6,120 research outputs found

    Central model predictive control of a group of domestic heat pumps, case study for a small district

    Get PDF
    In this paper we investigate optimal control of a group of heat pumps. Each heat pump provides space heating and domestic hot water to a single household. Besides a heat pump, each house has a buffer for domestic hot water and a floor heating system for space heating. The paper describes models and algorithms used for the prediction and planning steps in order to obtain a planning for the heat pumps. The optimization algorithm minimizes the maximum peak electricity demand of the district. Simulated results demonstrate the resulting aggregated electricity demand, the obtained thermal comfort and the state of charge of the domestic hot water storage for an example house. Our results show that a model predictive control outperforms conventional control of individual heat pumps based on feedback control principles

    Optimization approaches for exploiting the load flexibility of electric heating devices in smart grids

    Get PDF
    Energy systems all over the world are undergoing a fundamental transition to tackle climate change and other environmental challenges. The share of electricity generated by renewable energy sources has been steadily increasing. In order to cope with the intermittent nature of renewable energy sources, like photovoltaic systems and wind turbines, the electrical demand has to be adjusted to their power generation. To this end, flexible electrical loads are necessary. Moreover, optimization approaches and advanced information and communication technology can help to transform the traditional electricity grid into a smart grid. To shift the electricity consumption in time, electric heating devices, such as heat pumps or electric water heaters, provide significant flexibility. In order to exploit this flexibility, optimization approaches for controlling flexible devices are essential. Most studies in the literature use centralized optimization or uncoordinated decentralized optimization. Centralized optimization has crucial drawbacks regarding computational complexity, privacy, and robustness, but uncoordinated decentralized optimization leads to suboptimal results. In this thesis, coordinated decentralized and hybrid optimization approaches with low computational requirements are developed for exploiting the flexibility of electric heating devices. An essential feature of all developed methods is that they preserve the privacy of the residents. This cumulative thesis comprises four papers that introduce different types of optimization approaches. In Paper A, rule-based heuristic control algorithms for modulating electric heating devices are developed that minimize the heating costs of a residential area. Moreover, control algorithms for minimizing surplus energy that otherwise could be curtailed are introduced. They increase the self-consumption rate of locally generated electricity from photovoltaics. The heuristic control algorithms use a privacy-preserving control and communication architecture that combines centralized and decentralized control approaches. Compared to a conventional control strategy, the results of simulations show cost reductions of between 4.1% and 13.3% and reductions of between 38.3% and 52.6% regarding the surplus energy. Paper B introduces two novel coordinating decentralized optimization approaches for scheduling-based optimization. A comparison with different decentralized optimization approaches from the literature shows that the developed methods, on average, lead to 10% less surplus energy. Further, an optimization procedure is defined that generates a diverse solution pool for the problem of maximizing the self-consumption rate of locally generated renewable energy. This solution pool is needed for the coordination mechanisms of several decentralized optimization approaches. Combining the decentralized optimization approaches with the defined procedure to generate diverse solution pools, on average, leads to 100 kWh (16.5%) less surplus energy per day for a simulated residential area with 90 buildings. In Paper C, another decentralized optimization approach that aims to minimize surplus energy and reduce the peak load in a local grid is developed. Moreover, two methods that distribute a central wind power profile to the different buildings of a residential area are introduced. Compared to the approaches from the literature, the novel decentralized optimization approach leads to improvements of between 0.8% and 13.3% regarding the surplus energy and the peak load. Paper D introduces uncertainty handling control algorithms for modulating electricheating devices. The algorithms can help centralized and decentralized scheduling-based optimization approaches to react to erroneous predictions of demand and generation. The analysis shows that the developed methods avoid violations of the residents\u27 comfort limits and increase the self-consumption rate of electricity generated by photovoltaic systems. All introduced optimization approaches yield a good trade-off between runtime and the quality of the results. Further, they respect the privacy of residents, lead to better utilization of renewable energy, and stabilize the grid. Hence, the developed optimization approaches can help future energy systems to cope with the high share of intermittent renewable energy sources

    Linear programming control of a group of heat pumps

    Get PDF
    For a new district in the Dutch city Meppel, a hybrid energy concept is developed based on bio-gas co-generation. The generated electricity is used to power domestic heat pumps which supply thermal energy for domestic hot water and space heating demand of households. In this paper, we investigate direct control of the heat pumps by the utility and how the large-scale optimization problem that is created can be reduced significantly. Two different linear programming control methods (global MILP and time scale MILP) are presented. The latter solves large-scale optimization problems in considerably less computational time. For simulation purposes, data of household thermal demand is obtained from prediction models developed for this research. The control methods are compared with a reference control method resembling PI on/off control of each heat pump. The reference control results in a dynamic electricity consumption with many peak loads on the network, which indicates a high level of simultaneous running heat pumps at those times. Both methods of mix integer linear programming (MILP) control of the heat pumps lead to a much improved, almost flat electricity consumption profile. Both optimization control methods are equally able to minimize the maximum peak consumption of electric power by the heat pumps, but the time scale MILP method requires much less computational effort. Future work is dedicated on further development of optimized control of the heat pumps and the central CHP

    Book of Abstracts:9th International Conference on Smart Energy Systems

    Get PDF

    Book of Abstracts:8th International Conference on Smart Energy Systems

    Get PDF

    Heat Pumps and Their Role in Decarbonising Heating Sector: A Comprehensive Review. ESRI WP627, June 2019

    Get PDF
    Addressing the growing concerns of climate change necessitates the decarbonisation of energy sectors globally. The heating sector is the largest energy end-use, accounting for almost half of the total energy consumption in most countries. This paper presents an extensive review of previous works on several aspects of heat pumps, including their role in the decarbonisation of the heating sector. In addition, we cover themes related to the recent technological advances of heat pumps as well as their roles in terms of adding flexibility to renewable-rich systems and carbon abatement. We also identify challenges and barriers for a significant uptake of heat pumps in various markets. Generally, as the share of renewables in the energy mix increases, heat pumps can play a role in addressing a multitude of problems induced by climate change. However, economic, regulatory, structural and infrastructural barriers exist, which may hinder heat pump integration rate

    Heating controls: International evidence base and policy experiences

    Get PDF
    This report presents a synthesis in the form of narrative summaries of the international evidence base and policy experiences on heating controls in the domestic sector. The research builds on the former Department of Energy and Climate Change (DECC) commissioned (systematic) scoping review of the UK evidence on heating controls published in 2016 (Lomas et al., 2016), and the Rapid Evidence Assessment of smarter heating controls published in 2014 (Munton et al., 2014). The report consists of two parts. Part 1 involves a (systematic) scoping review of the international evidence base on the energy savings, cost-effectiveness and usability of heating controls in the domestic sector. Part 2 contains the findings from an analysis of the policy experiences of other countries

    Upscaling energy control from building to districts: current limitations and future perspectives

    Get PDF
    Due to the complexity and increasing decentralisation of the energy infrastructure, as well as growing penetration of renewable generation and proliferation of energy prosumers, the way in which energy consumption in buildings is managed must change. Buildings need to be considered as active participants in a complex and wider district-level energy landscape. To achieve this, the authors argue the need for a new generation of energy control systems capable of adapting to near real-time environmental conditions while maximising the use of renewables and minimising energy demand within a district environment. This will be enabled by cloud-based demand-response strategies through advanced data analytics and optimisation, underpinned by semantic data models as demonstrated by the Computational Urban Sustainability Platform, CUSP, prototype presented in this paper. The growing popularity of time of use tariffs and smart, IoT connected devices offer opportunities for Energy Service Companies, ESCo’s, to play a significant role in this new energy landscape. They could provide energy management and cost savings for adaptable users, while meeting energy and CO2 reduction targets. The paper provides a critical review and agenda setting perspective for energy management in buildings and beyond
    corecore