297 research outputs found

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Experimental study of artificial neural networks using a digital memristor simulator

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a fully digital implementation of a memristor hardware simulator, as the core of an emulator, based on a behavioral model of voltage-controlled threshold-type bipolar memristors. Compared to other analog solutions, the proposed digital design is compact, easily reconfigurable, demonstrates very good matching with the mathematical model on which it is based, and complies with all the required features for memristor emulators. We validated its functionality using Altera Quartus II and ModelSim tools targeting low-cost yet powerful field programmable gate array (FPGA) families. We tested its suitability for complex memristive circuits as well as its synapse functioning in artificial neural networks (ANNs), implementing examples of associative memory and unsupervised learning of spatio-temporal correlations in parallel input streams using a simplified STDP. We provide the full circuit schematics of all our digital circuit designs and comment on the required hardware resources and their scaling trends, thus presenting a design framework for applications based on our hardware simulator.Peer ReviewedPostprint (author's final draft

    Memristors

    Get PDF
    This Edited Volume Memristors - Circuits and Applications of Memristor Devices is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Engineering. The book comprises single chapters authored by various researchers and edited by an expert active in the physical sciences, engineering, and technology research areas. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on physical sciences, engineering, and technology,and open new possible research paths for further novel developments
    corecore