14 research outputs found

    Causes of Performance Degradation in Non-invasive Electromyographic Pattern Recognition in Upper Limb Prostheses

    Get PDF
    Surface Electromyography (EMG)-based pattern recognition methods have been investigated over the past years as a means of controlling upper limb prostheses. Despite the very good reported performance of myoelectric controlled prosthetic hands in lab conditions, real-time performance in everyday life conditions is not as robust and reliable, explaining the limited clinical use of pattern recognition control. The main reason behind the instability of myoelectric pattern recognition control is that EMG signals are non-stationary in real-life environments and present a lot of variability over time and across subjects, hence affecting the system's performance. This can be the result of one or many combined changes, such as muscle fatigue, electrode displacement, difference in arm posture, user adaptation on the device over time and inter-subject singularity. In this paper an extensive literature review is performed to present the causes of the drift of EMG signals, ways of detecting them and possible techniques to counteract for their effects in the application of upper limb prostheses. The suggested techniques are organized in a table that can be used to recognize possible problems in the clinical application of EMG-based pattern recognition methods for upper limb prosthesis applications and state-of-the-art methods to deal with such problems

    Hannes Prosthesis Control Based on Regression Machine Learning Algorithms

    Get PDF
    The quality of life for upper limb amputees can be greatly improved by the adoption of poly-articulated myoelectric prostheses. Typically, in these applications, a pattern recognition algorithm is used to control the system by converting the recorded electromyographic activity (EMG) into complex multi-degrees of freedom (DoFs) movements. However, there is currently a trade-off between the intuitiveness of the control and the number of active DoFs. We here address this challenge by performing simultaneous multi-joint control of the Hannes system and testing several state-of-the-art classifiers to decode hand and wrist movements. The algorithms discriminated multi-DoF movements from forearm EMG signals of 10 healthy subjects reproducing hand opening-closing, wrist flexion-extension and wrist pronation-supination. We first explored the effect of the number of employed EMG electrodes on device performance through the classifiers optimization in terms of F1Score. We further improved classifiers by tuning their respective hyperparameters in terms of the Embedding Optimization Factor. Finally, three mono-lateral amputees tested the optimized algorithms to intuitively and simultaneously control the Hannes system. We found that the algorithms performances were similar to that of healthy subjects, particularly identifying the Non-Linear Regression classifier as the ideal candidate for prosthetic applications

    Should Hands Be Restricted When Measuring Able-Bodied Participants To Evaluate Machine Learning Controlled Prosthetic Hands?

    Get PDF
    OBJECTIVE: When evaluating methods for machine-learning controlled prosthetic hands, able-bodied participants are often recruited, for practical reasons, instead of participants with upper limb absence (ULA). However, able-bodied participants have been shown to often perform myoelectric control tasks better than participants with ULA. It has been suggested that this performance difference can be reduced by restricting the wrist and hand movements of able-bodied participants. However, the effect of such restrictions on the consistency and separability of the electromyogram's (EMG) features remains unknown. The present work investigates whether the EMG separability and consistency between unaffected and affected arms differ and whether they change after restricting the unaffected limb in persons with ULA. METHODS: Both arms of participants with unilateral ULA were compared in two conditions: with the unaffected hand and wrist restricted or not. Furthermore, it was tested if the effect of arm and restriction is influenced by arm posture (arm down, arm in front, or arm up). RESULTS: Fourteen participants (two women, age=53.4±4.05) with acquired transradial limb loss were recruited. We found that the unaffected limb generated more separated EMG than the affected limb. Furthermore, restricting the unaffected hand and wrist lowered the separability of the EMG when the arm was held down. CONCLUSION: Limb restriction is a viable method to make the EMG of able-bodied participants more similar to that of participants with ULA. SIGNIFICANCE: Future research that evaluates methods for machine learning controlled hands in able-bodied participants should restrict the participants' hand and wrist

    Convergence in myoelectric control:Between individual patterns of myoelectric learning

    Get PDF
    Objective: To support the design of assistive devices and prostheses, we investigated the changes in upper-limb muscle synergies during the practice of a myoelectric controlled game using proportional-sequential control. Methods: We evaluated 1) whether individual muscle synergies change in their structure; 2) variability; 3) distinctiveness; and 4) whether individuals become more similar with practice. Ten individuals practiced a myoelectric-controlled serious game for ten consecutive days (25 min/day) and one day after one week without training (retention). Results: The results showed that individuals decreased the number of synergies employed and modified their flexor synergies structure, becoming more similar as a group with practice. Nevertheless, within-individual synergies' variability and distinctiveness did not change. Conclusion: These results point out that individuals do not demonstrate muscle patterns less variable or differentiable after practice. However, participants increased performance and became more attuned to the task dynamics. Significance: The present findings indicate that, depending on the task requirements, individuals converge to more similar muscle activation patterns - a feature that should be further explored in prosthetic design

    Muscle Fatigue Analysis With Optimized Complementary Ensemble Empirical Mode Decomposition and Multi-Scale Envelope Spectral Entropy

    Get PDF
    The preprocessing of surface electromyography (sEMG) signals with complementary ensemble empirical mode decomposition (CEEMD) improves frequency identification precision and temporal resolution, and lays a good foundation for feature extraction. However, a mode-mixing problem often occurs when the CEEMD decomposes an sEMG signal that exhibits intermittency and contains components with a near-by spectrum into intrinsic mode functions (IMFs). This paper presents a method called optimized CEEMD (OCEEMD) to solve this problem. The method integrates the least-squares mutual information (LSMI) and the chaotic quantum particle swarm optimization (CQPSO) algorithm in signal decomposition. It uses the LSMI to calculate the correlation between IMFs so as to reduce mode mixing and uses the CQPSO to optimize the standard deviation of Gaussian white noise so as to improve iteration efficiency. Then, useful IMFs are selected and added to reconstruct a de-noised signal. Finally, considering that the IMFs contain abundant frequency and envelope information, this paper extracts the multi-scale envelope spectral entropy (MSESEn) from the reconstructed sEMG signal. Some original sEMG signals, which were collected from experiments, were used to validate the methods. Compared with the CEEMD and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), the OCEEMD effectively suppresses mode mixing between IMFs with rapid iteration. Compared with approximate entropy (ApEn) and sample entropy (SampEn), the MSESEn clearly shows a declining tendency with time and is sensitive to muscle fatigue. This suggests a potential use of this approach for sEMG signal preprocessing and the analysis of muscle fatigue

    Reducing the number of EMG electrodes during online hand gesture classification with changing wrist positions

    Get PDF
    Abstract Background Myoelectric control based on hand gesture classification can be used for effective, contactless human–machine interfacing in general applications (e.g., consumer market) as well as in the clinical context. However, the accuracy of hand gesture classification can be impacted by several factors including changing wrist position. The present study aimed at investigating how channel configuration (number and placement of electrode pads) affects performance in hand gesture recognition across wrist positions, with the overall goal of reducing the number of channels without the loss of performance with respect to the benchmark (all channels). Methods Matrix electrodes (256 channels) were used to record high-density EMG from the forearm of 13 healthy subjects performing a set of 8 gestures in 3 wrist positions and 2 force levels (low and moderate). A reduced set of channels was chosen by applying sequential forward selection (SFS) and simple circumferential placement (CIRC) and used for gesture classification with linear discriminant analysis. The classification success rate and task completion rate were the main outcome measures for offline analysis across the different number of channels and online control using 8 selected channels, respectively. Results The offline analysis demonstrated that good accuracy (> 90%) can be achieved with only a few channels. However, using data from all wrist positions required more channels to reach the same performance. Despite the targeted placement (SFS) performing similarly to CIRC in the offline analysis, the task completion rate [median (lower–upper quartile)] in the online control was significantly higher for SFS [71.4% (64.8–76.2%)] compared to CIRC [57.1% (51.8–64.8%), p < 0.01], especially for low contraction levels [76.2% (66.7–84.5%) for SFS vs. 57.1% (47.6–60.7%) for CIRC, p < 0.01]. For the reduced number of electrodes, the performance with SFS was comparable to that obtained when using the full matrix, while the selected electrodes were highly subject-specific. Conclusions The present study demonstrated that the number of channels required for gesture classification with changing wrist positions could be decreased substantially without loss of performance, if those channels are placed strategically along the forearm and individually for each subject. The results also emphasize the importance of online assessment and motivate the development of configurable matrix electrodes with integrated channel selection

    Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics

    Get PDF
    A hand amputation is a highly disabling event, having severe physical and psychological repercussions on a person’s life. Despite extensive efforts devoted to restoring the missing functionality via dexterous myoelectric hand prostheses, natural and robust control usable in everyday life is still challenging. Novel techniques have been proposed to overcome the current limitations, among them the fusion of surface electromyography with other sources of contextual information. We present a dataset to investigate the inclusion of eye tracking and first person video to provide more stable intent recognition for prosthetic control. This multimodal dataset contains surface electromyography and accelerometry of the forearm, and gaze, first person video, and inertial measurements of the head recorded from 15 transradial amputees and 30 able-bodied subjects performing grasping tasks. Besides the intended application for upper-limb prosthetics, we also foresee uses for this dataset to study eye-hand coordination in the context of psychophysics, neuroscience, and assistive robotics

    Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics

    Get PDF
    A hand amputation is a highly disabling event, having severe physical and psychological repercussions on a person’s life. Despite extensive efforts devoted to restoring the missing functionality via dexterous myoelectric hand prostheses, natural and robust control usable in everyday life is still challenging. Novel techniques have been proposed to overcome the current limitations, among them the fusion of surface electromyography with other sources of contextual information. We present a dataset to investigate the inclusion of eye tracking and first person video to provide more stable intent recognition for prosthetic control. This multimodal dataset contains surface electromyography and accelerometry of the forearm, and gaze, first person video, and inertial measurements of the head recorded from 15 transradial amputees and 30 able-bodied subjects performing grasping tasks. Besides the intended application for upper-limb prosthetics, we also foresee uses for this dataset to study eye-hand coordination in the context of psychophysics, neuroscience, and assistive robotics
    corecore