578 research outputs found

    Computer vision system for wear analysis

    Get PDF

    Coding Estimation based on Rate Distortion Control of H.264 Encoded Videos for Low Latency Applications

    Full text link
    In the field of video processing, advancements in video compression at various temporal and spatial resolutions which are needed in our research to quantify estimation of video quality whereabouts within spatial and temporal domain itself. It was necessary in our research to study the impacts of related video coding conditions upon perceptual quality due to issue raised by User Experience community regarding poor coding. But most of research studies are concerned with coding distortions affected by mostly due to poor coding which address high spatio-temporal resolutions. This paper presents overall 120 test scenarios for video sequences having low spatial and temporal spectral information were studied. Finally we concluded that even after achieving consistency within subjective scores, we got relevant data consistency after refining subjective scores, so it is not poor coding its due channel capacity which was traced out by rate distortion control

    Automatic mashup generation of multiple-camera videos

    Get PDF
    The amount of user generated video content is growing enormously with the increase in availability and affordability of technologies for video capturing (e.g. camcorders, mobile-phones), storing (e.g. magnetic and optical devices, online storage services), and sharing (e.g. broadband internet, social networks). It has become a common sight at social occasions like parties, concerts, weddings, vacations that many people are shooting videos at approximately the same time. Such concurrent recordings provide multiple views of the same event. In professional video production, the use of multiple cameras is very common. In order to compose an interesting video to watch, audio and video segments from different recordings are mixed into a single video stream. However, in case of non-professional recordings, mixing different camera recordings is not common as the process is considered very time consuming and requires expertise to do. In this thesis, we research on how to automatically combine multiple-camera recordings in a single video stream, called as a mashup. Since non-professional recordings, in general, are characterized by low signal quality and lack of artistic appeal, our objective is to use mashups to enrich the viewing experience of such recordings. In order to define a target application and collect requirements for a mashup, we conducted a study by involving experts on video editing and general camera users by means of interviews and focus groups. Based on the study results, we decided to work on the domain of concert video. We listed the requirements for concert video mashups such as image quality, diversity, and synchronization. According to the requirements, we proposed a solution approach for mashup generation and introduced a formal model consisting of pre-processing, mashupcomposition and post-processing steps. This thesis describes the pre-processing and mashup-composition steps, which result in the automatic generation of a mashup satisfying a set of the elicited requirements. At the pre-processing step, we synchronized multiple-camera recordings to be represented in a common time-line. We proposed and developed synchronization methods based on detecting and matching audio and video features extracted from the recorded content. We developed three realizations of the approach using different features: still-camera flashes in video, audio-fingerprints and audio-onsets. The realizations are independent of the frame rate of the recordings, the number of cameras and provide the synchronization offset accuracy at frame level. Based on their performance in a common data-set, audio-fingerprint and audio-onset were found as the most suitable to apply in generating mashups of concert videos. In the mashup-composition step, we proposed an optimization based solution to compose a mashup from the synchronized recordings. The solution is based on maximizing an objective function containing a number of parameters, which represent the requirements that influence the mashup quality. The function is subjected to a number of constraints, which represent the requirements that must be fulfilled in a mashup. Different audio-visual feature extraction and analysis techniques were employed to measure the degree of fulfillment of the requirements represented in the objective function. We developed an algorithm, first-fit, to compose a mashup satisfying the constraints and maximizing the objective function. Finally, to validate our solution approach, we evaluated the mashups generated by the first-fit algorithm with the ones generated by two other methods. In the first method, naive, a mashup was generated by satisfying only the requirements given as constraints and in the second method, manual, a mashup was created by a professional. In the objective evaluation, first-fit mashups scored higher than both the manual and naive mashups. To assess the end-user satisfaction, we also conducted a user study where we measured user preferences on the mashups generated by the three methods on different aspects of mashup quality. In all the aspects, the naive mashup scored significantly low, while the manual and first-fit mashups scored similarly. We can conclude that the perceived quality of a mashup generated by the naive method is lower than first-fit and manual while the perceived quality of the mashups generated by first-fit and manual methods are similar

    Efficient automatic detection of 3D video artifacts

    Get PDF

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    No-reference video quality assessment model based on artifact metrics for digital transmission applications

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2017.Um dos principais fatores para a redução da qualidade do conteúdo visual, em sistemas de imagem digital, são a presença de degradações introduzidas durante as etapas de processamento de sinais. Contudo, medir a qualidade de um vídeo implica em comparar direta ou indiretamente um vídeo de teste com o seu vídeo de referência. Na maioria das aplicações, os seres humanos são o meio mais confiável de estimar a qualidade de um vídeo. Embora mais confiáveis, estes métodos consomem tempo e são difíceis de incorporar em um serviço de controle de qualidade automatizado. Como alternativa, as métricas objectivas, ou seja, algoritmos, são geralmente usadas para estimar a qualidade de um vídeo automaticamente. Para desenvolver uma métrica objetiva é importante entender como as características perceptuais de um conjunto de artefatos estão relacionadas com suas forças físicas e com o incômodo percebido. Então, nós estudamos as características de diferentes tipos de artefatos comumente encontrados em vídeos comprimidos (ou seja, blocado, borrado e perda-de-pacotes) por meio de experimentos psicofísicos para medir independentemente a força e o incômodo desses artefatos, quando sozinhos ou combinados no vídeo. Nós analisamos os dados obtidos desses experimentos e propomos vários modelos de qualidade baseados nas combinações das forças perceptuais de artefatos individuais e suas interações. Inspirados pelos resultados experimentos, nós propomos uma métrica sem-referência baseada em características extraídas dos vídeos (por exemplo, informações DCT, a média da diferença absoluta entre blocos de uma imagem, variação da intensidade entre pixels vizinhos e atenção visual). Um modelo de regressão não-linear baseado em vetores de suporte (Support Vector Regression) é usado para combinar todas as características e estimar a qualidade do vídeo. Nossa métrica teve um desempenho muito melhor que as métricas de artefatos testadas e para algumas métricas com-referência (full-reference).The main causes for the reducing of visual quality in digital imaging systems are the unwanted presence of degradations introduced during processing and transmission steps. However, measuring the quality of a video implies in a direct or indirect comparison between test video and reference video. In most applications, psycho-physical experiments with human subjects are the most reliable means of determining the quality of a video. Although more reliable, these methods are time consuming and difficult to incorporate into an automated quality control service. As an alternative, objective metrics, i.e. algorithms, are generally used to estimate video quality quality automatically. To develop an objective metric, it is important understand how the perceptual characteristics of a set of artifacts are related to their physical strengths and to the perceived annoyance. Then, to study the characteristics of different types of artifacts commonly found in compressed videos (i.e. blockiness, blurriness, and packet-loss) we performed six psychophysical experiments to independently measure the strength and overall annoyance of these artifact signals when presented alone or in combination. We analyzed the data from these experiments and proposed several models for the overall annoyance based on combinations of the perceptual strengths of the individual artifact signals and their interactions. Inspired by experimental results, we proposed a no-reference video quality metric based in several features extracted from the videos (e.g. DCT information, cross-correlation of sub-sampled images, average absolute differences between block image pixels, intensity variation between neighbouring pixels, and visual attention). A non-linear regression model using a support vector (SVR) technique is used to combine all features to obtain an overall quality estimate. Our metric performed better than the tested artifact metrics and for some full-reference metrics
    corecore