9,128 research outputs found

    Development of advanced digital techniques for data acquisition processing and communication Interim scientific report

    Get PDF
    Design, video data characteristics, error control, and compression algorithms for Mars television mapping missio

    Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence

    Get PDF
    No abstract availabl

    The Fundamentals of Radar with Applications to Autonomous Vehicles

    Get PDF
    Radar systems can be extremely useful for applications in autonomous vehicles. This paper seeks to show how radar systems function and how they can apply to improve autonomous vehicles. First, the basics of radar systems are presented to introduce the basic terminology involved with radar. Then, the topic of phased arrays is presented because of their application to autonomous vehicles. The topic of digital signal processing is also discussed because of its importance for all modern radar systems. Finally, examples of radar systems based on the presented knowledge are discussed to illustrate the effectiveness of radar systems in autonomous vehicles

    From Packet to Power Switching: Digital Direct Load Scheduling

    Full text link
    At present, the power grid has tight control over its dispatchable generation capacity but a very coarse control on the demand. Energy consumers are shielded from making price-aware decisions, which degrades the efficiency of the market. This state of affairs tends to favor fossil fuel generation over renewable sources. Because of the technological difficulties of storing electric energy, the quest for mechanisms that would make the demand for electricity controllable on a day-to-day basis is gaining prominence. The goal of this paper is to provide one such mechanisms, which we call Digital Direct Load Scheduling (DDLS). DDLS is a direct load control mechanism in which we unbundle individual requests for energy and digitize them so that they can be automatically scheduled in a cellular architecture. Specifically, rather than storing energy or interrupting the job of appliances, we choose to hold requests for energy in queues and optimize the service time of individual appliances belonging to a broad class which we refer to as "deferrable loads". The function of each neighborhood scheduler is to optimize the time at which these appliances start to function. This process is intended to shape the aggregate load profile of the neighborhood so as to optimize an objective function which incorporates the spot price of energy, and also allows distributed energy resources to supply part of the generation dynamically.Comment: Accepted by the IEEE journal of Selected Areas in Communications (JSAC): Smart Grid Communications series, to appea

    Hybrid receiver study

    Get PDF
    The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions
    corecore