition pairs holds similarly.

7. IMPLEMENTATION AND RESULTS
We implemented the SFI mechanisms in C using Diablo,

and the logic framework in the HOL theorem prover. Al-
though we developed C code and the abstract interpreta-
tion, neither of them is trusted. What we trust is a formal
proof of the top-level program judgment. If there are errors
in the SFI implementation or in the abstract interpretation,
proving PROG_SPEC will fail. The purpose of the SFI imple-
mentation is to provide necessary invariants that make the
proof succeed; without them or with buggy transformations,
the proof will simply fail. The purpose of the abstract in-
terpretation is to automate the discovery of the two global

specifications that define the top-level judgment; without it,
depending on human efforts to find any global invariants in
machine code is daunting and very inefficient, if possible.

We applied ARMor to automatically prove the memory
safety and the control flow integrity of ARM executables
including our programs and MiBench programs [10]. The
proven MiBench programs are BitCount and StringSearch.
BitCount has 293 machine words in its code section, and
StringSearch has 1104 machine words in its code section.
It took 2.5 hours to prove BitCount and 8 hours to prove
StringSearch on a 2.7 GHz Core i7 machine. These programs
were compiled with GCC 3.3.2 with optimization level -Os
and run on a development board based on a Philips LPC2129
processor, which implements the ARM7TDMI architecture.
To the best of our knowledge, this is the first time that such
realistic programs have been automatically verified in a high-
order theorem prover, providing the highest-level guarantee
that can be achieved by today’s computer technologies.

7.1 Trusted Computing Base
Our TCB includes the formalization of safety properties,

the definitions of the program logic, the formal semantics of
ARM ISA, the HOL theorem prover and hardware. Among
them, we contributed the first two, whose definitions are 58
lines in HOL.

We also proved useful inference rules and theorems, and
these proof scripts are about 600 lines, but they are not
in the TCB, because their correctness is guaranteed by the
reasoning system of HOL. Our total HOL/SML scripts have
about 8000 lines; about half supports proof automation, a
quarter is the implementation of abstract interpretations,
and the other quarter is supporting functions.

We compare ARMor with other work that uses sandbox-
ing techniques to isolate untrusted binary code such as Gleip-
nir [1, 5], PittSFIeld [12], and Native Client [20, 26] in Ta-
ble 1. Some of the projects are quite big, and we only com-
pare the sandboxing parts in terms of the size of TCB and
verification methods used.

The Gleipnir project developed CFI and XFI. For CFI,
it performed theoretical analysis at the language level [2],
describing formal semantics for a simplified instruction set
and for attack models, with final theorems that established
the correctness of its mechanisms. However, this work was
checked with human endeavor on paper and not carried out
for any sandboxed code, which means that any implemen-
tation must be trusted. XFI used a static verifier to check
the presence of CFI and memory guards. The verifier was
a 3000-line C++ program, which brings itself and a com-
piler in its TCB. PittSFIeld also used a verifier, but as
an improvement in verification, it formalized semantics in
ACL2 for a very small subset of instructions and for the ver-
ifier constraints, and under this semantics, it mechanically
proved that its mechanisms could guarantee the confinement
of untrusted code [11]. NativeClient also relies on its veri-
fier to ensure safety, and many testing efforts were made to
ensure the correctness of the verifier. Its verifier has 600 C
statements for x86, and the size of verifiers for the ARM and
x86-64 architectures was not reported.

It is noteworthy that only ARMor ensures formalized safety
properties in binary code with an automatic machine-checked
proof, and this insurance is deeply rooted in a formal real-
istic semantics of the ARM ISA.
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Gleipnir (CFI/XFI) PittsFIeld NativeClient ARMor
TCB verifier implementation and compilation (compiler) formal definitions of safety properties

and logic, ARM semantics and HOL
Size of ver-
ifier (defini-
tions)

3000-line commented
C++ (XFI)

N/A for verifier,
500-line ACL2

600 C statements
for x86, unknown
for ARM & x86-64

58-line HOL plus existing definitions
for ARM semantics

Formal
methods

human-checked proof
at language level

machine-checked proof
at language level

N/A automatic machine-checked proof

Formalized
elements

semantics for small
subset of instructions
and attack models

semantics for small sub-
set of instructions and
verifier constraints

N/A safety properties and program logic
plus existing ARM semantics

Table 1: Comparison of verification and TCB (hardware omitted)

7.2 Influence of Formalization
Formalizing safety properties and proving them for an ex-

ecutable expose a large amount of information about the
executable, which gives us useful knowledge about ensuring
the properties and helps us correct errors in the SFI imple-
mentation.

Simplifying Proof. We initially thought that proving mem-
ory safety and control flow integrity would be tricky, be-
cause they mutually depend on each other: the memory
safety needs the control flow integrity to ensure that the
store checks cannot be circumvented, while the control flow
integrity depends on the memory safety to guarantee that
the memory locations storing jump targets are not overwrit-
ten. In practice, introducing the control stack and giving
a smaller writable data memory set dm as discussed in Sec-
tion 4.2 are strong enough to prove the control flow integrity
for most code cases in ARM executables. For example, tar-
gets of switch jumps are stored in the datapool, which is
not included in the set of given writable addresses. As a re-
sult, after we formalize the datapool memory as a separate
heap assertion, the control flow integrity of switch state-
ments can be proven. Introducing the control stack solved
the problems of overwriting return addresses. The solution
of function pointers depends on how the pointers are used. If
they are not meant to be changed after being placed in a ta-
ble, we exclude these addresses from the given set of writable
addresses and handle them the same way as for switches. If
the function pointers are allowed to be overwritten with dif-
ferent values, a more complicated proof scheme is needed.
So far, we have not considered this situation.

Locating Errors in SFI Implementation. ARMor is not
designed to find bugs, but the failure of a proof reveals use-
ful information about possible issues in binary code. An
example is that the link register, R14, in the ARM ISA may
be used as a scratch register in a computation. Our initial
implementation of the control stack only considered loading
values into PC. As a result, the control flow integrity as-
sertion failed, when R14 was used as a scratch register. By
looking at the values used in the assertion and that of the
R14, we found the reason of failure and considered instruc-
tions that load a value into R14.

7.3 Overhead of Safety Checks
We measured the performance overhead of SFI implemen-

tations for those programs we proved, and it ranges from 5%
to 240%. For example, BitCount has 10% slowdown, and
StringSearch has 240% slowdown. The high overhead was

caused by the address checking routine discussed in Sec-
tion 3.2, because it is a rather lengthy function with sev-
eral load and comparison instructions. We used this sub-
optimal implementation, because our goal was to provide
a very high-confidence argument for strict memory safety
and strict control flow integrity about binary code, not to
reduce overhead; this routine was the most direct way to
implement a check. In addition, we have not optimized the
implementation. If we use alternative SFI implementations
which provide less strict safety policies, we can reduce the
overhead dramatically as illustrated in [20] and verify a less
stringent safety requirement.

7.4 Future Work
In order to verify other safety properties by reusing AR-

Mor’s framework, we have parameterized the safe instruction
semantics. This makes the framework capable of proving a
class of safety properties that can be formalized at every in-
struction of a program. For a different safety property, we
only need to formalize it in the antecedent of the safe instruc-
tion rule, and the rest of the framework stay unchanged.

The top-level program judgment is flat in terms of orga-
nizing code block judgments, and this can cause scalability
issue when programs become bigger. We are working on a
hierarchical structure for this layer, where the concept of
function is introduced to group code blocks into tree-like
proof units. This scheme can potentially verify more pro-
grams and reduce proof time.

8. RELATED WORK
SFI dates back to Wahbe et al. [24], and more recent im-

plementations have low overhead [20]. However, existing SFI
work does not formally verify a sandboxed binary code. This
means that an implementation and its compilation must be
fully trusted as discussed in Section 7.1.

Boyer and Yu made the first attempt to verify small real-
world executables with symbolic execution, but their speci-
fications and proofs were done manually [4]. Myreen et al.
developed a traditional Hoare logic for machine code pro-
grams [15] and a decompiler to reuse proofs for multiple
architectures [16]. Tan and Appel developed a composi-
tional logic for reasoning about arbitrary control flows and
proved typing rules for the foundational proof-carrying code
project [22], but their logic has the complexities mentioned
in Section 5.

Proof-carrying code uses a VCG-based approach to verify
programs without formalizing the method itself, resulting
in a large TCB which includes a verifier for a code con-
sumer [17].
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Shao’s group developed XCAP to verify low-level code [18].
Their method is posterior in the sense that if there is a cor-
rect top-level code specification for the code of interest, then
the method can verify its correctness by checking it at each
instruction interactively. This is similar to the last step of
ARMor, in which the specifications are instantiated and ver-
ified.
Seo et al. used the result of an abstract interpretation to

guide the construction of Hoare logic proofs [21], but their
abstract interpreter generated redundant information which
was removed manually.

9. CONCLUSION
We developed ARMor: a sandboxing system for ARM

binaries based on software fault isolation (SFI) that is suit-
able for use in small embedded systems. Fault isolation is
achieved by rewriting object code to place a safety check in
front of every potentially dangerous operation. The isola-
tion guarantees provided by ARMor are formally verified in
the HOL theorem prover in terms of a well-vetted formal
semantics for the ARM instruction set architecture. Thus,
ARMor’s trusted computing base is extremely small, includ-
ing only the specifications of memory safety and control flow
integrity, a program logic, the instruction semantics, and
HOL itself. We do not trust an operating system, compiler,
binary rewriter, verifier or any other large object. ARMor’s
proofs are constructed automatically using a novel program
logic framework that integrates results from Hoare-style rea-
soning and from an abstract interpreter.
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