34,997 research outputs found

    Ceramide is a Mediator of Apoptosis in Retina Photoreceptors

    Get PDF
    PURPOSE. The precise mechanisms involved in photoreceptor apoptosis are still unclear. We here investigated the role of ceramide, a sphingolipid precursor that induces apoptosis upon cellular stress, in activating this death in photoreceptors. METHODS. Rat retina neuronal cultures, with or without docosahexaenoic acid (DHA), were treated with the ceramide analog acetylsphingosine (C2-ceramide), and with a glucosylceramide synthase inhibitor. Ceramide synthesis in cultures treated with the oxidant paraquat was evaluated with [3H]palmitate. The effect of inhibitors of ceramide de novo synthesis, fumonisin B1 and cycloserine, on photoreceptor apoptosis was investigated. Apoptosis, mitochondrial membrane potential and Bcl-2 expression were determined. RESULTS. Addition of C2-ceramide induced photoreceptor apoptosis. Paraquat increased formation of [3H]ceramide in photoreceptors, compared to controls, while inhibition of ceramide synthesis, immediately before paraquat treatment, prevented paraquat-induced photoreceptor apoptosis. Fumonisin also reduced photoreceptor apoptosis during early development in vitro. DHA, the retina major polyunsaturated fatty acid, which protects photoreceptors from oxidative stress-induced apoptosis, completely blocked C2-ceramide-induced photoreceptor death, simultaneously increasing Bcl-2 expression. Inhibiting glucosylceramide synthase, which catalyzes ceramide glucosylation, before ceramide or paraquat treatment blocked DHA protective effect. CONCLUSIONS. Our results suggest that oxidative stress stimulated an increase in ceramide levels, which induced photoreceptor apoptosis. DHA prevented oxidative stress and ceramide damage by up regulating Bcl-2 expression and glucosylating ceramide, thus decreasing its intracellular concentration. This shows for the first time that ceramide is a critical mediator for triggering photoreceptor apoptosis in mammalian retina and suggests that modulating ceramide levels might provide a therapeutic tool for preventing photoreceptor death in neurodegenerative diseases.Fil: German, Olga Lorena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; ArgentinaFil: Miranda, Gisela Edit. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; ArgentinaFil: Abrahan, Carolina Elizabeth. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; ArgentinaFil: Rotstein, Nora Patricia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentin

    Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    Get PDF
    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy

    Synthesis and biological activity of α-galactosyl ceramide KRN7000 and galactosyl (α1→2) galactosyl ceramide

    Get PDF
    We herein report a faster and less cumbersome synthesis of the biologically attractive, α-galactosyl ceramide (α-GalCer), known as KRN7000, and its analogues. More importantly, the use of a silicon tethered intramolecular glycosylation reaction gave easy access to the diglycosyl ceramide Gal(α1→2)GalCer, which has been shown to require uptake and processing to the biologically active α-GalCer derivative

    Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.

    Get PDF
    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions

    Ceramide remodeling and risk of cardiovascular events and mortality

    Get PDF
    BackgroundRecent studies suggest that circulating concentrations of specific ceramide species may be associated with coronary risk and mortality. We sought to determine the relations between the most abundant plasma ceramide species of differing acyl chain lengths and the risk of coronary heart disease (CHD) and mortality in community‐based samples. Methods and ResultsWe developed a liquid chromatography/mass spectrometry assay to quantify plasma C24:0, C22:0, and C16:0 ceramides and ratios of these very–long‐chain/long‐chain ceramides in 2642 FHS (Framingham Heart Study) participants and in 3134 SHIP (Study of Health in Pomerania) participants. Over a mean follow‐up of 6 years in FHS, there were 88 CHD and 90 heart failure (HF) events and 239 deaths. Over a median follow‐up time in SHIP of 5.75 years for CHD and HF and 8.24 years for mortality, there were 209 CHD and 146 HF events and 377 deaths. In meta‐analysis of the 2 cohorts and adjusting for standard CHD risk factors, C24:0/C16:0 ceramide ratios were inversely associated with incident CHD (hazard ratio per average SD increment, 0.79; 95% confidence interval, 0.71–0.89; P<0.0001) and inversely associated with incident HF (hazard ratio, 0.78; 95% confidence interval, 0.61–1.00; P=0.046). Moreover, the C24:0/C16:0 and C22:0/C16:0 ceramide ratios were inversely associated with all‐cause mortality (C24:0/C16:0: hazard ratio, 0.60; 95% confidence interval, 0.56–0.65; P<0.0001; C22:0/C16:0: hazard ratio, 0.65; 95% confidence interval, 0.60–0.70; P<0.0001). ConclusionsThe ratio of C24:0/C16:0 ceramides in blood may be a valuable new biomarker of CHD risk, HF risk, and all‐cause mortality in the community

    Sphingolipids as emerging mediators in retina degeneration

    Get PDF
    The sphingolipids ceramide (Cer), sphingosine-1-phosphate (S1P), sphingosine (Sph), and ceramide-1-phosphate (C1P) are key signaling molecules that regulate major cellular functions. Their roles in the retina have gained increasing attention during the last decade since they emerge as mediators of proliferation, survival, migration, neovascularization, inflammation and death in retina cells. As exacerbation of these processes is central to retina degenerative diseases, they appear as crucial players in their progression. This review analyzes the functions of these sphingolipids in retina cell types and their possible pathological roles. Cer appears as a key arbitrator in diverse retinal pathologies; it promotes inflammation in endothelial and retina pigment epithelium (RPE) cells and its increase is a common feature in photoreceptor death in vitro and in animal models of retina degeneration; noteworthy, inhibiting Cer synthesis preserves photoreceptor viability and functionality. In turn, S1P acts as a double edge sword in the retina. It is essential for retina development, promoting the survival of photoreceptors and ganglion cells and regulating proliferation and differentiation of photoreceptor progenitors. However, S1P has also deleterious effects, stimulating migration of MĂŒller glial cells, angiogenesis and fibrosis, contributing to the inflammatory scenario of proliferative retinopathies and age related macular degeneration (AMD). C1P, as S1P, promotes photoreceptor survival and differentiation. Collectively, the expanding role for these sphingolipids in the regulation of critical processes in retina cell types and in their dysregulation in retina degenerations makes them attractive targets for treating these diseases.Fil: Simon, Maria Victoria. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; ArgentinaFil: Prado Spalm, Facundo Heber. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; ArgentinaFil: Vera, Marcela Sonia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Rotstein, Nora Patricia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; Argentin
    • 

    corecore