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Abstract— Objective: When evaluating methods for machine-

learning controlled prosthetic hands, able-bodied participants are 

often recruited, for practical reasons, instead of participants with 

upper limb absence (ULA). However, able-bodied participants 

have been shown to often perform myoelectric control tasks better 

than participants with ULA. It has been suggested that this 

performance difference can be reduced by restricting the wrist 

and hand movements of able-bodied participants. However, the 

effect of such restrictions on the consistency and separability of the 

electromyogram’s (EMG) features remains unknown. The present 

work investigates whether the EMG separability and consistency 

between unaffected and affected arms differ and whether they 

change after restricting the unaffected limb in persons with ULA. 

Methods: Both arms of participants with unilateral ULA were 

compared in two conditions: with the unaffected hand and wrist 

restricted or not. Furthermore, it was tested if the effect of arm 

and restriction is influenced by arm posture (arm down, arm in 

front, or arm up). Results: Fourteen participants (two women, 

age=53.4±4.05) with acquired transradial limb loss were recruited. 

We found that the unaffected limb generated more separated 

EMG than the affected limb. Furthermore, restricting the 

unaffected hand and wrist lowered the separability of the EMG 

when the arm was held down. Conclusion: Limb restriction is a 

viable method to make the EMG of able-bodied participants more 

similar to that of participants with ULA. Significance: Future 

research that evaluates methods for machine learning controlled 

hands in able-bodied participants should restrict the participants’ 

hand and wrist. 

 
Index Terms—Electromyography, Limb Restriction, 

Myoelectric Control, Upper Limb Absence, Arm Posture 

I. INTRODUCTION 

fter enduring a hand loss, individuals experience a 

reduction in their action capabilities as the degrees of 

freedom of the hand become unavailable. Many actions 

that were once easily performed must be relearned during 
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rehabilitation using alternative degrees of freedom. To reduce 

the strain on the remaining body structures, a prosthetic hand 

might be provided to regain some of the lost degrees of 

freedom. Prosthetic hands have until recently only offered one 

degree of freedom. However, myoelectric multi-articulated 

hands and machine-learning (ML) control systems have been 

recently introduced to the market offering multiple degrees of 

freedom. Such hands are controlled using electromyography 

(EMG) signals measured from the remnant limb using an array 

of electrodes. Features of the EMG signals are calculated and 

constitute a feature space in which a ML classifier is trained. 

Different regions of the feature space correspond to different 

movements. Whenever an EMG feature pattern is measured, as 

during normal use, the ML algorithm maps the pattern in the 

feature space and sends the corresponding control command to 

the prosthetic hand. For successful use of a ML-controlled 

hand, it is required that the EMG feature patterns from the same 

movement must be consistent and the EMG feature patterns 

from different movements must be separate in the EMG feature 

space [1]–[4]. Since people do not intuitively have good control 

over their EMG generation, these requirements are difficult to 

satisfy [5], [6]. Furthermore, EMG signals are non-stationary in 

real-life environments due to various factors such as limb 

posture and electrode shift during arm movements, and also due 

to sweat or fatigue, which cause EMG artefacts (see [7] for a 

review). Additionally, only a few minutes of data from selected 

fixed limb postures are normally used to train the classifier, 

which means that the classifier has to account for many other 

possible situations.  

The requirements of the EMG feature patterns for ML control 

are especially a challenge for those with upper limb absence 

(ULA) due to the physiological and musculoskeletal effects, 

which are a consequence of their limb loss. These effects 

include the deterioration of the neurological link to the muscles 

in the stump as result of altered cortical areas corresponding to 

the missing limb [8]–[10]. Additionally, when muscles are not 
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being used, fatty degeneration will occur making the muscles 

weaker, which lowers the magnitude of the EMG [11] and 

causes less separable EMG feature patterns. Furthermore, if the 

muscles are sutured to the bone (myodesis), only isometric 

contractions can be performed, which possibly results into less 

separable EMG feature patterns as muscle movement is limited. 

Moreover, altered proprioceptive feedback has been assumed to 

cause less consistent EMG feature patterns [12]. Finally, stump 

length, phantom limb sensation and time since amputation all 

relate to control performance [13]. 

Despite these differences, the extent to which limb loss in 

participants with ULA influences the EMG feature patterns is 

not well understood [2], [3], [14]–[19]. Moreover, able-bodied 

participants are recruited more often than participants with 

ULA during research on ML prosthetics to overcome the small 

number of persons with ULA that can be found or are available. 

There is however growing evidence indicating that able-bodied 

participants perform considerably better in various metrics than 

those with ULA [2], [3], [14]–[17], [20], [21], as well as being 

grouped into different clusters using  hierarchical cluster 

analysis and principal component analysis than able-bodied 

participants [21].  Therefore, the validity of recruiting able-

bodied participants as substitutes for participants with ULA is 

questionable. To overcome the above limitations it has been 

suggested that the effects of limb loss can be reproduced in 

able-bodied participants by restricting the movements of the 

hand and wrist using a brace or splint [22]–[25], thus making 

their EMG features more similar to those of people with ULA. 

The assumption behind this method is that a constrained hand 

and wrist would perform only isometric contractions, which 

should resemble the EMG contractions of a participant with 

ULA. However, this assumption has never been tested.  In 

summary, the influence of ULA and of wrist-hand restriction 

on the characteristics of EMG feature patterns represent two 

unaddressed research assumptions at the basis of many 

experiments on ML prosthetic control. In this study we address 

these issues by investigating the influence of ULA on the EMG 

feature patterns by using the other (intact) limb of people with 

ULA as a control. We further assess the effects of hand 

restriction on the quality of EMG feature patterns. Individuals 

with unilateral ULA were measured while performing bilateral 

movements in two conditions: one with the unaffected hand-

wrist unrestricted and one with the unaffected hand-wrist 

restricted. Additionally, these movements were measured in 

different arm postures, since ML classifiers are often trained on 

EMGs from different arm postures. However, the effect of 

posture on the EMG’s separability and whether it changes 

between unaffected and affected arms is also not well 

understood.  

To address the issues laid out above, several factors need to 

be investigated: limb, restriction, postures. Therefore, we 

performed an experiment with a full factorial design. This 

allows to investigate the main effects, but also the interactions 

between these factors. Within this factorial design this research 

concentrated on two objectives. First, we wanted to understand 

if the affected and unaffected arm differ in terms of EMG 

feature patterns consistency and separability. If they differ, this 

might provide insight to why able-bodied participants achieve 

better ML control than participants with ULA. Secondly, we 

investigated if restricting unaffected hands and wrists makes the 

EMG feature patterns generated by this arm more similar to 

those generated by affected arms in terms of consistency and 

separability. If this is the case, it would support the hypothesis 

that restriction of the able hand makes the generated EMG more 

similar to the EMG generated by an affected limb.  

We expected that the EMG feature pattern consistency and 

separability are lower in affected arms than in unaffected arms 

and that restricting the unaffected hand and wrist lowers the 

consistency and separability of the EMG feature pattern.  

II. MATERIALS AND METHODS 

A. Participants 

Participants were deemed eligible to take part in the study if 

they had an acquired unilateral limb-loss at the transradial level. 

The stump needed to have been properly healed with sufficient 

reduction of the stump oedema. Participants should have had at 

least a 2 cm wide region on the forearm without scars. 

Understanding the Dutch language was required to follow the 

study protocol. This study was approved by the local ethics 

committee (ECB/2017.01.30_2). Participants provided written 

informed consent before entering the study. 

B. EMG Measuring 

EMG was measured using sixteen active bi-polar electrodes 

(Otto Bock 13E200=50AC) where eight electrodes were 

attached to each of two elastic bands. The bands were fastened 

to the forearms of the participant. On the affected side, the band 

was fastened at the location where there was muscle activity 

with no scars present. Muscle activity was determined by 

palpating the forearm while the participant performed phantom 

movements. The other band was fastened at the corresponding 

location on the unaffected side. EMG was sampled at 1000 Hz 

and transmitted wirelessly to a laptop (Dell XPS 9550). 

C. Conditions 

The experiment consisted of two conditions during which the 

unaffected side was compared to the affected side. In the 

“Unrestricted” condition the unaffected hand and wrist were 

unrestricted. In the “Unaffected Hand Restricted” (UHR) 

condition the unaffected hand and wrist were restricted using a 

medical arm brace (Wrist Lacer, Medical Specialties, USA)) 

while holding a tennis ball and having the digits taped around 

the ball, so wrist, thumb and finger movements were restricted 

as much as possible, see Figure 1.  

D. Procedure and Design 

The participants sat on a chair with armrests in front of a 

laptop computer. The electrode bands were fastened to the 

forearms of the participant. The order of the conditions of the 

unaffected hand and wrist (restricted or not) were balanced 

across participants. The participant executed bilateral 

movements in three different arm postures. The movements 

were executed in different postures since EMG differs 

depending on the posture [7]. The three postures were down, 

front or up, see Figure 2. 
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Fig 1. Restriction of the unaffected hand and wrist as used in the study. Left: 

participants wore a wrist brace while holding a tennis ball to restrict wrist 
movements. Right: The hand was subsequently taped in using skin tape while 

holding the tennis ball to restrict movement of the thumb and fingers. The band 

of electrodes is shown at the bottom of both pictures.  

 

In the down posture the arms of the participant would hang 

down by their sides (shoulder flexion 0º, elbow flexion 0º, 

Figure 2A). In the front posture the participant would have their 

arms on the armrest of the chair, with the elbows flexed 

(shoulder flexion 0º, elbow flexion 90º, Figure 2B). In the up 

posture the participant would have their upper-arms parallel to 

the ground while their elbows were flexed so the forearms 

would be straight upwards (shoulder flexion 90º, elbow flexion 

90º, Figure 2C). In the up posture, participants would put their 

arms down to rest them in the period between movements. The 

order of these postures was randomised and participants were 

allowed to rest between postures for as long as they needed. 

In each of the three postures, the participant performed seven 

bilateral (phantom) movements, namely wrist flexion, wrist 

extension, pronation, supination, open hand, key grip and fine 

pinch, three times each for three seconds for a total of 63 

movement executions for each condition (restricted or not). See 

Figure 2. To aid in the movement executions, the experimenter 

said the name of the movement and performed the movement 

with the participant. Additionally, on the laptop, a picture of the 

movement was shown together with a progress bar indicating 

the remaining duration of the movement. Between repetitions 

the participant relaxed for three seconds. Between movements 

a six second break took place. All seven movements were 

executed in the same posture before moving on to the next 

posture. After a break, the participant followed the same 

procedure for the other condition. See Figure 2. 

E. Outcome Measures 

Features of EMG commonly used in machine learning based 

control were calculated; the mean absolute value, slope sign 

changes, wavelength and zero crossings. Features were 

calculated from 200 ms time windows with an overlap of 50 ms. 

1) EMG Feature Pattern Consistency 

Pattern consistency was calculated as the distance between 

patterns from different repetitions of the same movement by 

using the Within-class Distance (WDtotal) [26] formulated as: 

𝑊𝐷𝑡𝑜𝑡𝑎𝑙 =
1

7
∑ (∑
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  and 𝑑𝑖𝑠𝑡𝑟𝑗
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 are half the Mahalanobis distances in 

feature space between repetitions r and k of movement j and 

between repetitions k and r of movement j respectively: 

𝑑𝑖𝑠𝑡𝑘𝑗
𝑟𝑗
=

1
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Where μTrj and μTkj denote the feature vectors from repetition r 

and k respectively. Srj and Skj are the covariances of the training 

data from repetition r and k respectively. Smaller WD 

corresponds to more consistent EMG feature patterns.  

Fig 2.  Overview of procedure, postures and movements used per condition. For each of the three postures the seven movements were executed three times 

for three seconds. Postures were randomized between participants and participants had a six second break between movements.   
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2) EMG Feature Pattern Separability  

Pattern separability was calculated as the distance in feature 

space between patterns from different movements by using the 

Inter-class Distance Nearest Neighbour (IDNNtotal) and Inter-

class Distance All Neighbours (IDAN) [26]. The difference 

between IDNNtotal and IDAN is that IDNNtotal measures the 

distance to the nearest neighbour in feature space, whereas 

IDAN measures the average distance to all other neighbours in 

the feature space. The IDNNtotal and IDAN are formulated as: 

𝐼𝐷𝑁𝑁𝑡𝑜𝑡𝑎𝑙 =
1

7
∑ ( min
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Where 𝑑𝑖𝑠𝑡𝑗
𝑖   and 𝑑𝑖𝑠𝑡𝑖

𝑗
 represent half the Mahalanobis 

distances in feature space between movements i and j and 

between movements j and i of movement j respectively: 
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Where μTi and μTj denote the feature vectors from movement i 

and j, respectively. Si and Sj are the covariances of the data from 

movement i and j, respectively. Larger IDNNtotal and IDAN 

corresponds to more separate EMG feature patterns. 

F. Data Analysis 

For the analyses the metrics described in Outcome Measures 

were averaged over the seven movements and used as the 

dependent variables. All the dependent variables were tested for 

normality using separate Kolmogorov-Smirnov tests with 

Lilliefors correction. The dependent variables were analysed 

using a three-way repeated-measures ANOVA with arm 

(affected and non-affected), restriction (restricted and non-

restricted) and arm posture (down, front and up) as within-

subject factors. In the case of a 3-way interaction effect being 

present, the difference between restrictions was calculated and 

a two-way repeated measures ANOVA was performed with 

arm and arm posture as within-subject factors. This was done 

to reduce the number of post-hoc tests required, minimising the 

risk of making a type-1 error.  

Effect sizes were calculated using generalized eta-squared 

statistics [27]. Post-hoc testing was done using t-test with 

Bonferroni correction. Results are reported using mean ± 

standard error of the mean (SEM). The level of significance was 

set at α < 0.05. 

III. RESULTS 

Fourteen participants joined the study (12/2 M/F, 

age=53.4±4.05). See Table 1 for characteristics of the 

participants. 

The subject with ID 11 was excluded from the data analysis 

since he was not able to perform pronation/supination nor wrist 

flexion/extension. 

A. Analysis of EMG Feature Pattern Consistency and 

Separability 

For WD, 6 of the 12 conditions were normal distributed. For 

the IDNNtotal 11 of the 12 conditions were normal distributed. 

For IDAN 4 of the 12 conditions were normal distributed. Since 

ANOVAs are robust to violations of normality we proceeded 

with the analyses as planned. 

The analysis on WD revealed no significant effects. The 

analysis on IDNNtotal revealed a significant main effect of arm 

on IDNNtotal (F(1,12) = 7.613; p = .017, ηG² = .047), showing 

that the EMG feature patterns were less separated in the affected 

arm. We found two significant interaction effects: restriction & 

arm (F(1,12) = 7.285; p = .019; ηG² = .019), that was mediated 

by posture, (F(2,24) = 6.728; p = .005; ηG² = .017), see Figure 

3.   

ID Sex Age 

Side of 

amputation Loss of dominant hand 

Time  

since loss 

(years) 

Prosthesis 

type Prosthesis use Hours daily prosthesis use 

1 F 43 Left No 2.5 Cosmetic Daily 5-12 

2 M 74 Right Yes 53 Myo Daily 12+ 

3 F 50 Left No 21 Myo Daily 12+ 

4 M 26 Right Yes 0.5 - - - 

5 M 59 Right Yes 25 Myo Daily 12+ 

6 M 47 Left No 3 Myo Daily 5-12 

7 M 30 Right No 7 Myo Daily 12+ 

8 M 45 Right Yes 11 Myo Daily 5-12 

9 M 80 Left Yes 29 Myo Daily 2-5 

10 M 67 Right Yes 47 - - - 

11 M 54 Right No 26 Myo Daily 12+ 

12 M 52 Left No 32 - - - 

13 M 59 Right Yes 49 Myo Daily 5-12 

14 M 62 Left No 47 Myo Daily 12+ 

Table 1. Participants’ characteristics. Abbreviations: M = male, F = female, ID = identification number, Myo = Myoelectric.  
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To understand this three-way interaction, we calculated the 

difference in IDNNtotal between the unrestricted condition and 

the UHR condition and performed a new analysis on this 

difference. This post-hoc analysis revealed a significant main 

effect of arm (F(1,12) = 7.182; p = .02; ηG² = .06) and arm & 

posture (F(1,24) = 6.654; p = .005; ηG² = .06), see Figure 4. 

Post-hoc t-tests showed that the UHR condition causes a 

significant decrease in IDNNtotal for the unaffected limb 

compared to the affected limb in the down posture (t(12) = -

3.911; p = .002, r = .76) whereas no significant decrease was 

found for the front (p = .066, r=.50) and up (p = .500, r=.19) 

postures.  

The analysis on IDAN revealed no significant effects. 

 
Fig 3. Interaction effect of arm & restriction & posture on the Interclass 

Distance Nearest Neighbour (IDNNtotal). Each bar denotes the IDNNtotal for 

one arm in one condition. The diamonds denotes the mean and the circle with a 
dot denotes the median. The green, red and blue bars denote the posture. The 

bottom and top edged denotes the 25th and 75th percentile respectively. + signs 

denote outliers. Abbreviations: UHR = Unaffected Hand Restricted.  

 

 

 

 
Fig 4. Effect of condition on Interclass Distance Nearest Neighbour (IDNN). 

The red line denotes the median and the black diamond the mean. The bottom 

and top edged denotes the 25th and 75th percentile respectively. + signs denote 
outliers. Data points from individual participants are plotted next to the boxes. 

The * and the bracket marks the two conditions that are statistically significant. 

Abbreviations: Unaff = Unaffected, Aff = Affected. 

IV. DISCUSSION 

In this study the differences in EMG feature pattern 

consistency and separability were investigated between 

unaffected and affected arms in individuals with ULA in 

different arm postures while the unaffected hand and wrist was 

either restricted or not. The EMG feature pattern separability of 

the unaffected unrestricted arm appeared to be generally higher 

than in the other conditions (Figure 3, three leftmost bars). We 

conclude that the unaffected arm differs from the affected arm 

in terms of EMG feature patterns consistency and separability. 

However, the difference was smaller than what we anticipated 

considering the differences in ML control performance between 

able-bodied participants and participants with ULA [2], [3], 

[14]–[17], [20], we discuss this later in the Discussion.   

Restriction of the unaffected arm led to a significant decrease 

of EMG separability in the down posture. Moreover, for the 

front posture the post-hoc test revealed a p-value (.066) that was 

close to significance with a medium to large effect size (r=.50). 

This indicates that there probably is an effect of restriction in 

the front posture, especially given that with a sample size of 13 

it is unlikely that significant effects can be detected with a 

moderate effect size. Taking the significant decrease of the 

down posture into account we consider this close to significant 

effect as a preliminary sign that restricting the unaffected arm 

could result in a moderate decrease in the separability of the 

EMG for most of the postures. The relevance of these findings 

lie in the conditions under which EMG feature patterns of able-

bodied and of ULA participants can be made more alike for 

future EMG studies that employ able-bodied participants in 

place of participants with ULA. Such studies should now 

consider restricting the wrist and hand of their participants to 

make their EMG feature patterns and those of participants with 

ULA more alike. While able-bodied participants with restricted 

hand and wrist cannot serve as a substitution for recruiting 
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participants with ULA, it will make the data collected more 

relevant when exploring new methods and during pilot testing.  

A. Pattern Consistency 

We did not find any effect of arm, restriction or posture on 

EMG pattern consistency. It should be noted that some studies 

on user training for ML devices have found that EMG pattern 

consistency improves with training [2], [3]. This means that 

EMG pattern consistency might still be an important parameter 

to consider even though it might not differ between able-bodied 

participants and participants with ULA. It could be that EMG 

pattern consistency is not affected by physiological factors.  

B. Pattern Separability  

Our finding suggests that participants with ULA generate less 

separable EMG feature patterns than able-bodied participants.  

This is in line with our expectations given the physiological and 

musculoskeletal effect of limb loss. That unaffected arms 

generate more separable EMG feature patterns might explain 

why able-bodied participants in general achieve better ML 

based EMG control compared to participants with ULA using 

their affected [2], [3], [14]–[17], [20] or unaffected arm [28]. 

However, the difference in EMG separability was smaller than 

what we anticipated.  Literature suggests that training should 

focus on increasing the separability of the EMG patterns of 

participants with ULA [2], [26]. Future studies focusing on 

finding the optimal way of training EMG pattern separability 

should, based on the current findings, restrict the hand of able-

bodied participants when experimentally exploring different 

training methods that maximally increase separability. 

However, when aiming for functional improvement with ML 

based EMG control it should be noted that separability is just 

one aspect to improve. That is, in other studies we found that 

the correlation between EMG pattern separability and 

performance is not linear suggesting that above a certain level 

of separability, higher separability does not appear to lead to 

better performance [26], [29]. Furthermore, we only found a 

decrease in the IDNNtotal metric and not in the IDAN metric. It 

is unclear why the IDAN metric did not decrease in a similar 

fashion as the IDNNtotal metric. The relation between IDNN, 

IDAN and performance should be investigated in future 

research. 

C. Effect of Posture 

From previous research it is known that arm posture influences 

the EMG [30]–[32], but it was not clear how it influenced EMG 

feature pattern consistency and separability. Interestingly, we 

found that the effects of arm and restriction on separability were 

not equal over the postures we measured. Most notably, in the 

postures where the hand is below the head the lowering effect 

of restriction on separability was most apparent. This specific 

effect of posture might be due to causes such as gravity 

compensation (limb stabilisation), skin-electrode interface 

changes, changes in the force-length relationship of the muscle, 

changes in musculotendon lever arm or changes in motor 

execution [32]. To preserve the effect of posture, we suggest, in 

line with other studies [30]–[32], that in future research 

different arm postures should be used.  

D. Bracing 

Bracing of the hand and wrist in this study was done using a 

medical arm brace designed for comfortable long-term use and 

by taping the digits around a tennis ball. This method was 

chosen due to its simplicity and comfort. However, other 

studies used a glove attached to a board [22], [24] or have the 

hand grab a cylinder and encase the arm in stiff socket material 

[23]. The methods used in the other studies might have been 

more successful at enforcing isometric contractions, but were 

considered more complex. Furthermore, restricting the hand to 

a board would mean that the arm would be fixed in one posture. 

Moreover, our method was comfortable which is important 

since discomfort or pain can influence the contractions of the 

participants. The participants in our study did not express 

discomfort in wearing the brace and the other studies did not 

report if their participants found the bracing (un)comfortable. 

Therefore, it is unlikely that pain or discomfort caused the 

changes between the conditions.  

To our surprise, there appears to be some change in the EMG 

of the affected arm whether the unaffected hand is restricted or 

not. This might be due to changes in bilateral motor control 

when the unaffected hand and wrist is restricted. 

E. Limitations 

A limitation of our study is that the participants did not wear 

their prosthesis while being measured, which might have led to 

different results as the weight of the prosthesis affects the EMG 

[30]. This was unfortunately not possible since the prosthesis 

socket covered the forearm where we had to place the 

electrodes. Furthermore, we only measured participants with 

ULA at the transradial level, meaning that our results might not 

apply to participants with ULA at the transhumeral level. 

Additionally, the unaffected arm of an individual with ULA 

might differ from the arms of an able-bodied individual, which 

means the effects we observed might not apply to individuals 

with two intact arms. Lastly, our sample size was limited due to 

the challenges of recruiting participants with ULA and 

therefore our results should be confirmed in studies with larger 

sample sizes.  

V. CONCLUSION 

The separability of the EMG feature patterns was found to be 

lower in the affected arm than in the unaffected arm. Restriction 

of the able hand and wrist can be used to reduce the separability 

of the generated EMG patterns, but other parameters should be 

investigated before the restricted limb can be regarded as a good 

representative of the affected limb. Looking at separability 

results, restriction might be useful when testing prosthetic 

algorithms or hardware on able-bodied individuals. However, 

restriction of the unaffected hand and wrist does not lower 

pattern separability when the hand is above the head and 

restriction has no effect on the consistency of EMG patterns. 

The consistency of EMG patterns was not found to differ 

between the affected and unaffected arms meaning that this 

metric might not differ between individuals with ULA and able-

bodied individuals.  
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