81 research outputs found

    Cellular access multi-tenancy through small-cell virtualization and common RF front-end sharing

    Get PDF
    Mobile traffic demand is expected to grow as much as eight-fold in the coming next five years, putting strain in current wireless infrastructures. Meanwhile the diversity of traffic and standards may explode as well. One of the most common means for matching these mounting requirements is through network densification, essentially increasing the density of deployment of operators’ base stations in many small cells and handling timing critical traffic at the edge. In this paper we take a step in that direction by implementing a virtualized small cell base station consisting of multiple, isolated LTE PHY stacks running concurrently on top of a hypervisor deployed on a cheap, off-the-shelf x86 server and a shared radio head. In particular, we show that it is possible to run multiple virtualized base stations while achieving throughput equal or close to the theoretical maximum. In contrast to C-RAN (Cloud/Centralized Radio Access Network), our virtualized small cell base station has full stack at the edge so that a low latency high throughput front-haul, which is necessary in C-RAN architecture, is not needed. This approach brings all the flexibility and configurability (from network management point of view) that a software based implementation provides while the transparent architecture enables the possibility of multiple standards sharing the same radio infrastructure.The projects leading to this paper has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 67156 (Flex5Gware), no. 732174 (ORCA project) and no. 761536 (5G-Transformer)

    A baseband wireless spectrum hypervisor for multiplexing concurrent OFDM signals

    Get PDF
    The next generation of wireless and mobile networks will have to handle a significant increase in traffic load compared to the current ones. This situation calls for novel ways to increase the spectral efficiency. Therefore, in this paper, we propose a wireless spectrum hypervisor architecture that abstracts a radio frequency (RF) front-end into a configurable number of virtual RF front ends. The proposed architecture has the ability to enable flexible spectrum access in existing wireless and mobile networks, which is a challenging task due to the limited spectrum programmability, i.e., the capability a system has to change the spectral properties of a given signal to fit an arbitrary frequency allocation. The proposed architecture is a non-intrusive and highly optimized wireless hypervisor that multiplexes the signals of several different and concurrent multi-carrier-based radio access technologies with numerologies that are multiple integers of one another, which are also referred in our work as radio access technologies with correlated numerology. For example, the proposed architecture can multiplex the signals of several Wi-Fi access points, several LTE base stations, several WiMAX base stations, etc. As it able to multiplex the signals of radio access technologies with correlated numerology, it can, for instance, multiplex the signals of LTE, 5G-NR and NB-IoT base stations. It abstracts a radio frequency front-end into a configurable number of virtual RF front ends, making it possible for such different technologies to share the same RF front-end and consequently reduce the costs and increasing the spectral efficiency by employing densification, once several networks share the same infrastructure or by dynamically accessing free chunks of spectrum. Therefore, the main goal of the proposed approach is to improve spectral efficiency by efficiently using vacant gaps in congested spectrum bandwidths or adopting network densification through infrastructure sharing. We demonstrate mathematically how our proposed approach works and present several simulation results proving its functionality and efficiency. Additionally, we designed and implemented an open-source and free proof of concept prototype of the proposed architecture, which can be used by researchers and developers to run experiments or extend the concept to other applications. We present several experimental results used to validate the proposed prototype. We demonstrate that the prototype can easily handle up to 12 concurrent physical layers

    White Paper for Research Beyond 5G

    Get PDF
    The documents considers both research in the scope of evolutions of the 5G systems (for the period around 2025) and some alternative/longer term views (with later outcomes, or leading to substantial different design choices). This document reflects on four main system areas: fundamental theory and technology, radio and spectrum management; system design; and alternative concepts. The result of this exercise can be broken in two different strands: one focused in the evolution of technologies that are already ongoing development for 5G systems, but that will remain research areas in the future (with “more challenging” requirements and specifications); the other, highlighting technologies that are not really considered for deployment today, or that will be essential for addressing problems that are currently non-existing, but will become apparent when 5G systems begin their widespread deployment
    • …
    corecore