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A B S T R A C T   

Objective: To support the design of assistive devices and prostheses, we investigated the changes in upper-limb 
muscle synergies during the practice of a myoelectric controlled game using proportional-sequential control. 
Methods: We evaluated 1) whether individual muscle synergies change in their structure; 2) variability; 3) 
distinctiveness; and 4) whether individuals become more similar with practice. Ten individuals practiced a 
myoelectric-controlled serious game for ten consecutive days (25 min/day) and one day after one week without 
training (retention). 
Results: The results showed that individuals decreased the number of synergies employed and modified their 
flexor synergies structure, becoming more similar as a group with practice. Nevertheless, within-individual 
synergies’ variability and distinctiveness did not change. 
Conclusion: These results point out that individuals do not demonstrate muscle patterns less variable or differ-
entiable after practice. However, participants increased performance and became more attuned to the task 
dynamics. 
Significance: The present findings indicate that, depending on the task requirements, individuals converge to 
more similar muscle activation patterns – a feature that should be further explored in prosthetic design.   

1. Introduction 

Myoelectric control–the usage of surface electromyographic features 
(sEMG) to control a device–is considered to have potential for rehabil-
itating individuals with physical limitations. An exceptional case is the 
increased functionality offered to upper-limb amputees when control-
ling myoelectric prostheses [1,2]. These myoelectric prostheses can vary 
on how they extract features from sEMG to control the effectors: with 
applications varying from the amplitude-based signal from two EMG 
sensors to pattern recognition algorithms extracting user’s intentionality 
from multi-channel EMG [1]. However, commercially available devices 
are mostly controlled by few electrodes and based on signal amplitude 
(but see CoApt COMPLETE CONTROL [3] and Otto Bock Myo Plus 
pattern recognition, for exceptions [4] that recently became commer-
cially available). The application of advanced technologies is limited 
given issues on the human–machine interaction being 

demonstrated–independent of the control scheme used. Recent litera-
ture points to a limited matching between individuals’ intention 
(intended command) and the device’s actual performance (actual 
command performed) [5,6]. 

New developments in this area have tried to overcome these issues 
by creating control-schemes based on observed consistent muscle 
coactivation patterns (i.e., muscle synergies) [7–12]. There are different 
perspectives on muscle synergies; some suppose they have a neural 
origin [13–15], whereas others argue they reflect task constraints [16]. 
The current paper does not address these perspectives but uses the 
structure in muscle activation patterns (revealed by the techniques to 
assess muscle synergies) to examine changes in muscle synergies when 
learning a myoelectric control task. These synergies are observed 
through coactivation patterns between muscles. As some have demon-
strated, muscle synergies are not rigid ([9,17–20], but see [21]). As 
pattern recognition control-schemes (including synergy-based ones) in 
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myoelectric prostheses are based on stability of the extracted patterns 
(patterns learned in the training period of using the device), modifica-
tions from learning challenge the assumption of stability of synergies 
[22,23]. As current literature is limited to provide how synergies are 
modified through learning, such changes represent a challenge for 
myoelectric control. 

The present study investigated muscle synergies changes in a 
myoelectric task, where two muscle sites control the task through 
proportional-sequential prosthetic control (see [1]). Although a two-site 
myoelectric task is straightforward, the activated muscles are embedded 
in a redundant muscle system (see [24]). Thus, if muscles are coordi-
nated in muscle synergies, then changes in the activation of one muscle 
of a given synergy could lead to changes in how other muscles contribute 
to that same synergy. 

There are several modifications in synergy control that can occur 
during motor learning. We addressed five potential aspects of such 
changes. The first was the number of synergies employed. One might 
expect that the number of participating synergies can increase–boosting 
flexibility in motor output (to show a large repertoire of behaviors – as to 
adapt to changing environment and/or unpredictable perturbations, see 
[25])–when learning to perform the task. Second, we measured how 
variability of muscle activation patterns within a synergy changed after 
learning. Third, we evaluated whether, and if so, how distinctiveness 
among synergies enlarged after learning. Fourth, we evaluated how 
synergies changed between the beginning and end of practice as an in-
dividual could have altered the muscle weightings within each synergy. 
Finally, we investigated whether such learning changes are similar be-
tween individuals. 

The potential changes in synergies variability and distinctiveness for 
prosthesis user learning are highly relevant for developing pattern- 
recognition-based myoelectric prosthesis. A decrease in variability is 
generally expected during learning, while a larger distinction between 
synergies is supposed to decrease confounding errors in pattern recog-
nition because of muscle activation pattern similarity. Both aspects 
would facilitate intention detection from the algorithm if activation 
variability and distinctiveness are easily learned. Additionally, conver-
gence is desirable: if individuals converge during practice, then a single 
control-scheme would suffice for prosthetic usability for several in-
dividuals. However, current literature has provided sources to doubt 
convergence [26,27]. As shown, few are the cases in which convergence 
can actually be found [28–32]. 

All the investigated changes were also evaluated in terms of a week- 
after retention test to guarantee that the observed changes were rela-
tively permanent in the individuals’ motor repertoire. 

2. Methods 

2.1. Participants 

Ten non-disabled individuals (23 to 35 years of age, 4 females) 
volunteered to participate in the study. All of them signed an informed 
consent form approved by the Institutional Review Board of the Uni-
versity of São Paulo–School of Physical Education and Sport of Ribeirão 
Preto. All individuals had no history of neurological or musculoskeletal 
injuries that would limit their capacity to perform the task. All partici-
pants had normal or corrected-to-normal vision. 

2.2. Apparatus, task and design 

Participants practiced a myoelectric controlled virtual game (The 
Falling of Momo, [31]) for 10 days (from Monday to Friday twice, sub-
sequent weeks), 25 min per day. Additionally, they performed a reten-
tion test 7 days after the last practice day. The task was to move the 
avatar through obstacles and rising platforms to avoid being trapped at 
the top of the screen (see [31,32] for more information). The task’s goal 
was not to touch the ceiling for as long as possible while the velocity of 

the rising platform and difficulty of the obstacles increased. 
For both practice and retention tests, participants practiced the task 

for at least 25 min for as many trials as required; participants finished 
the session only when they failed in a trial after completing 25 min 
(median 26.79, interquartile range = 7.21 min per day). For all trials, 
the participant started the practice at the level corresponding to half of 
the achieved level of the last trial. In this way, the difficulty and moti-
vation were maintained throughout practice. Only in the first trial of the 
retention test did participants start again from level 1. 

The myoelectric game was designed originally to work using two 
electrodes from a specific myoelectric bracelet, the MyoBand. To in-
crease the sampling rate and improve spatial specificity, we modified the 
software to allow the data to be collected with the Delsys Trigno Elec-
tromyography (EMG) sensors (sampling frequency of 1 kHz). Thus, to 
control the avatar, EMG sensors were placed on the skin of the dominant 
arm in 2 muscles: flexor carpi radialis (FCR) and extensor carpi radialis 
longus and brevis (ECR). We also placed sensors on other 7 muscles: 
biceps brachii (BB), triceps brachii (long head) (TB), brachioradialis 
(BR), flexor digitorium superficialis (FDS), flexor carpi ulnaris (FCU), 
extensor carpi ulnaris (ECU), and extensor digitorium communis (EDC). 
The placement location followed [33,34] (also see [35]). 

After placing the sensors, the individuals were instructed to perform 
one gentle wrist flexion and one gentle wrist extension to calibrate the 
system. The calibration was performed directly on the game wizard that 
provided a suitable gain for each signal based on the signal properties. 
The co-contraction signal was defined as 70% of both muscles’ gentle 
contraction. The calibration details followed the guidelines available in 
the accompanying calibration guide [31]. 

The game has a control-scheme similar to the proportional- 
sequential prosthetic control (see (1)). It was developed to stimulate 
the practice of controlling the sEMG signal prior to prosthesis use 
[31,32]. The motion velocity of the avatar in each direction was pro-
portional to the magnitude of the signal from the respective electrode 
placed in the forearm. Co-contraction made the avatar “jump” on the 
screen. 

Participants were seated in an adjustable-height chair in front of a 
monitor with its center at eye-level. Their arm was supported at the wrist 
by a wooden support covered with polyethylene foam. The chair-height 
was adjusted to have the individuals’ arm with a 90◦ flexion at the 
elbow, forearm in neutral position, and upper arm positioned at the side 
of the trunk. 

2.3. Data analysis 

The Momo game software provides three different score measures: 
levels (i.e., how many platforms the avatar passed through), number of 
coins (i.e., the number of coins that the avatar collected in the game), 
and a composite score. There is the possibility of different strategies in 
the game. For instance, some individuals might be more conservative 
and try to go through levels without collecting coins. Avoiding inter-
fering with the nature of the game and how individuals chose to practice 
it, we analyzed all three scores. 

The EMG data was first visually inspected to detect artifacts. Large 
spikes (saturation of the signal) in data were observed in few moments 
probably due to the proximity and touching of the EMG sensors 
depending on the movements. These artifacts (large spikes in data) were 
deleted by removing a small window encompassing the artifact for all 9 
time-series. This procedure eliminated 9.33% of the data (this referred 
to only 4 participants – likely with smaller arm sizes). The resulting EMG 
data was band-pass filtered (4th order Butterworth filter, 20–500 Hz), 
rectified, and low-pass filtered (4th order Butterworth filter, 10 Hz) to 
determine the linear envelope of the EMG signal (following [36]). 

Synergy Extraction. For each day analyzed (first and tenth days of 
practice and retention day), we concatenated all trials to extract the 
muscle synergies performed on that given day. For each set of sEMG (9 
time-series of 25 min of data), we used the Non-Negative Matrix 
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Factorization (NNMF) [37,38] to identify the synergies observed. This 
algorithm runs an optimization-iterative procedure to fit two initially 
random matrices to the observed EMG set: a weighting matrix (WSxN) 
and a time-varying signal (CNxT) where N is the number of muscles, S is 
the number of synergies, and T is the time-length. The weighting matrix 
was normalized to have the maximum weight per synergy with a value 
of 1 [39]. To calculate the appropriate number of synergies, we followed 
[40]. We ran the algorithm iteratively varying the number of synergies 
from 1 to 9 and calculating the variance accounted for (VAF) of the 
reconstructed set. Through a bootstrapping procedure (250 samples 
with replacement) we selected the number of synergies that showed VAF 
significantly higher than (95% confidence interval) 90%. 

Synergy Change. To understand the nature of synergy change, we 
compared synergy composition and three synergy indexes (number of 
synergies, within-subject variability, and distinctiveness) between days 
of practice and retention. Synergy change analysis was performed 
comparing all possible pairs of synergies between days with the 
normalized dot product [15]. From the NNMF decomposition, we have 
the vector (weighting) that describes the coactivation pattern of the 
muscles of a given synergy. The normalized dot product measures the 
projection of a given vector onto another, normalized by their magni-
tudes. With this, we got a measure of the difference between a synergy at 
a given moment of practice and that same synergy observed at another 
moment. A normalized dot product of one [1] demonstrates perfect 
equality of vectors, while a normalized dot product of zero (0) shows 
perfectly orthogonal synergies (no relation). 

We evaluated whether individuals used the same synergy for the 
same function between the first and last days of practice and retention. 
We categorized the resultant synergies into flexor, extensor, or non- 
specific. We considered synergies that had only flexors (FCR, FCU, 
FDS) with weights above 0.6, but no extensors (ECR, ECU, EDC), as 
flexor synergies and vice versa. Those who were mixed or had only non- 
specific muscles (BB, TB, BR) with weights above 0.6 were considered 
non-specific synergies. We compared, using the normalized dot product, 
within each category and between days, whether individuals maintained 
the same synergy (dot product above 0.9, see [15]). 

Synergy Variability and Distinctiveness. To investigate whether 
within-subject variability and distinctiveness changed, we calculated 
the dispersion of each synergy with bootstrap procedures and calculated 
the centroid distance between synergy’s distributions (following [40]). 
The dataset for each day and subject was resampled 100 times, selecting 
80% of the data set randomly. For each sample, an NNMF was performed 
using the number of synergies extracted from the original data, and a k- 
means clustering algorithm was used to group similar synergies. For each 
group, the activation patterns of the muscles within the synergy repre-
sent a sphere in muscle space (9 dimensions). The within-subject vari-
ability of the synergies of the day was measured as the radius of the n- 
sphere (9 dimensions) comprising 95% of each grouping. The within- 
subject variability of each grouping was averaged per day. Distinctive-
ness was measured as the average distance between each n-sphere. 

Synergy Convergence. To investigate whether individuals converged 
to more similar synergies during practice, we evaluated the dispersion of 
flexor and extensor synergies in the first, tenth and retention days. For 
this, we took the average flexor and extensor synergy for each individual 
per day and, using a bootstrap procedure (400 samples), calculated the 
radius and the confidence interval of the n-sphere (9 dimensions) 
comprising 90% of all subjects’ synergies of the given day (between- 
subject variability). Also, we compared, using the dot product, the 
centroid of the group’s synergies between days. 

2.4. Statistical analysis 

The analysis of performance (levels, coins, and composite score), and 
the changes in the number of synergies, within-subjects variability and 
distinctiveness between days (first and tenth day of practice and reten-
tion day) followed the same procedure. We performed Friedman’s 

ANOVA with post hoc analyses using pairwise Wilcoxon tests corrected 
by the Bonferroni sequential procedure [41]. All tests were performed 
with its exact 1-tailed significance value, and the r effect sizes were 
calculated using the conversion of the χ2 p-values to z-scores and 
dividing it to the square root of the sample size [42]. The pairwise 
comparisons are described detailing the median and interquartile range 
(IQR). The significance level was set at p < .05. 

3. Results 

3.1. Performance 

Fig. 1 shows the performance measures of the group and participants 
over the 10 days of practice and retention tests. 

Friedman’s ANOVAs for all three performance measures were sig-
nificant (levels: χ2[2] = 9.60; p = .007; r = 0.78; coins: χ2[2] = 10.40; p 
= .003; r = 0.87; score: χ2[2] = 11.40; p = .002; r = 0.91). Pairwise 
comparisons showed that participants increased levels achieved from 
33.08 (IQR = 12.81) on the first day to 63.00 (IQR = 22.81) on the tenth 
day (Z = 2.70; p = .002) and 61.91 (IQR = 22.50) on the retention test 
(Z = 2.70; p = .002). There was no difference in levels achieved between 
the tenth day and retention test (p = .385). Participants increased 
number of coins collected from 80.63 (IQR = 78.50) on the first day to 

Fig. 1. Performance measures as a function of days. Gray lines represent each 
participant and the black line represents the group average. 
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188.67 (IQR = 109.17) on the tenth day (Z = 2.50; p = .005) and 248.67 
(IQR = 182.94) on the retention test (Z = 2.70; p = .002). They also 
increased from the tenth day to the retention test (Z = 1.89; p = .032). 
Finally, participants increased their scores from 1035 (IQR = 919) on 
the first day to 2711 (IQR = 1416) on the tenth day (Z = 2.70; p = .002) 
and 3240 (IQR = 2636) on the retention test (Z = 2.70; p = .002). There 
was no difference in scores between the tenth day and retention test (p =
.053). 

3.2. Synergies 

Fig. 2 shows the changes in synergy indexes. Friedman’s ANOVA on 
the number of synergies revealed significant changes between the first 
and tenth days of practice and retention (χ2[2] = 5.83; p = .045; r =
0.53). Pairwise comparisons showed that participants decreased the 
number of synergies from 3.00 (IQR = 0.25) on the first day to 2.50 (IQR 
= 1.00) on the retention day (Z = 2.45; p = .016). The tenth day (3.00, 
IQR = 1.10) did not differ from any other day (p’s > 0.156). 

Friedman’s ANOVAs on synergy within-subject variability and 
distinctiveness failed to reach significance (within-subject variability: 
χ2[2] = 2.40; p = .368; r = 0.11; distinctiveness: χ2[2] = 3.80; p = .187; 
r = 0.28).1 

3.3. Individuality in learning 

Fig. 3 shows two exemplary participants: one that maintained the 
synergy structure almost intact between the first and last day of training 
(participant 4) and one who showed large changes in flexor synergies 
between these days (participant 10). 

Tables 1 and 2 present the synergy similarity (normalized dot 
product) between days for extensors and flexors, respectively. 

As can be observed, all participants maintained the same synergies 
for extensors (only participant 9 showed a value of 0.89 between the first 
day and the tenth day, which can be disregarded given high values be-
tween all other days). This observation was not the case for flexors. 
Participants 6 (all comparisons), participant 7 (D1 → Ret), participant 8 
(all comparisons), participant 9 (D10 → Ret), and participant 10 (D1 → 
D10, D1 → Ret) showed large differences in the composition of their 
muscle synergies. 

These changes could have occurred given individuals converged to a 
single solution. The analysis of the n-sphere centroid changes for the 
first, tenth and retention days showed that, for both extensors and 
flexors, the group remained around the same region. The normalized dot 
product was ≈ 1.00 and > 0.97 for extensors and flexors, respectively, 
for all days. 

The analysis of group dispersion (the group n-sphere radius, 
between-subject variability) showed, for extensors, an increase from the 
first day (17.02, CI95% = 0.18) to the tenth day (28.18, CI95% = 0.27) and 
to retention (19.52, CI95% = 0.11). The dispersion decreased from the 
tenth day to retention. For flexion, we found the opposite trend: in-
dividuals decreased their dispersion from the first day (72.04, CI95% =

1.54) to the tenth day (69.57, CI95% = 1.39) and then, to retention 
(36.33, CI95% = 1.64). Fig. 4 shows the distribution between individuals 

on flexor synergies. It is clear that the distribution largely decreases 
between non-specific (BB, TB, BR) and extensors muscles (ECR, ECU). 

4. Discussion 

We investigated the dynamics of muscle synergies when practicing a 
myoelectric-controlled game using proportional-sequential prosthetic 
control. We observed that individuals – using the game as a source of 
feedback – modified their behavior, decreasing the number of muscle 
synergies employed. The synergies employed did not decrease within- 
subject variability or increase within-subject differentiation. The syn-
ergies, however, showed modifications between the first and last days of 
practice, which led to remarkable similarities between individuals. 
Importantly, our retention test demonstrated that these changes were 
permanent–the new skill was preserved. The present study extended the 
concerns on whether performance in such tasks improves (as previously 
performed, see 32) to explain how this improvement occurs and to whom. 
These results are promising to the area of multi-site EMG-based pros-
thetic design in directing how individuals can improve muscle control in 
terms of the task (and prosthetic) requirements. 

A first result is that the number of synergies decreased over time. 
Despite the fact that this decrease was only significant for the retention, 
it is not uncommon that many processes (such as mental and physical 
fatigue, memory consolidation) can modify how individuals behave 
from the end of practice to a retention test (see [43]). However, the fact 
that the number of synergies decreased seems to disagree with the 
literature on muscle synergies that relates more synergies to increased 
behavioral flexibility and, consequently, better performance in a range 
of tasks [44,45]. Nevertheless, such literature disregards how the task 
requirements interact with behavioral changes in practice. These task 
constraints [46] are determinant in guiding how individuals change 
behavior in a task [47,48]. It could be said that flexibility is not required 
in a task such as this, but it is perfectly adaptive to reduce the number of 
synergies through practice. 

It might be that the task constraints determined to a large extent the 
pattern of change (and the non-changes for that matter) in the synergies. 
In the current task, only two muscles were used to control the avatar in 
the game. Moreover, these muscles were antagonistic and there were no 
restrictions on hand movements otherwise. This aspect implies that only 
the activations of those two muscles determined the task’s performance. 
Learning to produce the proper myosignal in these two muscles could be 
done by changing the activation patterns of the different synergies that 
these muscles are involved in or selecting the most appropriate synergies 
for activating those two muscles. The tendency observed, more synergies 
at first and less at the end of practice, seems to imply that individuals 
selected the most appropriate synergies from a range of potential can-
didates – the idea of selection from variation defended in other fields 
[49,50]. 

Nevertheless, we also observed that individuals modified the 
employed synergies [18–20]. This observation is contrary to the view 
that synergies are fixed motor modules that cannot be modified with 
practice [13,21], and in line to a more function-driven organization of 
synergies [9,51]. This is not to say that consistent muscle activation 
patterns are not observed, as the literature shows repeatedly (e.g., 
[13–15,52]). It is just that these synergies can be tuned to the task de-
mands. The pathway of learning here was starting with more synergies 
and extra effort (coactivation of non-required muscles) with later se-
lective activation of only the relevant muscles to perform the task. 

However, changes in the synergy structure occurred only for the 
flexors. This finding might relate to anatomical and functional aspects of 
the task. We found clearer signals from the extensors of the wrist 
compared to flexors. We speculate that this comes from between- 
individual variability on fat tissue located at the forearm region. This 
characteristic would induce variation between individuals in the signal 
amplitude and then, the effort to generate the same motion of the avatar. 
This increased effort could be seen as increased activation of non- 

1 As can be observed in Fig. 2.B and 2.C, there is a single outlier individual in 
the last day of practice for both variability and distinctiveness. Despite the fact 
that Friedman’s ANOVA is a non-parametric test (which would be robust for 
such deviation in distribution), we performed two other statistical analysis to 
sustain the mentioned results: Friedman’s ANOVA without the outlier and 
robust repeated measured ANOVA (Wilcox, 2017). For variability, both the 
Exact Friedman’s ANOVA and robust RM ANOVA did not reach significance (p’s 
= 0.154 and 0.103). For distinctiveness, the Exact Friedman’s ANOVA just 
reached significance (p = .048) while robust RM ANOVA did not (p = .175). 
Considering these results, we refrain from inferring that some change actually 
occurred. 
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relevant muscles (e.g., biceps, triceps), as observed here. 
Also, individuals modified the wrist flexion during practice to 

improve control. At first, we observed some individuals performing a 
slow flexion up to the joint range limit and acting against this limit to 
generate a higher EMG output. In some cases, such strategy increased 
the contraction of other muscles. More commonly, we observed an in-
crease in BB and TB activation; in other cases, activation of the 

antagonists would occur, and a jump would be observed on the screen. 
Later in practice, individuals performed fast flexion of the wrist, which 
would be enough to provide large EMG signals with no further need for 
acting against the joint range limit or coactivate other muscles. 

Considering the initial differences in strategy and the possible in-
fluence of fat tissue on EMG signal, the reason for individuals’ conver-
gence seems to be the interaction of a task with achievable 

Fig. 2. Synergy indexes as a function of days. Panel A: number of synergies; Panel B: Within-individual variability; Panel C: distinctiveness. The black line represents 
the median and the squares represent each individual. 

Fig. 3. Flexor synergy weights for participants 4 and 10 on the first and tenth day of practice. BB: Biceps Brachii; TB: Triceps Brachii; BR: Brachioradialis; ECR: 
Extensor Carpi Radialis; ECU: Extensor Carpi Ulnaris; EDC: Extensor Digitorium Communis; FCR: Flexor Carpi Radialis; FCU: Flexor Carpi Ulnaris; FDS: Flexor 
Digitorium Superficialis. 

Table 1 
Synergy similarity for extensors between days 1, 10 and retention.  

Participant D1 → D10 D1 → Ret D10 → Ret 

1  0.91  0.94  0.93 
2  0.94  0.96  0.96 
3  0.95  0.90  0.98 
4  0.98  0.93  0.98 
5  0.98  0.96  0.99 
6  0.97  0.99  0.99 
7  0.91  0.99  0.93 
8  0.95  0.98  0.97 
9  0.89  0.98  0.94 
10  0.96  1.00  0.97  

Table 2 
Synergy similarity for flexors between days 1, 10 and retention.  

Participant D1 → D10 D1 → Ret D10 → Ret 

1  0.96  0.96  0.98 
2  0.91  0.97  0.97 
3  0.91  0.96  0.97 
4  0.99  0.98  0.96 
5  0.96  0.95  0.98 
6  0.15  0.83  0.50 
7  0.90  0.88  0.94 
8  0.80  0.84  0.81 
9  0.97  0.91  0.87 
10  0.53  0.60  0.94  
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requirements, but constraining, and the capacity that individuals have 
to accommodate such requirements. It is important to note that such 
convergence is rarely the case in motor learning [53,54]. In general, 
motor learning, different initial repertoire, ways of encompassing the 
task requirements and redundant task requirements lead to different 
solutions that can be equally functional [28,29]. It could be that the 
present task is sufficiently constraining to, considering biomechanical 
similarities, leads individuals to converge [30]. Further, it is important 
to understand that individuals converged to better solutions, as the 
performance curves demonstrate (see Fig. 1). Convergence in behavior is 
a powerful attribute for prosthetic design: if the requirements of the task 
(prosthesis control requirements) are within the capacity of the system 
to learn, individuals will converge to these requirements (i.e., a motor 
learning-based control [7,55]) with few days of practice, decreasing the 
need for training-algorithms. 

However, some individuals improved much less than others. This 
was independent of the measure of performance utilized (correlations 
between measures were all high; levels and coins: Spearman’s ρ = 0.77; 
coins and score: ρ = 0.93; levels and score: ρ = 0.92). Thus, it was not a 
matter of “preference” in how to play the game. We used a game that is 
readily available to increase the contextual validity of the study but this 
limited analysis of the in-game performance in a more detailed way. 
These individual differences warrant further research. Previous research 
on motor learning pointed out that individuals search for solutions in 
their motor repertoire differently, which facilitates/hinders improve-
ment in the task [27,54,56]. An appropriate design for studying such 
search within the space of muscle synergies is, thus, highly relevant for 
the field. 

An important result was that individuals did not decrease variability 
or differentiation between synergies despite the increment in perfor-
mance. Note that, given that individuals could increase performance 
without decreasing synergy variability might indicate that the task was 
not appropriate to elicit such a change–in the same vein as the task 
constraints discussed above. Other studies provided mixed results on 
these measures. Allen et al. [17] showed that, after an intervention, 
individuals with Parkinson showed more consistent and distinct muscle 
synergies in walking than before the intervention. Also, Sawers et al. 
[57] showed differences between experts and novices on a beam 
walking task. Nevertheless, Allen et al. [40], comparing stroke and 
healthy individuals on gait, did not find any differences in these mea-
sures. It is questionable whether decreased variability and increased 
distinctiveness is a natural consequence of practice. 

If we follow the literature on motor learning, variability, in many 
cases, is not restricted to decrease and might even increase [47,58]. The 
means-end relation in the task goal and movement possibilities will 
define whether variability is allowed, desirable or undesirable. Also, 

individuals converged to motor solutions that are in line with the re-
quirements of the task (i.e., followed the task dynamics) without much 
concern with the reproducibility of the patterns. Researchers at the 
forefront of prosthesis design should recognize that control schemes 
externally imposed–with no reference to actual possibilities of myo-
control learning–will inevitably fail given the tendency to attend to task 
dynamics or even exploit features not anticipated by the designer [59]. 
That is, requiring consistent (and distinct) EMG patterns for recognition- 
based control schemes seem to be not in line with how EMG signals 
emerge (see [60]). 

These results can have several implications for the realm of pros-
thesis design. First, considering proportional-sequential control, we 
found no requirement for multiple muscles to be recorded–both for 
control and training–as the motor system approaches improved control 
on the designated control muscles. Second, even though our experiment 
did not employ pattern recognition directly, our results follow the dis-
cussions of Ison and Artemiadis [7] in that prosthesis design could take 
large advantage of the fact that individuals converge to similar synergies 
in given tasks, being robust to sEMG artifacts [8]. 

Ghassemi et al. [61,62] did not find healthy individuals modifying 
the coactivation pattern of the muscle synergies to improve performance 
in their body-machine interface. In their papers, they extracted principal 
components from the EMG signals of their participants performing 
several gestures. These principal components were used to control a 
virtual cursor in many virtual reaching/tracking tasks. Note, Ghassemi 
created the body-machine interaction in terms of the repertoire already 
demonstrated by the individual before the task. Thus, we expect that 
their participants could perform the task by just modulating overall 
activation before altering the structure. The motor behavior literature 
considers a possible hierarchy of changes in motor behavior–one would 
first try to accommodate the task demands in terms of parameterizing 
the coordinative structure (i.e., synergy) before modifying the covaria-
tion patterns of coordination structure [63,64]. Additionally, Ghassemi 
et al. used group averages to investigate whether individuals did 
conform to the task requirements. Here, we based ourselves on the 
learners’ differences to understand whether they were diverging or, as 
we saw, converging. Learner’s status is also a form of constraint; this 
cannot be forgotten if we are to understand motor behavior [27,65]. 

The present study has a few limitations that are worth mentioning. 
First, despite our main intention to understand muscle synergy control 
to elucidate good practices for technology design, we evaluated health 
and young individuals who are, at least currently, the least similar to 
target populations. This approach has been a common practice in the 
literature, and we believe that the insights gathered here can be 
generalized as the principles of learning are, potentially, the same. We 
refrain, however, from stating that despite similarities in principles will 

Fig. 4. Between-participant mean flexor synergy weights (bars and error bars) and participants’ distribution (squares) on the first and tenth day of practice. The error 
bars refer to the standard error. BB: Biceps Brachii; TB: Triceps Brachii; BR: Brachioradialis; ECR: Extensor Carpi Radialis; ECU: Extensor Carpi Ulnaris; EDC: Extensor 
Digitorium Communis; FCR: Flexor Carpi Radialis; FCU: Flexor Carpi Ulnaris; FDS: Flexor Digitorium Superficialis. 
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maintain patterns of change qualitatively the same between different 
populations. The second point of consideration is that we did not record 
the actual arm movements that individuals explored to perform the task. 
It might have been that the individual differences revealed originated 
from differences in the arm movements (although informal observations 
during the experiment did not point in that direction). One of our con-
siderations heavily relied on such differences and, despite that actual 
amputees will not provide such information, this might be a valuable 
source of information. Finally, we did not assess anthropometric mea-
sures such as body fat percentage or body mass index. These, as we 
inferred, might be relevant in explaining differences between 
individuals. 

5. Conclusion 

In the present paper, we investigated the dynamics of change in 
muscle synergies when practicing a myoelectric-controlled game. The 
findings highlight the variable nature of motor behavior and point to 
aspects that prosthetic design should consider. We strongly suggest that 
a systemic approach to technology design will succeed if they consider 
the marvelous capacity of the human system to adapt to different task 
demands. Nevertheless, one should further understand the biomechan-
ical and functional constraints of the individual to not restrict the re-
quirements to patterns incompatible with the own nature of human 
motor behavior (i.e., rigid control). Current views on prosthetic control, 
we believe, are in line with our considerations and suggestions [59,66]. 
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