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Ceramide Remodeling and Risk of Cardiovascular Events and
Mortality
Linda R. Peterson, MD;* Vanessa Xanthakis, PhD;* Meredith S. Duncan, MA;*,† Stefan Gross, PhD; Nele Friedrich, PhD; Henry V€olzke, MD;
Stephan B. Felix, MD; Hui Jiang, PhD; Rohini Sidhu, MS; Matthias Nauck, MD; Xuntian Jiang, PhD; Daniel S. Ory, MD; Marcus D€orr, MD;
Ramachandran S. Vasan, MD; Jean E. Schaffer, MD

Background-—Recent studies suggest that circulating concentrations of specific ceramide species may be associated with
coronary risk and mortality. We sought to determine the relations between the most abundant plasma ceramide species of differing
acyl chain lengths and the risk of coronary heart disease (CHD) and mortality in community-based samples.

Methods and Results-—We developed a liquid chromatography/mass spectrometry assay to quantify plasma C24:0, C22:0, and
C16:0 ceramides and ratios of these very–long-chain/long-chain ceramides in 2642 FHS (Framingham Heart Study) participants
and in 3134 SHIP (Study of Health in Pomerania) participants. Over a mean follow-up of 6 years in FHS, there were 88 CHD and 90
heart failure (HF) events and 239 deaths. Over a median follow-up time in SHIP of 5.75 years for CHD and HF and 8.24 years for
mortality, there were 209 CHD and 146 HF events and 377 deaths. In meta-analysis of the 2 cohorts and adjusting for standard
CHD risk factors, C24:0/C16:0 ceramide ratios were inversely associated with incident CHD (hazard ratio per average SD
increment, 0.79; 95% confidence interval, 0.71–0.89; P<0.0001) and inversely associated with incident HF (hazard ratio, 0.78; 95%
confidence interval, 0.61–1.00; P=0.046). Moreover, the C24:0/C16:0 and C22:0/C16:0 ceramide ratios were inversely
associated with all-cause mortality (C24:0/C16:0: hazard ratio, 0.60; 95% confidence interval, 0.56–0.65; P<0.0001; C22:0/
C16:0: hazard ratio, 0.65; 95% confidence interval, 0.60–0.70; P<0.0001).

Conclusions-—The ratio of C24:0/C16:0 ceramides in blood may be a valuable new biomarker of CHD risk, HF risk, and all-cause
mortality in the community. ( J Am Heart Assoc. 2018;7:e007931. DOI: 10.1161/JAHA.117.007931.)

Key Words: cardiovascular disease risk factors • ceramides • mortality

C eramides are a large class of bioactive sphingolipids that
contain a sphingoid base linked to a fatty acyl chain. In

mammals, the de novo synthesis pathway includes a family of
6 ceramide synthase enzymes that direct acylation of
sphingoid bases with distinct, but overlapping, tissue

distributions and acyl chain specificities.1 The resultant
ceramides are highly compartmentalized within cells and
enriched in specific tissues.

High levels of total tissue ceramides have been
implicated in metabolic and cardiovascular diseases (CVDs)
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in animal models. Genetic and pharmacological interven-
tions that decrease total plasma ceramides prevent diet-
and glucocorticoid-induced insulin resistance, atherosclero-
sis, and metabolic cardiomyopathy in mice.2–4 These
studies provided early evidence that total ceramides might
serve as a useful diagnostic tool or therapeutic target.

Recent studies raise the possibility that the deleterious
cardiometabolic effects of ceramides may relate more to
remodeling of the ceramide acyl chain species, rather than
total ceramide levels. In mice with altered expression of
ceramide synthase 2 and ceramide synthase 6, increases in
long-chain ceramide species (eg, C16:0 ceramide) and
decreases in very–long-chain species (eg, C22:0 and
C24:0 ceramides) in metabolic tissues are associated with
diet-induced glucose intolerance, nonalcoholic steatohepati-
tis, and insulin resistance.5,6 In retrospective case-control
studies of patients with coronary heart disease (CHD), high
plasma C16:0 ceramide, low C24:0 ceramide, and low
C24:0/C16:0 ceramide ratios were directly related to
cardiovascular mortality over 3 years.7,8 To test the hypoth-
esis that higher ratios of plasma very–long-chain cera-
mides/long-chain ceramides are inversely associated with
risk of CHD and mortality in the general population, we
related ratios of 3 abundant plasma ceramides9 to the risk
of CHD and all-cause mortality in 2 large community-based
samples.

Methods

Quantification of Ceramides
We developed a fully validated liquid chromatography/tandem
mass spectrometry assay to quantify C24:0, C22:0, and
C16:0 ceramides in frozen fasting plasma samples (see Data
S1).

Healthy Volunteers
To assess performance of the ceramide assay, we recruited
healthy nonsmoking men (n=12) and women (n=12), aged
40 to 60 years (mean age, 41 years), at Washington
University (St Louis, MO). Subjects were free of hyperten-
sion, diabetes mellitus (normal glucose tolerance test
result), CVD (normal stress echocardiogram result), and
other major systemic illness. Morning fasting plasma was
obtained from venous blood draws 2 weeks apart to
determine range and mean values at each time. Absolute
difference and percentage change were calculated per
subject, and Student’s 1-sample t-test was used to
determine if mean percentage change differed from zero.
The Washington University Institutional Review Board
approved this study protocol.

Framingham Heart Study Samples
We evaluated participants from the FHS (Framingham Heart
Study) Offspring Cohort who attended the eighth examination
cycle (2005–2008) when fasting plasma samples were
obtained. The Boston University Medical Center (Boston,
MA) and Washington University Institutional Review Boards
approved this study protocol.

From a total of 2812 participants at the eighth examination
cycle, we used 4 different participant samples (Figure S1).
Sample 1, used to examine clinical correlates of ceramides,
excluded individuals who were missing plasma samples
(n=140) or covariates (n=30), giving a final sample size of
2642. From this, additional samples to examine outcomes of
interest excluded those with the prevalent disease of interest
or missing follow-up time. Sample 2 (n=2336) examined
incident CHD, which includes myocardial infarction, coronary
insufficiency (history of prolonged ischemic chest pain,
accompanied by transient ischemic S-T segment or T-wave
changes in the ECG, but not by development of Q-wave
abnormality or by serum enzyme changes characteristic of
myocardial necrosis), and angina pectoris. Sample 3 (n=2542)
examined incident heart failure (HF). Sample 4 (n=2633)
examined mortality. Criteria for these events, adjudication
process, and criteria for covariates have been previously
published.10 All events were adjudicated during the follow-up
from baseline through 2012.

Clinical Perspective

What Is New?

• We developed a high-throughput Food and Drug Adminis-
tration–compliant liquid chromatography/mass spectrome-
try assay to quantify ratios of very–long-chain/long-chain
ceramides in the plasma.

• Applying this assay to the FHS (Framingham Heart Study)
and the SHIP (Study of Health in Pomerania), we observed
that higher plasma C24:0/C16:0 ceramide ratios are
associated with lower rates of incident coronary heart
disease and all-cause mortality over a mean follow-up of
6 years.

• The C24:0/C16:0 ceramide ratio improves risk prediction
for all-cause mortality.

What Are the Clinical Implications?

• The C24:0/C16:0 ceramide ratio provides predictive
information about coronary heart disease and mortality in
the general population years before the actual onset of
disease.

• Specific ceramide molecular species likely reflect distinct
pathophysiological processes. Approaches to risk prediction
that consider this molecular diversity of sphingolipids are
likely to be most effective.
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Study of Health in Pomerania Samples
We used data and plasma samples from the first cohort of the
SHIP (Study of Health in Pomerania), a northern European
community-based study.11 The study was approved by the
Ethics Committee of the University Medicine Greifswald and
the Washington University Institutional Review Board. CHD
and HF events were evaluated between the SHIP-1 (2002–
2006) and SHIP-2 (2008–2012) examination cycle. Mortality
was tracked from SHIP-1 through March 2016. From 3300
participants who attended SHIP-1 and had fasting plasma
samples, 88 were excluded for missing ceramide values and
78 were removed for missing covariates, yielding sample A
(n=3134, Figure S2) that was used to assess clinical
correlates. Samples B (examined CHD, n=1848) and C
(examined HF, n=1935) were created from the 2333 partic-
ipants who also attended SHIP-2, when CHD and HF status
was reassessed. Sample D, used to assess mortality, is the
same as sample A but with 1 additional individual removed
because of a missing death date (n=3133). These samples
mirror samples 2, 3, and 4 in our FHS analysis (exclusions for
prevalent disease of interest, unknown disease status at SHIP-
1 or SHIP-2 examinations, unknown follow-up time, missing
ceramide values, or missing covariates). Definitions for events
and criteria for covariates were aligned to those used in FHS.

Analysis of FHS and SHIP Samples
Using data from FHS sample 1 participants, we fit multiple
linear regression models to assess correlates of the C24:0/
C16:0 and C22:0/C16:0 ceramide ratios and C24:0, C22:0,
and C16:0 ceramide levels (separate models for each ratio
or lipid). Ceramide levels served as the dependent variable,
whereas age, sex, body mass index, systolic blood pressure
(SBP), antihypertensive medications, smoking status, dia-
betes mellitus, ratio of total/high-density lipoprotein (HDL)
cholesterol, triglycerides, lipid-lowering medication, and
prevalent CVD served as independent variables. After
confirming that the proportional hazards assumption was
satisfied, we used data from participants in samples 2, 3,
and 4 to perform Cox regression, evaluating the association
of ceramide ratios or ceramide levels with CHD, HF, all-
cause mortality, CVD mortality, and non-CVD mortality
(separate models for each event and for each ceramide
ratio or species), adjusting for age, sex, body mass index,
SBP, diabetes mellitus, smoking status, antihypertensive
medications, the ratio of total/HDL cholesterol, triglycerides,
and lipid-lowering medication. All-cause mortality models
were additionally adjusted for prevalent CVD. We created
cumulative incidence plots to assess incidence of events by
tertiles of ceramide ratio.

Analyses were repeated using SHIP samples A through D.
Cox proportional hazards regression models were used to

examine the association between ceramides and mortality,
because exact death dates were known. Because exact dates
of cardiovascular events are not available in SHIP, when
modeling the association between ceramides and CHD or HF,
we used a constant hazard model with a Poisson distribution
and an offset equal to the log follow-up time, rather than Cox
proportional hazards regression.12 We used the midpoint
between an individual’s SHIP-1 and SHIP-2 examination dates
as the event date for those who developed CHD or HF
between these examinations (see Data S1). All models were
adjusted for the same covariates used in FHS analyses.

Meta-analyses were performed using FHS and SHIP
samples, using an increment for ceramide ratio or ceramide
level that reflected the average SD for the ratio or level
between FHS and SHIP (eg, an increase of 3.0 for the C24:0/
C16:0 ratio). Maximum likelihood random effect models were
used to account for the moderate heterogeneity indicated by
the values of I2. Statistical significance was assessed using
P<0.05. FHS and meta-analyses were performed using SAS,
version 9.3. (SAS Institute Inc, Cary, NC); SHIP analyses were
performed using Stata, version 14.2 (Stata Corp, 2015).

The incremental effect of ceramide ratios over standard
CVD risk factors was assessed in FHS and SHIP by examining
the change in C-statistics between models without versus
with ceramide ratios.

This study complies with the Declaration of Helsinki. All
human subjects provided informed written consent. FHS data
are available through dbGAP (accession pending). SHIP data
are publicly available for scientific and quality control
purposes (apply at http://www.community-medicine.de).

Results

High-Throughput Assay for Quantification of
Ceramides
We modified a validated liquid chromatography/tandem mass
spectrometry assay to simultaneously quantify C16:0, C22:0,
and C24:0 ceramides, which are the most abundant long- and
very–long-chain ceramide species in human plasma.9,13 Linear
dynamic ranges for C16:0, C22:0, and C24:0 ceramides in
this triplex assay were 0.01 to 2, 0.04 to 8, and 0.1 to 20 lg/
mL, respectively, which encompass values reported for each
of these species in human plasma.9 The intra-assay and
interassay precisions were within 7.8%, 7.6%, and 6.9%
coefficient of variation for C16:0, C22:0, and C24:0
ceramides, respectively. The intra-assay and interassay accu-
racy values were within �3.2%, �4.5%, and �4.9% deviation
of the nominal concentration values for C16:0, C22:0, and
C24:0 ceramides, respectively. Stability of the ceramides in
human plasma was determined to be acceptable after 5
freeze-thaw cycles (difference, <5% for each). These data
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indicate that the triplex assay is accurate, precise, and
rugged.

We initially used this assay to quantify the ratios of C24:0/
C16:0 and C22:0/C16:0 ceramides in fasting plasma samples
obtained 2 weeks apart from 24 healthy nonsmoking volun-
teers who were free of diabetes mellitus, hypertension, and
obstructive CHD. Values for C16:0, C22:0, and C24:0
ceramides were within the linear range for each analyte
(Table S1). Values for the C24:0/C16:0 ceramide ratio were
greater than for the C22:0/C16:0 ceramide ratio, reflecting
greater abundance of the C24:0 species. The difference and
percentage change were calculated per subject and then
aggregated and summarized by the mean difference and mean
percentage change, respectively. Between samples drawn
2 weeks apart, the ceramide ratios were not significantly
different.

Associations Between Ceramide Ratios and
Standard Risk Factors in FHS and SHIP
We then used the triplex assay to quantify C24:0/C16:0 and
C22:0/C16:0 ratios in plasma from the Offspring Cohort
participants of FHS, and results were validated in SHIP and
meta-analyses. Overall, FHS and SHIP participants were
middle-aged to older individuals, and more than half the
participants were women (Table 1). Values for ceramide ratios
were normally distributed in both FHS and SHIP in both
women and men (Figure 1), as were values for each of the
individual species (Figure S3). C24:0 ceramide was nearly 4-
fold more abundant than C22:0 ceramide, and 12-fold more
abundant than C16:0 ceramide.

In multiple linear regression models in both FHS and SHIP,
age, use of antihypertensive medication, smoking status, and
prior CVD were inversely associated with plasma C24:0/
C16:0 ceramide ratio, whereas male sex and SBP were
directly associated with the ratio (all P<0.03, Table 2).
Diabetes mellitus status was not associated with the
C24:0/C16:0 ratio in either FHS or SHIP. In FHS and in
SHIP, age was inversely associated with the C22:0/C16:0
ceramide ratio, whereas body mass index, total/HDL choles-
terol, and triglycerides were directly associated with the
C22:0/C16:0 ceramide ratio (Table S2). We did not observe
any statistically significant association between male sex and
C22:0/C16:0 in either cohort. In FHS only, antihypertensive
medication, smoking status, and prevalent CVD were inversely
associated with C22:0/C16:0. Although diabetes mellitus was
directly associated with the C22:0/C16:0 ratio in FHS, this
finding was not replicated in SHIP. In both studies, male sex,
use of antihypertensive medication, and use of lipid-lowering
medication were inversely associated with each ceramide
species individually, whereas total/HDL cholesterol and
triglycerides were directly associated with each ceramide

species individually (Table S3). There were no strong associ-
ations between ceramides and testosterone levels that
replicated across both studies (data not shown).

Association Between Ceramide Ratios and
Incidence of CHD, HF, and All-Cause Mortality
In FHS, there were 88 CHD and 90 HF events, as well as 239
deaths during a mean follow-up of 6 years. In SHIP, there
were 209 CHD and 146 HF events over a median follow-up of
5.75 years and 377 deaths over a median follow-up of
8.24 years. Cumulative incidence of CHD, HF, and all-cause
mortality decreased across ceramide 24:0/16:0 tertiles in
FHS, with the highest incidence in the lowest ceramide ratio
tertile (Figure 2). The increase in median ceramide 24:0/16:0
ratio across tertiles was large (81% increase from tertile 1–2,
62% increase from tertile 2–3) compared with the differences
observed in repeated measures of the ratio determined at 2-
week intervals (6%). Thus, intraindividual variability in the
ceramide ratio was unlikely to have altered an individual’s
tertile rank. Similarly, cumulative incidence of HF and all-
cause mortality, but not CHD, decreased across ceramide
22:0/16:0 tertiles (Figure S4). Together, these findings
indicate that in FHS, individuals with the lowest ratios of

Table 1. Descriptive Characteristics of Largest Study
Samples in FHS (Sample 1) and SHIP (Sample A) at Baseline

Characteristics FHS (n=2642) SHIP (n=3134)

Age, y 66.2�9.0 54.0�15.1

Men 1208 (45.7) 1508 (48.1)

Body mass index, kg/m2 28.3�5.4 27.9�4.9

Systolic blood pressure, mm Hg 128.4�17.2 132.2�19.4

Diastolic blood pressure, mm Hg 73.4�10.1 81.4�10.5

Total cholesterol, mg/dL 186.1�37.2 214.4�45.1

HDL cholesterol, mg/dL 57.4�18.2 45.6�16.3

Triglycerides, mg/dL 117.8�67.8 162.0�152.6

Plasma C16:0 ceramide, lg/mL 0.2�0.04 0.2�0.05

Plasma C22:0 ceramide, lg/mL 0.6�0.2 0.7�0.2

Plasma C24:0 ceramide, lg/mL 2.3�0.6 2.5�0.7

Plasma C22:0/C16:0 ceramide 3.8�0.8 3.1�0.6

Plasma C24:0/C16:0 ceramide 14.0�3.4 11.8�2.6

Hypertension 1540 (58.3) 1983 (63.3)

Antihypertensive medication use 1280 (48.5) 1292 (41.2)

Lipid-lowering medication use 1128 (42.7) 457 (14.6)

Diabetes mellitus 364 (13.8) 455 (14.5)

Smokers 236 (8.9) 820 (26.2)

Values are mean�SD for continuous variables and number (percentage) for categorical
variables. FHS indicates Framingham Heart Study; HDL, high-density lipoprotein; SHIP,
Study of Health in Pomerania.
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Figure 1. Distributions of plasma ceramide ratios in FHS (Framingham Heart
Study) and SHIP (Study of Health in Pomerania). Plots display distribution of values
for C24:0/C16:0 (A and C) and C22:0/C16:0 (B and D) ceramide ratios in female
and male FHS participants at examination 8 (A and B) and in SHIP participants at
SHIP-1 examination (C and D).
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very–long-chain/long-chain ceramides were at greatest risk
for CHD, HF, and all-cause mortality.

Multivariable-adjusted risk of CHD, HF, and mortality was
estimated separately in FHS and SHIP through use of the
survival models and then combined through meta-analysis. In

the meta-analysis, we found a significant inverse association
between C24:0/C16:0 ceramide ratio and incident CHD, with
little variability in effect size because of the between-study
variation (Figure 3). This inverse association was significant in
the SHIP study, but borderline significant in FHS (P=0.08). The
C24:0/C16:0 ceramide ratio was inversely associated with
incident HF in meta-analysis and in FHS, but not in SHIP. We
observed similar, but weaker, trends for association between
C22:0/C16:0 ceramide ratio and incident CHD and HF
(Figure S5). Most striking in our meta-analysis was an inverse
association between the C24:0/C16:0 ceramide ratio and all-
cause mortality (Figure 3). This relationship was also observed
in each study analyzed individually and reflected inverse
associations with both CVD mortality and non-CVD mortality
(Figure 4). Associations between the C22:0/C16:0 ratio and
mortality (all-cause, CVD, and non-CVD mortality) were similar
in our meta-analysis. Multivariable-adjusted analyses for indi-
vidual ceramide species suggest that our findings for the
C24:0/C16:0 ceramide ratio were driven by significant inverse
associations betweenC24:0 ceramide and incidentCHDand all-
cause mortality and by significant direct association between
C16:0 ceramide and all-cause mortality (Figure S6 and S7).

To assess the predictive value of the C24:0/C16:0 and
C22:0/C16:0 ceramide ratios, we added the ceramide ratios
from FHS and SHIP to base models including standard
coronary risk factors of age, sex, body mass index, total/HDL
cholesterol, triglycerides, lipid-lowering medications, SBP,
antihypertensive therapy, diabetes mellitus, and smoking.
Addition of the C24:0/C16:0 ceramide ratio did not affect the
C-statistic for CHD, HF, or CVD mortality (Table 3). However,
addition of the C24:0/C16:0 ceramide ratio improved the C-
statistic for all-cause mortality from 0.756 to 0.776 in FHS

Table 2. Clinical Correlates of Plasma C24:0/C16:0
Ceramide Ratios in FHS and SHIP

Variable

FHS SHIP

b Estimate P Value b Estimate P Value

Age �0.085 <0.0001 �0.031 <0.001

Male sex 0.813 <0.0001 0.554 <0.001

Body mass index �0.009 0.48 �0.013 0.20

Systolic blood
pressure

0.012 0.0023 0.013 <0.001

Antihypertensive
medication

�0.485 0.0007 �0.276 0.018

Smoking status �0.567 0.0114 �0.238 0.026

Diabetes mellitus
status

0.205 0.30 �0.017 0.90

Total/HDL cholesterol �0.253 0.0021 0.064 0.015

Triglycerides 0.008 <0.0001 0.0005 0.17

Lipid-lowering
medication

0.103 0.47 0.322 0.024

Prevalent CVD �0.707 0.0001 �0.305 0.007

Multiple linear regression models were used, in which the ceramide ratio served as the
dependent variable and clinical correlates served as independent variables. b Estimates
represent the increase in plasma ceramide levels per-unit increase in continuous
variables and for the presence (vs absence) of dichotomous variables. CVD indicates
cardiovascular disease; FHS, Framingham Heart Study; HDL, high-density lipoprotein;
SHIP, Study of Health in Pomerania.

Tertile 1 878 864 846 821 801 768 472848 832 802 738 549 385 123779 765 739 684 513 362 120
Tertile 2 879 873 867 854 845 824 505847 841 818 760 520 377 96779 770 743 698 483 357 95
Tertile 3 876 872 867 858 846 832 507847 841 821 759 526 392 108778 773 754 696 483 371 111

Number at risk

A B C

Figure 2. Cumulative incidence of coronary heart disease (CHD), heart failure (HF), and all-cause mortality in FHS (Framingham Heart Study)
by tertiles of plasma C24:0/C16:0 ceramide ratio. Cumulative incidence of CHD (A), HF (B), and all-cause mortality (C) are reported for tertiles of
C24:0/C16:0 ceramide ratio. Tertile 1 includes participants with ceramide levels at the 33rd percentile or lower (2.8–12.3 lg/mL); tertile 2
includes participants with ceramide levels between >33rd and <66th percentile (12.3–15.1 lg/mL); tertile 3 includes participants with
ceramide levels ≥66th percentile (15.1–29.2 lg/mL).
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and from 0.8706 to 0.8768 in SHIP. In FHS, addition of the
C24:0/C16:0 ceramide ratio also improved the C-statistic for
non-CVD mortality. The 95% confidence intervals for these
changes in C-statistic excluded 0. Overall, similar improve-
ments in the C-statistic were observed for the C22:0/C16:0
ceramide ratio in FHS, but not in SHIP. In FHS, the effect on
all-cause mortality of adding the C24:0/C16:0 ceramide ratio
to the model was similar to the effect of adding high-
sensitivity C-reactive protein (Table S4). In SHIP, however, the
95% confidence interval for the change in C-statistic with
addition of C-reactive protein to the base model did not
exclude 0. In SHIP, the effects on all-cause mortality of adding
N-terminal brain natriuretic peptide were similar to the effects
of adding the C24:0/C16:0 ratio, and N-terminal brain
natriuretic peptide also improved the C-statistic for CVD
mortality. However, N-terminal brain natriuretic peptide was
not quantified at examination 8 in FHS.

Discussion
In 2 large community-based observational studies, we
observed higher plasma C24:0/C16:0 ceramide ratios are

associated with lower rates of incident CHD and all-cause
mortality over a mean follow-up of �6 years. Meta-analyses
estimated that for every 3-unit increase in plasma C24:0/
C16:0 ratio, there was a 21% lower hazard of developing
clinical CHD, a 22% lower hazard of developing clinical HF, and
a 40% lower hazard of all-cause mortality in multivariable
adjusted models. We found a similar inverse association for
C22:0/C16:0 ceramide ratio and all-cause mortality. Consis-
tent with these observations, we noted that the C24:0/C16:0
ceramide ratio correlated inversely with several known risk
factors for CVD and with prevalent CVD in both FHS and SHIP.
Recent lipidomic analyses in case-control studies demon-
strated that the C24:0/C16:0 ratio in individuals with CHD is
inversely related to prevalent CHD and CVD death.7,8 Our
investigation provides the first demonstration that the ratio of
very-long-chain/long-chain ceramide molecular species in
plasma is an independent predictor of CHD and all-cause
mortality risk in the general population.

Our findings were unanticipated, because prior observa-
tions that total plasma ceramides are directly associated with
CVD risk factors suggested that plasma ceramides reflect
changes in lipid metabolism that promote CHD and

Figure 3. Risk of coronary heart disease (CHD), heart failure (HF), and all-cause mortality by C24:0/
C16:0 ceramide ratio. Hazard ratios (HRs) for CHD, HF, and all-cause mortality are reported with 95%
confidence intervals (CIs) for a 3-unit increase in the C24:0/C16:0 ceramide ratio (average of SDs between
FHS [Framingham Heart Study] and SHIP [Study of Health in Pomerania]), adjusting for all other variables in
the model. Data are shown from analysis of subjects in FHS, SHIP, and the combined meta-analysis (META).
I2=0 for CHD and for all-cause mortality; I2=0.81 for HF.
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mortality.14,15 In addition, recent analysis of subjects in the
PREDIMED (Prevention with Mediterranean Diet) trial, who
were at high cardiovascular risk, indicated that C24:0, C22:0,
and C16:0 ceramides were positively associated with preva-
lent and incident CVD.16 By contrast, we find the C24:0/
C16:0 ceramide ratio is inversely associated with the coronary
risk factors of age and smoking status and also inversely
associated with prevalent CVD in both FHS and SHIP.
Moreover, the C24:0/C16:0 ceramide ratio and C24:0
ceramide are inversely associated with incident CHD and
incident HF in our analyses. Differences between our findings
and the prior study may relate to differences in mass
spectrometry method for quantification of ceramide species.
The prior analysis used a broad liquid chromatography/mass
spectrometry survey of plasma lipids that has not been
validated for the specific C24:0, C22:0, and C16:0 ceramide
species and does not provide absolute quantification. Herein,
we developed and applied a targeted Food and Drug
Administration–compliant assay, which provides absolute

quantification of 3 ceramides (including authentic deuterated
internal standards for each) with high accuracy and precision
and with minimal interbatch variability. These attributes
strengthen the conclusions of our analyses over nontargeted
analyses. We cannot rule out that inherent differences
between study populations (individuals at high cardiovascular
risk in the PREDIMED trial versus community-based sampling
in our investigation) could have also contributed.

Our meta-analysis revealed a strong inverse association of
the C24:0/C16:0 and C22:0/C16:0 ratios with all-cause
mortality, even after adjusting for established coronary risk
factors, that reflected significant inverse associations in both
FHS and SHIP. Inverse association of the ratios with CVD
mortality is consistent with inverse associations with coronary
risk factors and prevalent CVD. However, reasons for strong
inverse associations of the ceramide ratios with non-CVD
mortality will require future investigation. Ceramide ratios may
be related to common pathological mechanisms in many
disease processes and thusmay bemarkers of overall health. In

Figure 4. Risk of cardiovascular disease (CVD) mortality and non-CVD mortality by ceramide ratios. Hazard
ratios (HRs) for CVD mortality and non-CVD mortality are reported with 95% confidence intervals (CIs) for a 3-
unit increase in C24:0/C16:0 ceramide ratio and for a 0.7-unit increase in C22:0/C16:0 ceramide ratio (for
each ratio, average of SDs between FHS [Framingham Heart Study] and SHIP [Study of Health in Pomerania]),
adjusting for all other variables in the model. Data are shown from analysis of subjects in FHS, SHIP, and the
combined meta-analysis (META). I2=0 for CVD mortality and for non-CVD mortality.
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FHS and in SHIP, both ceramide ratios favorably affected the C-
statistic for all-cause mortality, providing incremental informa-
tion after adjustment for standard CVD risk factors. Previous
case-control studies showed that the C24:0/C16:0 ceramide
ratio is inversely related to CVD mortality among patients with
CHD.7,8 Our results demonstrate that quantification of plasma
C24:0/C16:0 or C22:0/C16:0 ratios provides prognostic
information in the general population that includes both men
and women free of prevalent CVD and over a broad age range.
Furthermore, our observations indicate that lower circulating
levels of these very–long-chain ceramides may antedate the
clinical CVD events by several years.

Traditional lipid-based risk factors for CHD are important
pillars of risk prediction, but lack sensitivity, particularly
among those at intermediate risk. Addition of the C24:0/
C16:0 ceramide ratio to the model fit for mortality has a
modest effect (�3% in FHS) on area under the receiver-
operator characteristic curve, as quantified by the C-statistic.
However, even accepted measures in cardiovascular risk
prediction that are widely used in clinical practice confer small
changes in the C-statistic when considered individually,
reflecting the relative insensitivity of the C-statistic as a
metric for risk prediction in prospective cohorts of healthy
individuals.17,18 Adding the ceramide ratio as a predictor of
mortality in the FHS and SHIP populations compares favorably
with the effects of adding high-sensitivity C-reactive protein or
N-terminal brain natriuretic peptide to predictive models, both
of which are broadly used in clinical settings.19 Moreover,
high-sensitivity C-reactive protein has been important in
motivating new approaches for targeting systemic inflamma-
tion to decrease cardiovascular risk.20 Likewise, remodeling
of ceramide molecular species has the potential to inform
about biological features not captured in traditional risk

factors and, thus, potential for identification of novel
pathways for targeting treatment.

Changes in the relative distribution of acyl chains among the
most abundant plasma ceramides suggest remodeling of the
plasma lipidome. The opposite associations for C24:0 and
C16:0 ceramides with all-cause mortality suggest that
ceramides of differing acyl chain lengths have distinct biological
effects. Overall, the stronger association for the C24:0/C16:0
ratio compared with C22:0/C16:0 ratio suggests greater
biological significance of the more abundant very–long-chain
ceramide species. Differences in plasma ceramides likely
reflect perturbations in the composition of plasma lipoproteins
and could contribute to differential risk for atherosclerosis.
They may also reflect changes in the composition and function
of cellular membranes within tissues, because in addition to the
generation of plasma ceramides by secreted sphingomyeli-
nases, ceramides are also secreted by parenchymal
tissues.21,22 Given observations that ceramides accumulate
in the myocardium in the setting of metabolic cardiomyopathy
and HF, and given that accumulation of ceramides promotes
cardiomyocyte oxidative stress and mitophagy, it is possible
that enhanced ability to export very–long-chain ceramides from
tissues underlies the inverse relationships between plasma
ratios of C24:0/C16:0 and CHD and mortality.23,24 Future
studies will be required to elucidate the relation of plasma ratios
to ceramide content in specific tissues and how this affects the
pathogenesis of vascular disease and related outcomes.

Study Limitations
Several limitations of the present study merit consideration.
First, although the inverse association of the C24:0/C16:0
ceramide ratio with incident CHD was significant in meta-

Table 3. Incremental Effect of Incorporating Ceramide Ratios on Model Discrimination

Predictors in Model
Incident
CHD

Incident
HF

All-Cause
Mortality*

CVD
Mortality*

Non-CVD
Mortality*

FHS samples

SRFs† 0.703 0.841 0.756 0.834 0.743

SRF+C22:0/C16:0 ceramide ratio 0.716 0.844 0.780‡ 0.837 0.771‡

SRF+C24:0/C16:0 ceramide ratio 0.714 0.844 0.776‡ 0.832 0.768‡

SHIP samples

SRFs† 0.7163 0.6691 0.8706 0.9181 0.8537

SRF+C22:0/C16:0 ceramide ratio 0.7165 0.6697 0.8754 0.9205 0.8590

SRF+C24:0/C16:0 ceramide ratio 0.7216 0.6710 0.8768‡ 0.9224 0.8607

Data are given as C-statistics. CHD indicates coronary heart disease; CVD, cardiovascular disease; FHS, Framingham Heart Study; HF, heart failure; SHIP, Study of Health in Pomerania;
SRF, standard risk factor.
*Prevalent CVD added to SRFs.
†Standard risk factors: age, sex, body mass index, systolic blood pressure, antihypertensive medication, current smoking status, diabetes mellitus, total/high-density lipoprotein
cholesterol, triglycerides, and lipid-lowering medication.
‡Confidence interval for change in C-statistic excludes 0.
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analyses and in analysis of SHIP alone (after adjusting for
established coronary risk factors), the association was
borderline significant in FHS alone. Inverse association with
incident HF was observed in FHS but not in SHIP. This
association was statistically significant in our meta-analyses,
despite high heterogeneity. Although the definitions of CHD
and HF in our analyses of SHIP mirrored those used in FHS,
one potential reason for the differences in associations for
CHD and HF between the studies may be differences in
follow-up methods (continuous surveillance in FHS versus
ascertainment at time of follow-up examinations in SHIP).
Extension of our findings to other cohorts with continuous
surveillance could strengthen our conclusions. Second,
although ceramide ratios did not change in our control
subjects over 2 weeks, this time is brief relative to the period
of follow-up in FHS and SHIP. The stability of ceramide ratios
over longer periods remains to be determined, an area for
future investigation. Third, future studies will be needed to
determine how generalizable our findings in 2 largely white
cohorts may be to other races and ethnic groups. Application
of our ceramide ratio assay to larger numbers of multiethnic
individuals and to samples followed up for longer periods will
further elucidate the potential utility of this biomarker for
stratification of mortality risk. Finally, our observations
indicate that higher plasma C24:0/C16:0 ceramide ratios
are associated with decreased risk of several outcomes.
Discovery of interventions that increase this ratio will enable
determination of the utility of the ceramide ratio as a
treatment target for affecting disease risk.

Conclusions
Our robust method to simultaneously quantify the most
abundant circulating very–long-chain and long-chain cera-
mides provides predictive information about CHD, HF, and
mortality in the general population years before the actual
onset of disease. Our findings add to a growing body of
evidence that specific ceramide molecular species have
disparate biological functions and reflect distinct pathophys-
iological processes. Approaches that take into account this
molecular diversity of sphingolipids are likely to be most
effective for risk prediction.
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Data S1.

SUPPLEMENTAL METHODS 

Quantification of Ceramides 

A two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for 

quantification of C24:0, C22:0, and C16:0 ceramides was developed as a modification of 

a previously reported assay validated according to FDA guidance for bioanalytical 

method validation.1, 2 During the course of this work, a similar assay was published by 

Kauhanen et al.3 

Standard curves and quality control (QC) samples. Because of the endogenous 

presence of C16:0, C22:0, and C24:0 in human plasma, 5% bovine serum albumin (BSA) 

aqueous solution was used to prepare the calibration standards. Calibration curves were 

prepared by spiking the C16:0, C22:0, and C24:0 working solution into 5% BSA solution, and 

preparing serial dilutions that yielded eight calibration standards (0.01/0.04/0.1, 0.02/0.08/0.2, 

0.05/0.2/0.5, 0.1/0.4/1, 0.2/0.8/2, 0.5/2/5, 1/4/10, and 2/8/20 µg/mL of C16:0/C22:0/C24:0 

ceramides). 5% BSA solution served as blank. The standard curves prepared in 5% BSA 

solution were parallel to those prepared in human plasma, suggesting that the responsiveness 

of these ceramides in different matrices were the same and a calibration curve prepared in 

surrogate matrix was suitable for analysis of human plasma samples. 

The pooled human plasma was analyzed to establish the mean concentration 

of endogenous C16:0, C22:0, and C24:0 ceramides. Low (LQC), middle (MQC), high (HQC), 

and dilution (DQC) quality control samples (endogenous level + 0/0/0 µg/mL, endogenous 

level + 0.75/3/7.5 µg/mL, endogenous level + 1.5/6/15 µg/mL, and endogenous level + 3/12/30 

µg/mL) were prepared. The ceramides in the DQC samples were higher than the highest 

standard (2/8/20 µg/mL of C16:0/C22:0/C24:0 ceramides). The DQC sample was diluted 1:4 

with 5% BSA solution, prior to extraction. 

Sample preparation. Standards, QCs, blank or study samples (50 μL) were aliquoted into 

a 96-well (2 mL/well) plate. To each well 400 μL of internal standards/protein precipitation 

solution 
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(0.025/0.025/0.0625 µg/mL of d5-C16:0, d4-C22:0, and d4-C24:0 ceramides in isopropanol-

chloroform (9:1) was added and 400 μL of isopropanol-chloroform (9:1) was used for a blank. The 

plate was vortexed for 3 min, centrifuged for 10 min at 3000 g, and 250 μL of supernatant 

transferred to clean 96 wells (1 mL/well) plate with a Tomtec Quadra 96 (Tomtec, Hamden, CT) 

for LC-MS/MS assay. 

LC-MS/MS analysis. LC–MS/MS analysis was conducted on a Shimadzu (Columbia, MD) 

Prominence HPLC system coupled with an Applied Biosystems/MDS Sciex (Ontario, Canada) 

4000QTRAP mass spectrometer using multiple reaction monitoring (MRM). The HPLC system 

consists of Prominence HPLC system with a CBM-20A system controller, 4 LC-20AD pumps, a 

SIL-20ACHT autosampler, a DGU-20A5R degasser, and a rack changer.  

The chromatography was performed using an Atlantis HILIC silica column (3 × 50 mm, 3 

µm; Waters, Milford, MA) as the first dimension at ambient temperature and Xselect HSS C18 

(4.6 x 50 mm, 3.5 μm; Waters, Milford, MA) as the second dimension at ambient temperature. 

The compartments of the autosampler and rack changer were set at 4°C. For the first dimension 

LC, mobile phase A (0.1% formic acid in water) and mobile phase B (0.1% formic acid in 

acetonitrile) were operated with a gradient elution as follows: 0–1.0 min 95% B, 1.0–1.2 min 95–

50% B, 1.2–2.4 min 50% B, 2.4–2.5 min 50–95% B, and 2.5–5.0 min 95% B at a flow rate of 0.6 

mL/min. The solvent gradient for second dimension LC using 0.1% formic acid in water (phase 

C) and 0.1% formic acid in isopropanol-acetonitrile (1:2) (phase D) at a flow rate of 1 mL/min was

as follows: 0–0.9 min 95% D, 0.9–3.0 min 95–100% D, 3.0–4.5 min 100% D, 4.5–4.6 min 100–

95% D, and 4.6–5.0 min 95% D. Valve 1 was kept at the A position during 0–0.5 min and 0.9–5.0 

min, and at the B position during 0.5–0.9 min. Valve 2 was kept at the A position during 0–2.0 min 

and 3.7–5.0 min, and at the B position during 2.0–3.7 min. The injection volume was 5 μL. The 

ESI source temperature was 400 °C. The ESI spray voltage was 5500 V. For all the ceramides 

and their internal standards, the declustering potential, entrance potential, and the collision cell 

 by guest on June 5, 2018
http://jaha.ahajournals.org/

D
ow

nloaded from
 

http://jaha.ahajournals.org/


exit potential were 66 V, 10 V, and 10 V, respectively. The collision and curtain gas were set at 

medium and 15, respectively. Both desolvation gas and nebulizing gas were set at 45 L/min. The 

collision energies for all the MRM transitions including m/z 538.5 to 264.3 (quantifier for C16:0), 

m/z 538.5 to 282.3 (qualifier for C16:0), m/z 622.6 to 264.3 (quantifier for C22:0), m/z 622.6 to 

282.3 (qualifier for C22:0), m/z 650.6 to 264.3 (quantifier for C24:0), m/z 650.6 to 282.3 (qualifier 

for C24:0), m/z 543.5 to 264.3 (d5-C16:0), m/z 626.6 to 264.3 (d4-C22:0) and m/z 654.6 to 264.3 

(d4-C24:0) were set at 40 eV. The dwell time was set at 50 ms for each mass transition. Data 

were acquired and analyzed by Analyst software (version 1.5.2). Calibration curves were 

constructed by plotting the corresponding peak area ratios of analyte/internal standard versus the 

corresponding analyte concentrations using weighted (1/x2) least-squares regression analysis. 

Analysis of clinical samples. Samples analyzed consisted of calibration standards in 

duplicate, a blank, a blank with internal standards, QC samples (LQC, MQC and HQC), and 

unknown clinical samples. The total number of QC samples was at least 5% of that of unknown 

clinical samples. The standard curve covered the expected unknown sample concentration range, 

and samples that exceeded the highest standard could be diluted and re-assayed. In the dilution 

sample re-assay, a diluted QC in triplicate is also included in the analytical run. The LC-MS/MS 

run acceptance criteria included: 1) a minimum of six standards within ±15%, except for the lowest 

standard for which ±20% of the nominal value was accepted; 2) at least 67% of the QC samples 

within 15% of their respective nominal values; and 3) not all replicates at the same level of QC 

outside ±15% of the nominal value.2 The analysis for FHS and SHIP samples was performed in 

16 and 7 batches, respectively. All batches met acceptance criteria. 
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Analysis of SHIP Samples 

Because exact dates of cardiovascular events are not available in SHIP, when modeling the 

association between ceramides and CHD or HF, we chose to use the Poisson model as opposed 

to Cox proportional hazards regression. In general, parametric models are more flexible to handle 

interval-censored data problems.4, 5 In the present analysis, we chose the mid-point between a 

participant's SHIP-1 and SHIP-2 date as his/her event date among those participants with an 

event. This approach acknowledges the interval censoring, but assumes that events happened in 

the middle of the interval.6-9 Furthermore, we utilized a Poisson model with an offset equal to the 

log follow-up time to model the event rates. This approach is equivalent to a parametric 

exponential survival (i.e. constant hazard) model and can therefore be used in time-to-event 

analysis.5 
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Table S1. C16:0, C22:0 and C24:0 Ceramides and C24:0/C16:0 and C22:0/C16:0 Ceramide Ratios in Healthy 
Volunteers. 

Measure Time 1 
range 

Time 1 
mean 

Time 2 
range 

Time 2 
mean 

Mean % 
change* 95% CI PValue† 

C16:0 ceramide 0.105 - 0.270 0.151 0.0612 - 0.187 0.129 -12.6 (-20.1, -5.0) 0.002 

C22:0 ceramide 0.291 - 0.979 0.547 0.156 - 0.988 0.502 -8.8 (-16.6, -1.0) 0.028 

C24:0 ceramide 0.879 - 3.50 2.04 0.735 - 3.08 1.82 -9.8 (-17.6, -2.0) 0.017 

C24:0/C16:0 
ceramide ratio 6.43 - 25.0 13.6 8.88 - 22.3 14.0 6.4 (-4.2, 17.0) 0.23 

C22:0/C16:0 
ceramide ratio 1.63 - 4.99 3.59 2.05 - 7.16  3.80 6.6 (-1.9, 15.2) 0.12 

Ceramides were quantified in fasting plasma obtained in blood draws at times 1 and 2 (2 weeks apart) from 24 human 

volunteers who were free of diabetes, hypertension, obstructive coronary heart disease and smoking. Ceramide values are 

reported in µg/ml; ceramide ratios have no units. 

*The difference and percent change were calculated per subject and then aggregated and summarized by the mean

difference and mean percent change, respectively. [Percent change = 100* (Time 2– Time 1)/Time 1 (calculated per patient)]

† Test to determine if percent change differs from 0%. 
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Table S2. Clinical Correlates of Plasma C22:0/C16:0 Ceramide Ratios in FHS and 

SHIP. 

FHS SHIP 
Variable βEstimate PValue βEstimate PValue 

Age -0.012 <0.0001 -0.006 <0.001 

Male 0.049 0.13 -0.025 0.28 

Body Mass Index 0.015 <0.0001 0.019 <0.001 

Systolic Blood Pressure 0.002 0.06 0.002 0.003 

Antihypertensive Medication -0.12 0.0006 -0.025 0.38 

Smoking Status -0.128 0.0195 -0.024 0.35 

Diabetes Status 0.18 0.0002 0.055 0.10 

Total/HDL Cholesterol 0.073 0.0003 0.055 <0.001 

Triglycerides 0.002 <0.0001 0.0003 0.007 

Lipid Lowering Medication 0.028 0.42 0.054 0.13 

Prevalent CVD -0.136 0.0028 -0.050 0.07 

Multiple linear regression models were used, where the ceramide ratio served as the dependent 

variable and clinical correlates served as independent variables.  bEstimates represent the 

increase in ceramide levels for a unit increase in continuous variables and for presence vs. 

absence of dichotomous variables. 

FHS = Framingham Heart Study, SHIP = Study of Health in Pomerania 
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Table S3. Clinical Correlates of Individual Plasma Ceramide Species in FHS and 

SHIP. 

C16:0 Ceramide 
FHS SHIP 

Variable βEstimate PValue βEstimate PValue 

Age 0.0006 < 0.0001 0.001 < 0.001 

Male -0.015 < 0.0001 -0.018 < 0.001 

Body Mass Index -0.001 < 0.0001 -0.0009 < 0.001 

Systolic Blood Pressure 0.00005 0.23 0.0001 0.003 

Antihypertensive Medication -0.004 0.005 -0.008 < 0.001 

Smoking Status 0.007 0.002 0.009 < 0.001 

Diabetes Status -0.004 0.0346 -0.008 0.002 

Total/HDL Cholesterol 0.008 < 0.0001 0.009 < 0.001 

Triglyceride 0.0001 < 0.0001 0.00003 < 0.001 

Lipid Lowering Medication -0.02 < 0.0001 -0.013 < 0.001 

Prevalent CVD -0.002 0.31 0.0002 0.91 

C22:0 Ceramide 
FHS SHIP 

Variable βEstimate PValue βEstimate PValue 

Age 0.00009 0.80 0.002 < 0.001 

Male -0.051 < 0.0001 -0.064 < 0.001 

Body Mass Index -0.002 0.0047 0.001 0.048 

Systolic Blood Pressure 0.0005 0.0055 0.0009 < 0.001 

Antihypertensive Medication -0.036 < 0.0001 -0.028 < 0.001 

Smoking Status 0.002 0.88 0.022 0.002 

Diabetes Status 0.007 0.41 -0.011 0.24 

Total/HDL Cholesterol 0.042 < 0.0001 0.041 < 0.001 
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Triglyceride 0.001 < 0.0001 0.0002 < 0.001 

Lipid Lowering Medication -0.07 < 0.0001 -0.027 0.005 

Prevalent CVD -0.028 0.0012 -0.008 0.30 

C24:0 Ceramide 

FHS SHIP 

Variable βEstimate PValue βEstimate PValue 

Age -0.007 < 0.0001 0.005 < 0.001 

Male -0.086 0.0002 -0.102 < 0.001 

Body Mass Index -0.016 < 0.0001 -0.012 < 0.001 

Systolic Blood Pressure 0.003 < 0.0001 0.004 < 0.001 

Antihypertensive Medication -0.137 < 0.0001 -0.141 < 0.001 

Smoking Status -0.018 0.64 0.053 0.037 

Diabetes Status -0.036 0.29 -0.098 0.003 

Total/HDL Cholesterol 0.072 < 0.0001 0.121 < 0.001 

Triglyceride 0.003 < 0.0001 0.0004 < 0.001 

Lipid Lowering Medication -0.253 < 0.0001 -0.081 0.018 

Prevalent CVD -0.132 < 0.0001 -0.049 0.07 

Multiple linear regression models were used, where ceramides served as dependent variables 

and clinical correlates served as independent variables; beta estimates represent the increase 

in ceramide levels for a unit increase in continuous variables and for presence vs. absence of 

dichotomous variables. 

FHS = Framingham Heart Study, SHIP = Study of Health in Pomerania 
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Table S4. Incremental Effect of Incorporating hsCRP and ntBNP on Model 
Discrimination.

FHS Samples 

Predictors in Model 

Incident 
CHD 

c-statistic

Incident 
HF 

c-statistic

All-Cause 
Mortality* 
c-statistic

CVD 
Mortality* 
c-statistic

Non-CVD 
Mortality* 
c-statistic

n=2327 n=2533 n=2624 n=2624	 n=2624	

Standard Risk Factors (SRF) † 0.703 0.840 0.756 0.834 0.743 

SRF + C24:0/C16:0 ratio	 0.714	 0.844	 0.776‡	 0.832	 0.768‡	

SRF + hsCRP 0.710 0.841 0.761‡ 0.835 0.748‡ 

SHIP Samples 

Predictors in Model 

Incident 
CHD 

c-statistic

Incident 
HF 

c-statistic

All-Cause 
Mortality* 
c-statistic

CVD 
Mortality* 
c-statistic

Non-CVD 
Mortality* 
c-statistic

n=1555 n=1643 n=2635 n=2635	 n=2635	

Standard Risk Factors (SRF) † 0.7159 0.6739 0.8593 0.9132 0.8483 

SRF + C24:0/C16:0 ratio	 0.7234	 0.6764	 0.8661‡	 0.9176	 0.8554	

SRF + hsCRP 0.7172 0.6775 0.8606 0.9132 0.8503 

SRF + ntBNP 0.7160 0.6758 0.8633‡ 0.9192‡ 0.8503 

* Prevalent CVD added to standard risk factors
† Standard risk factors: age, sex, BMI, SBP, antihypertensive medication, current smoking

status, diabetes, total/HDL cholesterol, triglycerides, and lipid-lowering medication.
‡ Confidence interval for change in c-statistic excludes 0

FHS= Framingham Heart Study

SHIP=Study of Health in Pomerania
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Figure S1. Generation of FHS Samples.

2812 Eligible Attendees 
at Exam 8
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Figure S1. Generation of FHS Samples.  From 2,812 participants in the Offspring Cohort who attended their 8th examination cycle, 4 

participant samples were created based on availability of plasma samples and covariate data. For Sample 1, individuals were excluded 

if they were missing ceramide values or covariates. For Samples 2 and 3, individuals with prevalent coronary heart disease (CHD, 

sample 2) and heart failure (HF, sample 3) were excluded. For Sample 4, individuals with missing follow-up time were excluded. 
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Figure S2. Generation of SHIP Samples  
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Figure S2. Generation of SHIP Samples.  From 3,300 participants who attended SHIP-1, 4 participant samples were created based 

on availability of plasma samples and covariate data. For Sample A, individuals were excluded if they were missing ceramide values 

or covariate data. Samples B and C included those who had ceramide and covariate data and also attended SHIP-2 when CHD and 

HF were assessed (Sample B excluded those with CHD at SHIP-1 and Sample C excluded those with HF at SHIP-1. Samples B and 

C excluded individuals with uncertain event status at SHIP-2). Sample D excluded those with missing ceramides or covariates or with 

unknown death date. 
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FHS SHIP

F

A D

B E

C

Figure S3. Distributions of Plasma Ceramides in FHS and SHIP.
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Figure S3. Distributions of Plasma Ceramides in FHS and SHIP.  Plots display distribution of values for C24:0 (A, D), C22:0 (B, E), 

and C16:0 (C, F) ceramides in women and men FHS participants at examination 8 (A, B, C) and in SHIP participants at SHIP-1 

examination (D, E, F). 
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Number at risk
Tertile 1 876 863 846 820 798 770 462847 832 804 747 525 358 121778 766 737 691 484 335 114
Tertile 2 880 874 866 852 842 818 491846 840 818 755 529 384 98780 770 749 694 495 364 101
Tertile 3 877 872 868 861 852 836 531849 842 819 755 541 412 108778 772 750 693 500 391 111

Figure S4. Cumulative Incidence of Coronary Heart Disease, Heart Failure, and
All-Cause Mortality in FHS by Tertiles of Plasma C22:0/C16:0 Ceramide Ratio.

A B C
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Figure S4. Cumulative Incidence of Coronary Heart Disease, Heart Failure, and All-Cause Mortality in FHS by Tertiles of 

Plasma C22:0/C16:0 Ceramide Ratio. Cumulative incidence of coronary heart disease (CHD, A), heart failure (HF, B), and all-cause 

mortality (C) are reported for tertiles of C22:0/C16:0 ceramide ratio. Tertile 1 includes participants with ceramide levels ≤ the 33rd 

percentile [1.0, 3.4]; tertile 2 includes participants with ceramide levels between the 33rd and 66th percentile [3.4, 4.1]; tertile 3 includes 

participants with ceramide levels ≥ the 66th percentile [4.1, 10.5]. 
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Figure S5.Risk of Coronary Heart Disease, Heart Failure, 
and All-Cause mortality by C22:0/C16:0 Ceramide Ratio.  
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Figure S5. Risk of Coronary Heart Disease, Heart Failure, and All-Cause mortality by 

C22:0/C16:0 Ceramide Ratio.  Hazard ratios (HR) for coronary heart disease (CHD), heart 

failure (HF), and all-cause mortality are reported with 95% confidence intervals (CI) for a 0.7-

unit increase in C22:0/C16:0 ceramide ratio (average of standard deviations between FHS and 

SHIP), adjusting for all other variables in the model. Data is shown from analysis of subjects in 

FHS, SHIP and the combined meta-analysis. I2 = 0 for CHD; I2 = 0.81 for HF; I2 = 0.13 for all-

cause mortality. 
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Figure S6.Risk of Coronary Heart Disease, Heart Failure, 
and All-Cause Mortality by C24:0 Ceramide Level.   
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Figure S6. Risk of Coronary Heart Disease, Heart Failure, and All-Cause Mortality by 

C24:0 Ceramide Level.  Hazard ratios (HR) for coronary heart disease (CHD), heart failure 

(HF), and all-cause mortality are reported with 95% confidence intervals (CI) for a 0.65 µg/ml 

increase in C24:0 ceramide level (average of standard deviations between FHS and SHIP), 

adjusting for all other variables in the model. Data is shown from analysis of subjects in FHS, 

SHIP and the combined meta-analysis. I2 < 0.0001 for CHD; I2 = 0.71 for HF; I2 = 0 for all-cause 

mortality.  
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Figure S7. Risk of Coronary Heart Disease, Heart Failure, 
and All-Cause Mortality by C16:0 Ceramide Level.   
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Figure S7. Risk of Coronary Heart Disease, Heart Failure, and All-Cause Mortality by 

C16:0 Ceramide Level.  Hazard ratios for coronary heart disease (CHD), heart failure (HF), and 

all-cause mortality are reported with 95% confidence intervals (CI) for a 0.045 µg/ml increase in 

C16:0 ceramide level (average of standard deviations between FHS and SHIP), adjusting for all 

other variables in the model. Data is shown from analysis of subjects in FHS, SHIP and the 

combined meta-analysis. I2 = 0 for CHD and for HF. I2 = 0.26 for all-cause mortality.  
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